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Abstract

Diffusion tensor imaging (DTI) and diffusion kurtosis imaging (DKI) have been previ-

ously used to explore white matter related to human immunodeficiency virus (HIV)

infection. While DTI and DKI suffer from low specificity, the Combined Hindered and

Restricted Model of Diffusion (CHARMED) provides additional microstructural speci-

ficity. We used these three models to evaluate microstructural differences between

35 HIV-positive patients without neurological impairment and 20 healthy controls

who underwent diffusion-weighted imaging using three b-values. While significant

group effects were found in all diffusion metrics, CHARMED and DKI analyses

uncovered wider involvement (80% vs. 20%) of all white matter tracts in HIV infec-

tion compared with DTI. In restricted fraction (FR) analysis, we found significant dif-

ferences in the left corticospinal tract, middle cerebellar peduncle, right inferior

cerebellar peduncle, right corticospinal tract, splenium of the corpus callosum, left

superior cerebellar peduncle, left superior cerebellar peduncle, pontine crossing tract,

left posterior limb of the internal capsule, and left/right medial lemniscus. These are

involved in language, motor, equilibrium, behavior, and proprioception, supporting

the functional integration that is frequently impaired in HIV-positivity. Additionally,

we employed a machine learning algorithm (XGBoost) to discriminate HIV-positive

patients from healthy controls using DTI and CHARMED metrics on an ROIwise

basis, and unique contributions to this discrimination were examined using Shapley

Explanation values. The CHARMED and DKI estimates produced the best perfor-

mance. Our results suggest that biophysical multishell imaging, combining additional

sensitivity and built-in specificity, provides further information about the brain micro-

structural changes in multimodal areas involved in attentive, emotional and memory

networks often impaired in HIV patients.
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1 | INTRODUCTION

Diffusion-weighted magnetic resonance imaging (MRI) techniques

play a key role in assessing microstructural brain changes related to

neurodegenerative diseases, characterizing neoplastic tissues and pre-

dicting and monitoring response to treatment (Assaf et al., 2019;

Padhani et al., 2009).

While diffusion tensor imaging (DTI) is based on the assumption that

the movement of water molecules within tissue is described by a Gauss-

ian distribution (Novikov et al., 2019), biological matrices are dense with

cellular and macromolecular structures, which effectively invalidates this

assumption (Assaf & Pasternak, 2008). In this respect, a number of statis-

tical models (e.g., the Diffusional Kurtosis model; Jensen et al., 2005)

have been developed, which employ the higher cumulants of the diffu-

sion probability density function to cater to non-Gaussian diffusion

and/or non-monoexponential decay of the diffusion-weighted signal.

While such models can provide high sensitivity, their specificity is often

low owing to their purely statistical nature, and changes in the indices

provided by such models can be explained by concomitant biological

phenomena, rendering a biological interpretation of imaging findings

arduous. An alternative approach to the interpretation of the diffusion-

weighted signal is the use of biophysical models to obtain more specific

biomarkers of tissue microstructure.

The Combined Hindered And Restricted Model of Diffusion

(CHARMED) (Assaf & Basser, 2005) is a biophysical model that can be

fitted using data compatible with clinically feasible scan times.

CHARMED models the diffusion-weighted (DW) signal using two com-

partments (Assaf et al., 2004): an extra-axonal diffusion compartment,

which models the DW signal originating from hindered diffusion, and

an intra-axonal diffusion compartment, which represents the DW sig-

nal originating from restricted diffusion. A number of indices can be

extracted from CHARMED, most notably the restricted fraction (FR),

that is, the portion of the DW signal that the model explains through

hindered diffusion. FR has been shown to be more sensitive to axonal

integrity than DTI (Toschi et al., 2020) and can be very sensitive to vari-

ous white matter (WM) pathologies involving myelin, axonal density or

intra-axonal composition (de Santis, Bastiani, et al., 2019). CHARMED

has been used to study various conditions, such as multiple sclerosis

(de Santis, Granberg, et al., 2019; Toschi et al., 2019), WM microstruc-

tural changes in healthy aging (Toschi et al., 2020), putative axonal den-

sity changes in the human brain (de Santis et al., 2016), and

microstructural assessment of plasticity dynamics (Tavor et al., 2013).

Several diffusion imaging techniques have been used to assess

structural and ultrastructural changes in the central nervous system

(CNS) of HIV-infected patients as well as to monitor the course of

infection (Bell et al., 2018; Davies et al., 2019; Garaci et al., 2019; Li

et al., 2018; O'Connor et al., 2017). Once HIV reaches the CNS, it

causes inflammatory phenomena that involve brain networks in both

white and gray matter, causing a plethora of neurological alterations

that also involve cognitive impairment (Behrman-Lay et al., 2016).

Since it has been shown that these neurological abnormalities are

associated with traditional DTI metrics (Correa et al., 2015; Heaps-

Woodruff et al., 2016), we postulated that more advanced and spe-

cific models such as CHARMED may have greater utility in under-

standing the effects of HIV on tissue microstructure.

The aim of this study was to explore brain microstructural

changes in HIV-infected patients using the CHARMED model to gain

insight into compartment-specific changes in whole-brain white mat-

ter. We also explore whether statistical multishell models (and, in par-

ticular, DKI) are able to provide increased sensitivity and specificity to

disease despite their lack of microstructural interpretability. Finally,

we employed explainable machine learning methods based on gradi-

ent boosting to probe the predictive value of indices derived from

CHARMED in discriminating subtle differences between HIV patients

and healthy controls while providing insight into which brain regions

contribute most to this prediction through explainability techniques.

2 | MATERIALS AND METHODS

The overall workflow of the study is shown in Figure 1.

2.1 | Study participants

Fifty-five participants were enrolled at the Department of Infectious Dis-

eases of the University Hospital Rome “Tor Vergata.” The study popula-

tion included 35 HIV-positive patients without neurological impairment

and 20 healthy controls. The present study was approved by the local

ethics committee. Inclusion criteria were (a) previous HIV infection and

(b) no clinical evidence of neurological disorders. Exclusion criteria:

(a) history of head trauma, (b) stroke, (c) epilepsy, (d) CNS infections,

(e) demyelinating disease, (f) tumors, (g) coinfections, (h) or any kind of

contraindication to MRI examinations. The HIV-positive group comprised

27 men and eight women, with an average age of 41.3 years (range 24–

65 years). Healthy controls were composed of 11 men and nine women,

with an average age of 44.1 years (range 27–64 years). When comparing

average age and sex between the HIV group and the healthy controls,

we found no significant differences in age (p = 0.46, Mann–Whitney

U test) or sex (p = 0.08, chi-square test).

2.2 | Magnetic resonance imaging protocol

MRI was performed with a 3 T system (Achieva 3 T Intera, Philips

Healthcare, Best, The Netherlands) using an 8-channel phased array

head coil. The gradient amplitude and rise time were 80 mT/m and

200 mT/m/ms, respectively. For all subjects, the MRI acquisition
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protocol included an axial T2-weighted turbo spin echo sequence,

axial T2-fluid attenuated inversion recovery, sagittal T1-weighted

turbo spin echo sequence, and a T1-3D fast field echo sequence,

which were used by expert neuroradiologists to exclude neuroradio-

logical abnormalities. DWI was acquired using a spin–echo (SE) echo-

planar (EPI) single-shot sequence with the following parameters:

acquisition matrix, 94 � 94; field of view, 24 � 24 cm2; repetition

time/echo time, 7774 ms/89 ms; slice thickness, 2.5 mm; slices, 60;

and no gap; gradient duration δ (ms) 35; diffusion time Δ (ms) = 44.

Three different b values (0, 1000, and 2500 s/mm2) were used.

Thirty-two noncoplanar and noncollinear directions were chosen for

diffusion-weighed imaging (b = 1000, 2500 s/mm2), and eight non-

diffusion-weighted reference images (b = 0 s/mm2) were also col-

lected. The SENSE (SENSitivity Encoding) imaging option with a scan

time reduction factor of 2 was used. The total scan time was 35 min.

2.3 | MRI data preprocessing and model fitting

DW were preprocessed using the eddy tool, part of FSL (FMRIB Soft-

ware Library v.6.0.4, Oxford, UK; Jenkinson et al., 2012) to correct for

subject motion and eddy currents. The Microstructure Diffusion Tool-

box (MDT, https://github.com/robbert-harms/MDT) was used to fit

both the DTI and CHARMED models through a Powell optimization

procedure while using a cascade initialized optimization strategy

(Harms et al., 2017; Harms & Roebroeck, 2018). Signal-to-noise ratio

(SNR) calculations for each b-value were performed as described in

(Veraart et al., 2016) in the mrtrix tool (https://www.mrtrix.org/) by

averaging the estimated SNR voxelwise. Table S4 shows a decline in

SNR as a function of b-value, as expected. Reference images and

images acquired with b = 1000 s/mm2 were used to fit the DTI model

and obtain fractional anisotropy (FA), mean diffusivity (MD) and radial

diffusivity (RD). All b-values (0, 1000, and 2500 s/mm2) were used to

fit the CHARMED model using two possible fiber orientations per

voxel (Harms et al., 2017; Harms & Roebroeck, 2018), after which the

FR maps were calculated. In addition, another FR map was created by

(1) fitting the charmed model with one, two or three possible fiber ori-

entations and (2) selecting (for each subject) the FR value that corre-

sponded to the lowest Akaike's information criterion (AIC) in each

voxel. This led to a second version of the FR map (FR123), which

employed the number of fibers (from one to three) that optimally

fitted the diffusion-weighted signal in each voxel. Additionally, the dif-

fusional kurtosis imaging (DKI) model was fitted using the same tools,

from which mean kurtosis (MK) and radial kurtosis (RK) maps were

extracted. Successively, regions of interest (ROIs) were defined using

the ICBM-DTI-81 white matter labels Atlas (Mori et al., 2008; 48 ROIs

across the whole brain), and mean values for all indices were calcu-

lated within each ROI.

2.4 | Statistical analysis

Tract-based spatial statistics (TBSS) (Smith et al., 2006) was used for

voxelwise group comparison of all parameters to compare the HIV

group to the control group. The TBSS analysis consists of the follow-

ing steps: (a) nonlinear registration of all FA images with each other;

(b) identification of the most representative FA image and use of this

as the target image; (c) affine alignment of the target image in the

F IGURE 1 Overall study workflow. DR, restricted fraction; DTI, diffusion tensor imaging; FA, fractional anisotropy; FR123, Restricted fraction
while choosing the number of fibers in each voxel between one and three according to Akaike's information criterion; MD, mean diffusivity; MRI,
magnetic resonance imaging; RD, radial diffusivity; TBSS, tract-based spatial statistics. In addition to the indices depicted, mean kurtosis (MK) and
radial kurtosis (RK) were also calculated.
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Montreal Neurological Institute (MNI) 152 standard space;

(d) transformation of each image into the MNI152 1 � 1 � 1 mm3

space by combining the nonlinear transformation of the target FA

image with the affine transformation from that target to the MNI152

space; (e) creation of the mean of all FA images; (f) threshold at 0.2

and thinning to create an average FA skeleton; and (g) projection of

each subject's aligned FA data onto this skeleton. Subsequently, all

previously computed warps are applied to all maps (FA, RD, AD, FR,

FR123), warping them into MNI space for subsequent skeletonization

as described above. The skeletonization step improves robustness

against between-subject registration errors. The resulting data were

then fed into voxelwise intersubject, nonparametric statistics using

the randomize tool, also part of FSL. For all diffusion-derived metrics

(DTI, DKI, CHARMED), we tested the null hypothesis of no differ-

ences between the HIV-positive group and healthy control subjects

using separate general linear models (GLMs), which included age and

gender as nuisance covariates and correction for multiple comparisons

over space using permutation-based nonparametric inference within

the framework of the GLM (10,000 permutations) and using

threshold-free cluster enhancement (TFCE) (Smith & Nichols, 2009),

which eliminates the need for an arbitrary cluster threshold definition.

A corrected p value <0.05 was assumed to be statistically significant.

After TBSS, for each metric, we also calculated the percentage of vox-

els (out of the whole skeleton) in which a significant group effect was

found. We also performed (a) ROI-wise statistical comparisons

(Wilcoxon test) between groups (HIV patients vs. controls) of the

median values of DWI-derived metrics and (b) classical AUC-ROC

analysis calculated using multivariate logistic regression to provide

direct comparison with the machine learning results (see below).

2.5 | Classification analysis and feature importance

Forty-eight ROIs across the whole brain for each metric (FA, MD, RD,

RK, MK, FR, FR123) were used to train a nonlinear classifier in a machine

learning (ML) framework using the extreme gradient boosting (XGBoost)

algorithm (T. Chen & Guestrin, 2016) to discriminate HIV-positive-

patients and healthy controls. XGBoost is a scalable end-to-end tree

boosting algorithm that has shown state-of-the-art performance in a

number of diverse machine learning applications (Olson et al., 2018). The

complete dataset was split randomly into training (70%) and test (30%)

sets. In the training set, hyperparameter values were optimized using a

grid search in a 5-fold cross-validation scheme with the training set. After

training, performance in the test set was assessed using an area under

F IGURE 2 White matter regions (red–yellow), which showed significantly lower FA in HIV patients than in controls. No significant results
were found in the opposite contrast. Blue: white matter skeleton generated by the TBSS procedure.
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the curve (AUC) metric assessed from the receiver operating characteris-

tic (ROC) curve. Accuracy, sensitivity, specificity, F1-score and positive

predictive value (PPV) were also computed. In addition, the contribution

of each feature to the final prediction performance of the model was

evaluated and ranked through Shapley Additive explanations (SHAP)

values (Štrumbelj & Kononenko, 2013). SHAP values combine six existing

methods for quantifying feature importance more consistently to human

reasoning relative to previous machine learning explanatory approaches

(Lundberg et al., 2020) and allow for quantification of both average and

single-subject feature importance (i.e., unique contribution/importance

of each feature in the final prediction). The splitting operation as well as

all subsequent analyses were repeated 1000 times while changing the

random seed to calculate the means and confidence intervals for all per-

formance metrics. All participants provided written informed consent

prior to the study.

3 | RESULTS

3.1 | DTI analysis

The TBSS results showed significantly lower FA (Figure 2) values in

HIV-positive patients than in healthy controls. In particular, we

observed lower FA values in HIV patients with moderate prevalence

in the right brain hemisphere along the uncinate and superior longitu-

dinal fasciculi, along the right inferior frontal-occipital bundle, left for-

ceps minor and in the cingulate gyrus.

Additionally, MD (Figure S1) and RD (Figure S2) values were

higher in HIV-positive patients than in healthy subjects. In the same

comparison, MD and RD metrics showed higher values along the cin-

gulate gyrus, right superior longitudinal fasciculus and along the

U-fibers with slight right brain hemisphere prevalence; moreover, RD

values were higher at the ganglionic level, and AD showed lower

values in the right brain hemisphere along the inferior longitudinal fas-

ciculus, the cortico-spinal tract, and the temporal part of the superior

longitudinal and uncinate fasciculi. Finally, MK (Figure S3) and RK

(Figure S4) were both lower in HIV-positive patients than in healthy

subjects. These differences were widespread and involved the corpus

callosum, cortico-spinal bundles, brainstem and middle cerebellar

peduncle, cingulate gyrus and right superior longitudinal fasciculus.

3.2 | CHARMED analysis

CHARMED analysis (Figures 3 and 4) revealed less focal and much

more widespread involvement of brain tissue compared with DTI

F IGURE 3 White matter regions that showed significantly lower FR in HIV patients than in controls. No significant results were found in the
opposite contrast. Blue: white matter skeleton generated by the TBSS procedure.
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metrics, in a similar way to DKI metrics. In particular, lower FR values

were found in HIV-infected patients (compared with controls) along

the corpus callosum, cortico-spinal bundles, brainstem and middle cer-

ebellar peduncle. In the FR123 map (Figure 4), additional regions with

significant differences were highlighted, such as the left superior cere-

bellar peduncle, the pontine crossing tract, the left posterior limb of

the internal capsule, and the left and right medial lemniscus.

3.3 | Descriptive spatial statistics and machine
learning

The overall percentage of volume (across the TBSS skeleton) in which

we found statistically significant differences between HIV patients

and healthy controls was greatest (by factor 3) in the FR and FR123

and maps compared with DTI estimates (see Table 1).

The results from our optimized machine learning model based on

ROI-wise values are shown in Table 2. MK, RK, FR123, and FR yielded

superior discrimination performance (in all examined classifier perfor-

mance indices) between HIV patients and controls (compared with DTI

metrics), confirming the hypothesis of a superior discrimination perfor-

mance of multishell techniques. These performances were further cor-

roborated by the direct ROI-wise comparison in all DWI metrics

(Table S1) and by the results of traditional AUC-ROC analysis (Table S2).

In sum, indices derived from multishell techniques showed the

best discrimination performance. Given that indices derived from the

F IGURE 4 White matter regions that showed significantly lower FR123 in HIV patients than in controls. No significant results were found in
the opposite contrast. Blue: white matter skeleton generated by the TBSS procedure.

TABLE 1 Spatial extent of statistically significant differences
between HIV-positive patients and healthy controls. percentage of
voxels (out of the whole skeleton) where we found significant group
effects in TBSS analysis

Metric %

FR 78.53

FR123 85.94

FA 14.32

MD 24.97

RD 27.33

MK 88.42

RK 84.08

Abbreviations: FA, fractional anisotropy; FR, restricted signal fraction;

FR123, restricted signal fraction when selecting the optimal number of

fibers through Akaike's information criterion in each voxel; MD, mean

diffusivity; MK, mean kurtosis; RD, radial diffusivity; RK, radial kurtosis.
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CHARMED model are also able to aid in the interpretation of

the underpinning microstructural changes, we chose these data as

well as MK to calculate global and individual feature importance and

interpretability. Figures 5 and 6 summarize feature importance rank-

ings for the models using FR and MK, respectively, to discriminate

HIV-positive patients from healthy control subjects, where larger

values indicate a larger contribution to the prediction. The six most

important ROIs in the FR and MK maps to discriminate HIV-positive

patients from healthy control subjects were the left corticospinal

tract, the middle cerebellar peduncle, the right inferior cerebellar

peduncle, the right corticospinal tract, the splenium of corpus callo-

sum and the left superior cerebellar peduncle (FR) and the right corti-

cospinal tract, the middle cerebellar peduncle, the medial lemniscus,

the pontine crossing tract, the left cerebral peduncle and the left corti-

cospinal tract (for MK). Additionally, analyzing the individual impor-

tance of these “top six” regions revealed that prediction importance

decreases with increasing FR value, with a qualitative threshold in

importance at approximately FR = 0.5, and it also decreases with

decreasing MK value, with a qualitative threshold around MK = 0.8.

4 | DISCUSSION

DWI techniques are useful for evaluating white matter abnormalities

in a vast number of pathologies that involve the CNS. Our patient

population comprised HIV-positive young adults (mean age: 41.3),

hence minimizing confounding factors such as aging, neurological

impairment or coinfection, and their characterization included radio-

logical examination of infratentorial structures as well as brain stem.

Overall, several previous studies based on classical DW imaging

(i.e., the DTI model) found significant differences between HIV-

positive patients and healthy control subjects in brain areas related to

several cognitive domains, such as complex attention, memory, execu-

tive function, and perceptual motor function, and DKI parameters

have been associated with blood biomarkers of disease severity in

HIV (Garaci et al., 2019). In this study, HIV-positive patients appeared

to have widespread WM changes that ranged up to approximately

80% of the total volume white matter tracts, and this result was only

visible when using multishell imaging. The CHARMED model as well

as the DKI model yielded superior classification ability when evaluat-

ing the performance of each metric in discriminating HIV patients

from controls. One of the advantages of CHARMED is the ability to

provide information about multiple fiber orientations within the same

voxel (Assaf et al., 2004), and FR measures may show increased sensi-

tivity to WM changes due to biological processes regarding myelin,

number of fibers or intraaxonal composition. On the other hand, the

ability of the DKI model to lump the non-Gaussian part of the DW sig-

nal attenuation into scalar indices also provides high sensitivity, albeit

without a clear relation to the microstructure. Given the heterogene-

ity of white matter tract orientations at the voxel scale, we repeated

our main analyses while selecting the “optimal” (in a model fitting

sense) number of fibers. Interestingly, the resulting FR123 maps

appeared to yield even greater voxelwise sensitivity (i.e., larger per-

centage of voxels with significant differences) than FR, although when

reducing special resolution in ROI-wise-wise aggregation and per-

forming machine learning-based prediction, FR and FR123 yielded sim-

ilar performances. In the FR and MK maps, areas involved in HIV

infections were found in the left corticospinal tract, middle cerebellar

peduncle, right inferior cerebellar peduncle, right corticospinal tract,

splenium of the corpus callosum and left superior cerebellar peduncle;

in addition, in the FR123 map, we found involvement of the left supe-

rior cerebellar peduncle, pontine crossing tract, left posterior limb of

the internal capsule, and left and right medial lemniscus. These areas

are involved in language, motor, equilibrium, behavior and propriocep-

tion, which support the integration of CNS multimodal areas that are

frequently impaired in HIV-positive patients (Bell et al., 2018;

Chanraud et al., 2010; Garaci et al., 2019; Gongvatana et al., 2009;

McArthur et al., 2005). Importantly, most of these changes were not

detected using conventional DTI metrics.

Our results also show an increased radial diffusivity in HIV

patients compared with controls, which may be caused by an impair-

ment of myelin sheaths. This is especially true in the anterior regions

of the corpus callosum, mainly implied in the connection of the brain

hemispheres and medial and lateral surface of the frontal lobes. Previ-

ous studies investigated changes induced by HIV in brain microstruc-

ture through standard DTI. Most of these studies have found a

decrease in FA and an increase in MD/RD values in different regions

(Chen et al., 2009; Leite et al., 2013; Pomara et al., 2001; Ragin

et al., 2004; Stubbe-Drger et al., 2012). In particular, compared with

controls, several papers have found (i) reduced FA values in the sple-

nium (Filippi et al., 2001; Wu et al., 2006) and the genu of the corpus

callosum (Filippi et al., 2001; Heaps-Woodruff et al., 2016; Thurnher

TABLE 2 Mean and standard
deviation (across 1000 repetitions of
three classification procedures) of
classifier performances when using
features from restricted signal fraction
(FR) and restricted signal fraction when
selecting the number of fibers in the
CHARMED model according to the AIC
in each voxel (FR123) for fractional
anisotropy (FA), mean diffusivity (MD),
radial diffusivity (RD), mean kurtosis
(MK), and radial kurtosis (RK).

AUC Accuracy Sensitivity Specificity f1-score PPV

FR 0.89 ± 0.07 0.90 ± 0.06 0.84 ± 0.13 0.94 ± 0.08 0.93 ± 0.05 0.92 ± 0.06

FR123 0.86 ± 0.07 0.88 ± 0.06 0.80 ± 0.15 0.93 ± 0.09 0.91 ± 0.05 0.90 ± 0.07

FA 0.68 ± 0.11 0.71 ± 0.10 0.60 ± 0.20 0.77 ± 0.13 0.77 ± 0.09 0.79 ± 0.09

MD 0.69 ± 0.10 0.72 ± 0.09 0.60 ± 0.19 0.78 ± 0.13 0.78 ± 0.08 0.79 ± 0.08

RD 0.70 ± 0.11 0.73 ± 0.10 0.60 ± 0.20 0.80 ± 0.13 0.79 ± 0.09 0.79 ± 0.09

MK 0.89 ± 0.08 0.90 ± 0.07 0.84 ± 0.15 0.93 ± 0.09 0.92 ± 0.06 0.92 ± 0.07

RK 0.87 ± 0.08 0.88 ± 0.06 0.83 ± 0.17 0.90 ± 0.08 0.90 ± 0.05 0.92 ± 0.08
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et al., 2005) and in frontal white matter (Pomara et al., 2001) and

(ii) increased MD values in the genu (Thurnher et al., 2005) and sple-

nium of the corpus callosum (Heaps-Woodruff et al., 2016; Wu

et al., 2006). While our study confirms these trends in FA, MD and

RD values, they appear to be localized in different areas of the brain,

such as the corpus callosum, corticospinal tract, brainstem and

brachium pontis. Studywise differences could be due to a number of

factors, such as differences in population size, treatment strategies

(type, duration, efficacy, planning) as well as the MRI acquisition pro-

tocol and data analysis approach (O'Connor et al., 2017). For example,

(Correa et al., 2015) reported no significant differences in the mean

FA, MD, and RD values of WM bundles between controls and HIV-

F IGURE 5 Upper panel: ranking of ROI-wise FR values contributing to the discrimination of HIV-positive patients from healthy control
subjects (SHAP values, averaged across the whole sample). Red bars represent ROIs with higher FR values in HIV patients, while blue bars
represent the opposite. Lower panel: individual dependence of SHAP values (i.e., feature importance) on FR values in each of the top six ranking
ROIs in the upper panel.
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positive patients without planning deficits. That study used a rela-

tively small patient population (13 patients without neurological

impairment) and a lower field strength (1.5 T) compared with the

present study. In HIV-positive patients, most authors observed signifi-

cant WM changes in frontal, temporal and occipital white matter, as

well as associated white matter fiber tracts (Cilliers & Muller, 2021),

F IGURE 6 Upper panel: ranking of ROI-wise MK values contributing to the discrimination of HIV-positive patients from healthy control
subjects (SHAP values, averaged across the whole sample). Red bars represent ROIs with higher MK values in HIV patients, while blue bars
represent the opposite. Lower panel: individual dependence of SHAP values (i.e., feature importance) on MK values in each of the top six ranking

ROIs in the upper panel.
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and recent studies have identified that the HIV group showed signifi-

cantly higher MD and lower FA than the control group in the right

corpus callosum, corona radiata, internal capsule, and posterior tha-

lamic radiation; group differences in FA in these regions were also

seen in the left hemisphere (Davies et al., 2019; Li et al., 2018). Addi-

tionally, previous studies explored the potential of DKI-derived met-

rics such as axonal water fraction and tortuosity in highlighting axonal

damage in patients with HIV infection as well as multiple sclerosis

(Buyukturkoglu et al., 2018) in the corpus callosum and anterior tha-

lamic radiations, where these metrics were also associated with clini-

cal test scores, pointing toward a clinical relevance of multishell DWI

in HIV infection.

Additionally, in our machine learning analysis, the overall classifi-

cation performance of FR123 was similar to that reached with FR as

well as MK and RK. This implies that while voxelwise model selection

may be useful in detecting slight differences, FR alone (in our case,

derived from a two-fiber model) is a powerful discriminator of WM

alterations, with higher performance than DTI metrics, even in a non-

primarily neurological disease such as HIV infection. This conclusion is

also supported by the use of modern explanation methods such as

SHAP. When ranking brain regions according to importance in dis-

criminating HIV patients from controls, the top six regions we found

were the corticospinal tract (bilaterally), middle cerebral peduncle,

inferior and superior cerebellar peduncles, and splenium of the corpus

callosum, which showed high overlap with the top six regions contrib-

uting to the classification using DKI metrics. These regions are impli-

cated in integrating proprioceptive sensory input with motor

vestibular function, modulation of the contralateral homotopic and

heterotopic areas of visual hierarchy and control of primary motor

activity (Hall, 2012; Knyazeva, 2013).

Our study has some limitations. HIV-positive patients did not

undergo neuropsychological testing, even though neurological symp-

toms were not detected. Additionally, the analyzed dataset is limited

in size, although it compares favorably to previous DWI studies in HIV

(Correa et al., 2015) (Heaps-Woodruff et al., 2016; Li et al., 2018).

Consequently, our patients were not stratified further (e.g., our popu-

lation was evaluated as a whole, independent of the Centers for Dis-

ease Control [CDC] classification of therapy status). Additionally, data

about CNS penetration of antiretroviral drugs were not available. We

were therefore not able to assess the correlation between CNS drug

penetration and MRI parameters. Additionally, we chose not to apply

heavy preprocessing, such as denoising or post hoc removal of Gibbs

ringing, to balance the quality of preprocessing with the potential

removal of information that it may lead to, also in view of the nonuni-

queness of potential techniques to perform these steps. Nevertheless,

all images were visually checked by experienced radiologists, and we

could reasonably assume that acquisition artifacts would have, on

average, affected both the HIV patients and the control group.

5 | CONCLUSIONS

When comparing HIV-infected patients to healthy controls, the

CHARMED model showed markedly more widespread brain involvem

ent than the DTI model, also yielding a better overall discrimination per-

formance. Similar results were attained by the DKI model, potentially val-

idating the hypothesis that the main information carrier is the number of

images and b-values used. The brain structures in which CHARMED-

and DKI-related indices were significantly different in HIV patients com-

pared with controls are related to multimodal associative brain areas

whose functions (memory, attentive and emotional networks) are known

to be often compromised in HIV-positive patients, hence offering a

mechanistic explanation for these impairments. In addition, multishell

imaging highlighted the involvement of the infratentorial structures,

offering an additional explanation for motor impairments that might

occur in HIV patients, and explainable AI methods allowed us to identify

the dependence of the importance of CHARMED indices in the discrimi-

nation task on the value of the indices themselves.

The superior discrimination accuracy of indices derived from a

multishell model within a clinically feasible scan time (approximately

18 min) allows us to envisage the use of neuroimaging-related bio-

markers in HIV studies when monitoring brain involvement is needed;

however, these results should be replicated in larger studies that also

include the monitoring of cognitive functions.
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