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Abstract

The purpose of this study was to evaluate the value of amide proton transfer-weighted (APTw) 

MRI radiomic features for the differentiation of tumor recurrence from treatment effect in 

malignant gliomas. Eighty-six patients who had suspected tumor recurrence after completion 

of chemoradiation or radiotherapy, and who had APTw-MRI data acquired at 3 T, were 

retrospectively analyzed. Using a fluid-attenuated inversion recovery (FLAIR) image-based mask, 

radiomics analysis was applied to the processed APTw and structural MR images. A chi-square 

automatic interaction detector decision tree was used for classification analysis. Models with and 

without APTw features were built using the same strategy. Tenfold cross-validation was applied 

to obtain the overall classification performance of each model. Sixty patients were confirmed 

as having tumor recurrence, and the remainder were confirmed as having treatment effect, at 

median time points of 190 and 171 days after therapy, respectively. There were 525 radiomic 

features extracted from each of the processed APTw and structural MR images. Based on these, 
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the APTw-based model yielded the highest accuracy (86.0%) for the differentiation of tumor 

recurrence from treatment effect, compared with 74.4%, 76.7%, 83.7%, and 76.7% for T1w, 

T2w, FLAIR, and Gd-T1w, respectively. Model classification accuracy was 82.6% when using the 

combined structural MR images (T1w, T2w, FLAIR, Gd-T1w), and increased to 89.5% when using 

these structural plus APTw images. The corresponding sensitivity and specificity were 85.0% and 

76.9% for the combination of structural MR images, and 85.0% and 100% after adding APTw 

image features. Adding APTw-based radiomic features increased MRI accuracy in the assessment 

of the treatment response in post-treatment malignant gliomas.
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1 | INTRODUCTION

Malignant gliomas are the most common and deadly primary brain cancers in 

adults worldwide. Even with the standard chemoradiation therapy following tumor 

resection, gliomas invariably recur.1 The MRI appearance of tumor recurrence is often 

indistinguishable from treatment-related changes, such as radiation necrosis2: both show T2-

weighted (T2w) hyperintensity, fluid-attenuated inversion recovery (FLAIR) hyperintensity, 

and gadolinium (Gd) enhancement on T1-weighted (T1w) sequences. Notably, published 

data suggest that about 50% of patients have new or increased Gd enhancement on MRI 

within the first 1–3 months after completion of therapy.3,4 In this scenario, determining 

whether a patient shows tumor recurrence (requiring an alternative therapy) versus treatment 

effect (termed “pseudoprogression,” where the current therapy would be continued) remains 

pivotal in the post-chemoradiation management of patients with malignant gliomas. 

Unfortunately, current standard neuroimaging techniques have considerable limitations in 

differentiating these two pathologies,5,6 which prevents treatment adjustments in a timely 

manner. Therefore, there remains a need to develop novel and reliable approaches with 

which to precisely assess the treatment response in patients with gliomas.

There are many advanced functional and molecular imaging techniques (including MRI and 

positron emission tomography), as well as multiparametric imaging, to tackle this unmet 

clinical need.7–14 Multiparametric imaging could be promising, but has not been widely 

used due to its limitations, as discussed previously.10,13 Amide proton transfer-weighted 

(APTw) MRI is a novel molecular imaging approach that generates contrast based on 

endogenous mobile proteins.15 3D APTw-MRI allows fast, volumetric acquisition on 3 

T clinical instruments,16–18 and consensus recommendations on this technique have been 

published recently.19 In the past several years, the technique has been validated extensively 

for the grading of tumors,20 accurate detection of recurrent malignant gliomas,21–24 

prognostication,25–28 and identification of genetic markers.29–31 A recent radiographically 

guided stereotactic biopsy study showed that APTw signal intensities were significantly 

higher in regions that represented active tumor than in regions without histologic evidence of 

active tumor.32
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Alternatively, radiomics analysis is capable of converting images into quantitative and 

objective features. Multiple radiomics studies have demonstrated that such quantitative 

measurements have potential in the diagnosis and subsequent management of patients 

with gliomas,33–42 including APTw-based radiomics studies for the molecular marker 

identification43 and differentiation of gliomas from metastases.44 In addition, researchers are 

beginning to develop computer-aided diagnostic models for radiomics analysis to assess the 

treatment response of gliomas.45–47 Here, we hypothesize that different treatment responses 

are reflected by different APTw image patterns that can be assessed quantitatively by 

radiomics analysis. If confirmed, radiomics analysis that includes APTw-MRI would add 

value to structural MRI sequences in the differentiation of treatment effect from tumor 

recurrence in malignant gliomas.

2 | METHODS

2.1 | Patients

This was a retrospective study of previously collected data. Some of the data in this study 

have been used previously21,32,48 and are being re-analyzed here. This retrospective study 

was approved by the institutional review board, and informed consent was waived. Patients 

with malignant gliomas treated between April 2010 and August 2017 were screened. 

Enrollment criteria were the following: 20 years old or more; pathologically proven primary 

malignant glioma (WHO Grades III and IV) that was treated with chemoradiation or 

radiotherapy alone; suspected tumor recurrence and a completed APTw imaging study 

after the completion of therapy, including T2w, FLAIR, T1w, and gadolinium-enhanced 

T1-weighted (Gd-T1w) sequences; integrated clinical diagnosis of tumor recurrence or 

treatment effect. Exclusion criteria included inferior image quality due to various factors.

For patients who underwent a clinically referred repeat surgery (biopsy only or biopsy 

followed by resection) within four weeks after APTw-MRI, the integrated clinical pathologic 

results were used to determine the final diagnosis of the lesions when APTw-MRI was 

performed. If clinical pathological reports were not available, the clinical MR images 

(before the initial surgery, as well as before and after chemoradiation or radiotherapy) 

and all other clinical reports in the electronic medical record system were reviewed to 

confirm the final diagnosis of the suspected lesions. The clinical follow-up MR images 

were evaluated according to the updated Response Assessment in Neuro-Oncology (RANO) 

criteria.5,6 Patients with image changes on conventional MRI but with complete response, 

partial response, and stable disease were grouped as “treatment effect,” and patients with 

progressive disease were grouped as “tumor recurrence.”

2.2 | MRI data acquisition

MRI was performed on a 3 T MRI scanner (Achieva; Philips Medical Systems, Best, 

the Netherlands). A 3D, volumetric, APTw imaging sequence (saturation power = 2 μT; 

saturation time = 800 ms; repetition time (TR) = 3 s; echo time (TE) = 17 ms; field of 

view (FOV) = 212×186 mm2; 15 slices; slice thickness = 4.4 mm; matrix = 96 × 94, 

reconstructed to 256 × 256)49 was used. The total APTw scan time was 8 min 6 s. APTw 

images were calculated using the magnetization-transfer-ratio asymmetry at the 3.5 ppm 
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offset from the water frequency. The water-saturation-shift-referencing method50 was used 

for B0 inhomogeneity corrections of APTw images.

Several standard structural MR images were acquired for reference, including T2w (dual-

echo TSE sequence; TR = 4 s; TE = 80 ms; FOV = 212 × 190 mm2; 60 slices; thickness 

= 2.2 mm; matrix = 192 × 179; reconstructed to 512 × 512), FLAIR (TR = 11 s; TE = 

120 ms; inversion recovery time = 2.8 s; FOV = 212 × 189 mm2; 60 slices; thickness 

= 2.2 mm; matrix = 256 × 192; reconstructed to 512 × 512), and T1w and Gd-T1w (three-

dimensional magnetization-prepared rapid gradient echo sequence; TR = 3 s; TE = 3.7 ms; 

inversion recovery time = 843 ms; FOV = 212 × 172 × 165 mm3; matrix = 212 × 212 × 

150; reconstructed to 512 × 512 × 150). The Gd-T1w imaging (0.2 mL/kg body weight; 

Magnevist; Berlex, Wayne, New Jersey) was the last sequence acquired.

2.3 | Data preprocessing

The data processing workflow is presented in Figure 1. Data preprocessing, including 

co-registration, skull-stripping, N4-bias field-correction, and MRI scale standardization, 

were performed sequentially.51,52 All MRI volumes (T1w, T2w, FLAIR, Gd-T1w, and 

APTw images) were re-sampled and co-registered to the saturated images at 3.5 ppm 

(with the same spatial resolution as the APTw images) with rigid-body registration using 

SimpleITK.53 An atlas-based skull-stripping was performed after adopting Simple Skull 

Stripping (S3).54 To preserve the visual details that might easily be neglected by MRI 

standardization, we adopted and optimized a proposed method52 to the window and level 

for image display. Notably, based on our experience during the image preprocessing, MRI 

scale standardization was not performed on APTw-MRI to avoid missing the distinguishing 

radiographic patterns on APTw-MRI. Each patient had 15 slices with five MR sequences.

2.4 | Lesion segmentation, feature extraction, and annotation

Manual annotation was performed by two readers independently to segment the regions 

with abnormal FLAIR signal intensities on the co-registered FLAIR images (including 

Gd-enhancing regions, edema, necrosis, and resection cavities) to generate masks using 

ITK-SNAP (Version 3.8.0). Then, one of the 15 slices with the largest Gd-enhancing region 

for each subject was selected for feature extraction. All radiomic features (except for shape) 

were calculated on original and derived images and extracted from the tumor regions of 

interest (ROIs) using a customized PyRadiomics program.55–57 Each MRI sequence yielded 

525 radiomic features. Since the same mask was shared across the preprocessed images 

derived from five MRI sequences, the values of size- and shape-based features (n = 9) were 

the same in each of the five sequences. Thus, a total of 2589 features were extracted for each 

subject. For all the features, a bin width of 32 was empirically chosen for radiomics analysis. 

Figure 2 shows structural and APTw MR images after preprocessing for two glioblastoma 

patients, one with tumor recurrence and one with treatment effect.

2.5 | Statistical analysis

All the values of the features were normalized across patients by Z-score transformation.58 

The intraclass correlation coefficient (ICC) analysis was used to assess inter-observer 

reproducibility of radiomic features extracted from two sets of independently drawn masks. 
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ICC values lower than 0.5 indicated poor reliability.59 The feature selection was based on 

the univariate analysis (to identify features with a significant difference between treatment 

effect and tumor recurrence, P < 0.05) and on the Pearson correlation analysis (between 

the features). Features with higher P values and with correlation coefficients |r| > 0.85 (in 

addition to ICC < 0.5) were removed to avoid the curse of dimensionality.60 Then, we used 

Bonferroni-corrected, 10-fold, cross-validated decision-tree learning (chi-square automatic 

interaction detector algorithm or CHAID) for the multi-variate classification analysis.61,62 

CHAID, as a predictive model with the important advantage of visual presentation for 

interpretation, applies a chi-squared test (χ2) to determine the splitting condition. This 

algorithm is used to prevent data overfitting and to inhibit further decision-tree splitting. To 

reduce overfitting and to ensure the clarity and interpretability of the results, the maximum 

tree depth was set to three levels. The minimal case number was set to 10 for parent 

nodes and to three for child nodes. The parameters used in the CHAID model were 

experimentally set up as follows: alpha for splitting = 0.05; alpha for merging = 0.05; 

maximum iterations for convergence = 100. Epsilon = 0.001 determined the convergence 

criterion. The diagnostic performance was evaluated by the receiver operating characteristic 

(ROC) analysis. The DeLong test was implemented to compare differences in the area under 

the curve (AUC) between two ROC curves.63 The accuracy, sensitivity, and specificity of 

the classifier were also calculated. The same statistical strategy was applied to feature sets 

extracted from images of (i) all five MR sequences (T1w, T2w, FLAIR, Gd-T1w, APTw), 

(ii) each of the five MR sequences, (iii) all MR sequences except APTw, and (iv) all MR 

sequences except Gd-T1w. All analyses were performed using SPSS 26.0 (IBM SPSS, 

Chicogo, Illinois) and MATLAB R2021a (MathWorks, Natick, Massachusetts). P values less 

than 0.05 were considered statistically significant.

3 | RESULTS

3.1 | Patient characteristics

A total of 116 patients with treated malignant gliomas were screened for this study. After 

30 patients were excluded (not high-grade glioma, treated with tumor resection only, no 

Gd-T1w images or inferior image quality), 86 patients (age 23–78 years old; 33 females and 

53 males; 26 grade III and 60 grade IV; see Table 1) were enrolled. The APTw-MRI study 

was performed at a median time point of 185 days post-chemoradiation or post-radiotherapy 

(range, 18 days to 3655 days). Sixty patients were confirmed as cases of tumor recurrence, 

and the remaining 26 patients were confirmed as cases of treatment effect, based on 

biopsy (24 cases) or integrated clinical diagnosis. There were no significantly different 

demographic characteristics between the groups of tumor recurrence and treatment effect.

3.2 | Diagnostic performance

For T1w, T2w, FLAIR, Gd-T1w, or APTw MR images, 34, 61, 47, 18, or 176 radiomic 

features with a significant difference between treatment effect and tumor recurrence were 

identified by the univariate analysis, respectively. Among them, 16, 20, 23, 12, or 30 features 

were further selected, respectively, after the reduction (jrj > 0.85 and ICC < 0.5 removed).
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The CHAID models achieved accuracies of 89.5% with the combined radiomic features 

extracted from all five MRI sequences (Model I), of 86.0%, 74.4%, 76.7%, 83.7%, and 

76.7% with the features from APTw, T1w, T2w, FLAIR, and Gd-T1w, respectively (Models 

IIA-E), of 82.6% with the combined features from T1w, T2w, FLAIR, and Gd-T1w (Model 

III), and of 90.7% with the combined features from T1w, T2w, FLAIR, and APTw (Model 

IV). In terms of sensitivity to identify tumor recurrence in patients with positive test results, 

Model IIE was highest, at 100%. For specificity to diagnose treatment effect by a negative 

test result, Model I was highest, at 100%. The use of APTw features (Model IIA) reached 

a more accurate assessment of the tumor response compared with any other single MR 

sequence (Models IIB–E). Moreover, the APTw-based model achieved an accuracy and 

specificity higher than the model that combined four structural MR methods (Model III). 

Notably, when combining T1w, T2w, FLAIR, and APTw without gadolinium administration, 

Model IV yielded much higher accuracy (90.7% versus 82.6%) and specificity (96.2% 

versus 76.9%) than, and a comparable sensitivity (88.3% versus 85.0%) to, that achieved 

when combining T1w, T2w, FLAIR, and Gd-T1w with gadolinium administration (Model 

III). Based on the comparison of ROC curves, AUCs for Models I versus III and for Models 

III versus IV were significantly different (P = 0.031 and 0.006, respectively). Accuracy, 

sensitivity, specificity, and AUC data are summarized in Table 2 for the CHAID algorithm.

3.3 | Independent predictors

Classification was achieved using the CHAID decision tree based on the heuristic 

parameters. Based on the combined data from APTw and structural MRI (Model I), CHAID 

decision tree analysis (Figure 3) revealed that two features (b and d; see Table 3) extracted 

from APTw, one (a) from FLAIR, and one (c) from Gd-T1w were the most significant 

predictors of tumor recurrence. The details of CHAID decision tree analyses based on the 

data from APTw (Model IIA) and all structural MRI sequences (Model III) are shown in 

Supplementary Figures S1 and S2.

One to four radiomic features were identified as independent predictors of tumor recurrence 

for each CHAID model (Table 3). Of the nine independent predictors (a–i) identified to build 

eight CHAID models, one feature (e) was extracted from a mask, one (g) was extracted from 

T2w images, one (a) was extracted from FLAIR images, three (c, h, and i) were extracted 

from Gd-T1w images, and three (b, d, and f) were extracted from APTw images. The four 

features (a–d) identified as independent predictors in Model I were repeatedly selected for 

different models (Models IIA, IID, IIE, III, and IV). The most frequently repeated feature 

was feature e, which was used in Models I, IIA, IIB, IIC, ID, and IV.

4 | DISCUSSION

In this work, we developed and tested a classifying framework that integrated structural 

and APTw-MRI radiomic features for the non-invasive diagnosis of tumor recurrence versus 

treatment effect in malignant gliomas. The majority of radiomics studies—with variable 

degrees of success—have been restricted to structural MRI data. There are only a few 

published MRI-based radiomics studies that have used advanced MRI data to explore the 

prediction of treatment responsiveness or survival for patients with post-treatment malignant 
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gliomas.64–66 These studies show various diagnostic performances. Two of them reported 

accuracies for responsiveness prediction of 86.7% and 75–84%, respectively.65,66 APTw-

MRI generates contrast based on endogenous cellular proteins and peptides in tissue without 

contrast agent administration.67,68 The APTw signal intensity is closely correlated with 

cellularity and proliferation, and therefore has great potential as a valuable biomarker for 

the assessment of viable malignancy. Recently, two initial APTw-based radiomics studies 

have been conducted to identify a molecular marker in newly diagnosed gliomas43 and 

to differentiate gliomas from metastases.44 More attempts to determine the feasibility and 

efficacy of implementing APT-based radiomic features for response assessment are needed.

We used PyRadiomics to extract 525 radiomic features from each of the processed APTw 

and structural MR images. Among several published papers using MRI for the assessment 

of brain tumors, the numbers of radiomic features for each ROI per MRI sequence varied 

widely from 117 to 1731.69,70 In our study, due to the smaller APTw volume coverage, 

any features related to 3D images were not included (see limitation (iii) below). As an 

exploratory study of the application of APTw image-based radiomics in post-treatment 

glioma patients, features were extracted only from derived images using two classic filters 

(Laplacian of Gaussian with three sigma levels and wavelet with two levels). Fewer filter 

approaches were implemented to derive images for feature extraction, since unsatisfactory 

reproducibility has been previously found for the features extracted from images derived 

with a filter.71

In our study, we applied the CHAID decision tree algorithm to build the prediction 

model. Compared with the “black-box” supervised classifiers, such as the support vector 

machine, naive Bayes, and the artificial neural network, the decision tree is the most 

interpretable classification algorithm in machine learning.62,72,73 The CHAID has been 

previously applied in the medical field because its prediction rules are easy to interpret in 

clinical settings. The joint model (III), built from the most frequently applied four structural 

MRI sequences (T1w, T2w, FLAIR, and Gd-T1w), was presented with three independent 

predictors (FLAIR and Gd-T1w image-based features) to yield an accuracy of 82.6%. After 

adding features extracted from APTw-MRI, forming Model I, the accuracy was increased to 

89.5%. Notably, the single APTw-based CHAID model using three independent predictors 

yielded diagnostic performances with a 95% CI accuracy of 76.7–89.9%, while adding 

APTw-based features to routine structural MR images improved the specificity from 86.8 

to 100%. Given the greatly reduced scan time and no need for contrast agents, the single 

APTw-based model (IIA) is highly promising, compared with the joint models (I and III). 

In terms of sensitivity, the ability of a model to correctly identify patients with tumor 

recurrence, Model IIE, consisting of two Gd-T1w features, achieved the highest sensitivity, 

100%, among all of the radiomic models.

The radiomic features extracted from APTw images yielded a diagnostic performance 

comparable to those in several previous APTw studies performed at 3 T.21–24,32 These 

previous APTw MRI studies used ROIs from solid tumor areas that covered Gd-enhancing 

areas (often avoiding liquefactive necrosis, intratumoral vessels, and hemorrhage). In 

contrast, our radiomics study used masks that covered the whole abnormality on FLAIR 

images as ROIs from which to extract possible distinguishing features. This APTw 
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radiomics approach does not require professional skills or intensive labor; thus, it provides 

a potential automatic method with which to analyze brain tumors that display highly 

sophisticated radiographic patterns.

Nine radiomic features were selected in the presented models, with five features (a–e) used 

repeatedly. Feature a (see Table 3), repeatedly presented in Models I, IID, III, and IV, was in 

the first order feature category from FLAIR. Feature a was defined as the mean distance of 

all intensity values from the mean intensity, calculated on a subset of the image array with 

gray levels in between or equal to the 10th and 90th percentiles after Gaussian (LoG) (σ = 5 

mm) filtering.55 Features b and c were the same feature, after Gaussian (LoG) (σ = 1 mm) 

filtering, from APTw and Gd-T1w MRI, respectively. Feature d was extracted from APTw-

MRI with a high-pass wavelet filter. This measured the joint distribution of large dependence 

with lower gray-level values. Interestingly, feature e, extracted from a mask, was the most 

frequently repeated feature. It yielded the second-largest axis length of the ROI-enclosing 

ellipsoid, which was performed using the physical coordinates of the voxel (pixel) centers 

that defined the ROI. When minor axis length serves as an independent predictor at the 

first tree depth in the decision tree, lesions with masks of longer second-largest axis length 

are prone to tumor recurrence. However, the potential underlying mechanism needs to be 

further validated. Features c and h extracted from Gd-T1w yielded the highest detection 

sensitivity for tumor recurrence (100%). Feature h measured the variability of gray-level 

intensity values in the image.

This study did have some limitations. (i) Our study was limited by a relatively small 

and retrospective sample. In terms of generalizability, the use of an independent dataset 

from an outside institution for validation is needed to produce robust results. However, 

the radiographic patterns on APTw images are heavily affected by the MRI scanning 

parameters. Unfortunately, the APTw scanning protocol had not been standardized on brain 

tumors until the consensus recommendations were released very recently in 2022.19 (ii) 

Our data were collected from patients with suspected tumor recurrence during a wide 

time range of 18 days to 10 years after the completion of therapy. The timing of MRI 

scans can also affect the distinction between recurrence and treatment changes. Accurate 

treatment response assessment in malignant gliomas remains a clinical challenge, and even 

biopsy yields variable results due to the intra-tumoral heterogeneity of treatment response. 

(iii) The feature extraction was performed on one of the 15 slices that showed the largest 

Gd-enhancing area for each subject. To reduce the scanning time, the APTw MRI protocol 

used in the previous prospective study covered only 66 mm in the z direction (4.4 mm × 

15 slices). APTw volumes covered the whole region with the FLAIR abnormality only in 

a small number of cases. Volumetric radiomic features are largely determined by the 3D 

masks (ROIs) where the features are extracted, as well as by the mutual relationship between 

voxels within the same 3D masks. APTw-FLAIR mismatched 3D masks (where APTw 

slides did not cover FLAIR-based ROIs) may lead to incorrect radiomic measurements; 

moreover, the coarse resolution of APTw images limited the use of volumetric feature 

extraction. Thus, caution should be taken when comparing the diagnostic performance 

with other radiomics studies that used the entire tumor volume, as well as pulse-sequence-

specific ROI masks (such as a Gd-enhancing lesion mask) and solid tumor ROI masks 

(such as those that remove intra-tumoral necrosis and vessels). (iv) MGMT methylation or 
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IDH mutation strongly influence patient prognosis. The lack of data for these prognostic 

pathologic markers in this retrospective study profoundly impeded our effort to perform a 

comprehensive assessment of treatment. (v) As discussed in the recent consensus paper,19 

the B1 variations in the brain at 3 T are typically within ±10% and can be up to ±30% in 

some regions, such as in the infratentorial region and in the superior part of the brain,74 

which may affect the APTw signal. A body coil and parallel transmit were used in this 

study, so the related effect may not be sufficient to substantially affect APTw contrast within 

most brain slices. However, this could be an issue only in the infratentorial and superior 

brain regions, and further assessments are needed. Further, it is known that the APTw signal 

consists of APT and a few other contributions, such as the downfield nuclear Overhauser 

effect, spillover, and magnetization transfer contrast dilution. Possible implications for 

radiomics analyses from these technical factors need to be assessed in the future.

5 | CONCLUSION

Our results in this study indicate that an APTw radiomic feature-based CHAID model can 

diagnose tumor response in malignant gliomas better than one with individual structural 

MRI-based features to a certain extent. Moreover, adding APTw features may boost 

the accuracy of the responsiveness assessment model using only features extracted from 

traditional MRI. This study showed preliminary data from CHAID decision-tree modeling 

using APTw-based radiomic features. Further multicenter and large-scale studies should be 

performed to improve and verify the model, as well as the potential for application in the 

clinical management of malignant gliomas.
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Abbreviations:

APTw amide proton transfer weighted

AUC area under the curve

CHAID chi-square automatic interaction detector

FLAIR fluid-attenuated inversion recovery

FOV field of view

Gd-T1w gadolinium enhanced T1 weighted
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ICC intraclass correlation coefficient

RANO Response Assessment in Neuro-Oncology

ROC receiver operating characteristic

ROI region of interest

T1w T1 weighted

T2w T2 weighted

T E echo time

T R repetition time

REFERENCES

1. Stupp R, Mason WP, van den Bent MJ, et al. Radiotherapy plus concomitant and 
adjuvant temozolomide for glioblastoma. N Engl J Med. 2005;352(10): 987–996. doi:10.1056/
NEJMoa043330 [PubMed: 15758009] 

2. Kumar AJ, Leeds NE, Fuller GN, et al. Malignant gliomas: MR imaging spectrum of 
radiation therapy- and chemotherapy-induced necrosis of the brain after treatment. Radiology. 
2000;217(2):377–384. doi:10.1148/radiology.217.2.r00nv36377 [PubMed: 11058631] 

3. Dunbar E, Blakeley J, Ye XB, et al. A systemic review of the magnetic resonance imaging 
features immediately postoperative and one-month postradiation and concurrent temozolomide. 
Neuro-Oncology. 2008;10:892–893.

4. Sanghera P, Perry J, Sahgal A, et al. Pseudoprogression following chemoradiotherapy for 
glioblastoma multiforme. Can J Neurol Sci. 2010;37(1):36–42. doi:10.1017/S0317167100009628 
[PubMed: 20169771] 

5. Wen PY, Macdonald DR, Reardon DA, et al. Updated response assessment criteria for 
high-grade gliomas: Response Assessment in Neuro-Oncology Working Group. J Clin Oncol. 
2010;28(11):1963–1972. doi:10.1200/JCO.2009.26.3541 [PubMed: 20231676] 

6. Eisele SC, Wen PY, Lee EQ. Assessment of brain tumor response: RANO and its offspring. Curr 
Treat Options Oncol. 2016;17:35. [PubMed: 27262709] 

7. Prager AJ, Martinez N, Beal K, Omuro A, Zhang Z, Young RJ. Diffusion and perfusion MRI 
to differentiate treatment-related changes including pseudoprogression from recurrent tumors in 
high-grade gliomas with histopathologic evidence. Am J Neuroradiol. 2015;36:877–885. [PubMed: 
25593202] 

8. Kazda T, Bulik M, Pospisil P, et al. Advanced MRI increases the diagnostic accuracy of recurrent 
glioblastoma: single institution thresholds and validation of MR spectroscopy and diffusion 
weighted MR imaging. NeuroImage Clin. 2016;11:316–321. doi:10.1016/j.nicl.2016.02.016 
[PubMed: 27298760] 

9. van Dijken BRJ, van Laar PJ, Holtman GA, van der Hoorn A. Diagnostic accuracy of magnetic 
resonance imaging techniques for treatment response evaluation in patients with high-grade glioma, 
a systematic review and meta-analysis. Eur Radiol. 2017;27:4129–4144. [PubMed: 28332014] 

10. Suh CH, Kim HS, Jung SC, Choi CG, Kim SJ. Multiparametric MRI as a potential surrogate 
endpoint for decision-making in early treatment response following concurrent chemoradiotherapy 
in patients with newly diagnosed glioblastoma: a systematic review and meta-analysis. Eur Radiol. 
2018;28: 2628–2638. [PubMed: 29374321] 

11. Chiang GC, Kovanlikaya I, Choi C, Ramakrishna R, Magge R, Shungu DC. Magnetic resonance 
spectroscopy, positron emission tomography and radiogenomics—relevance to glioma. Front 
Neurol. 2018;9:33. [PubMed: 29459844] 

Jiang et al. Page 10

NMR Biomed. Author manuscript; available in PMC 2023 September 15.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



12. Barajas RF, Hamilton BE, Schwartz D, et al. Combined iron oxide nanoparticle ferumoxytol 
and gadolinium contrast enhanced MRI define glioblastoma pseudoprogression. Neuro-Oncology. 
2019;21(4):517–526. doi:10.1093/neuonc/noy160 [PubMed: 30277536] 

13. le Fèvre C, Constans JM, Chambrelant I, et al. Pseudoprogression versus true progression in 
glioblastoma patients: a multiapproach literature review. Part 2—Radiological features and metric 
markers. Crit Rev Oncol Hematol. 2021;159:103230. doi:10.1016/j.critrevonc.2021.103230

14. Martin-Noguerol T, Mohan S, Santos-Armentia E, Cabrera-Zubizarreta A, Luna A. Advanced 
MRI assessment of non-enhancing peritumoral signal abnormality in brain lesions. Eur J Radiol. 
2021;143:109900.

15. Zhou J, Heo H-Y, Knutsson L, van Zijl PCM, Jiang S. APT-weighted MRI: techniques, current 
neuro applications, and challenging issues. J Magn Reson Imaging. 2019;50:347–364. [PubMed: 
30663162] 

16. Zhu H, Jones CK, van Zijl PCM, Barker PB, Zhou J. Fast 3D chemical exchange saturation 
transfer (CEST) imaging of the human brain. Magn Reson Med. 2010;64:638–644. [PubMed: 
20632402] 

17. Zhao X, Wen Z, Zhang G, et al. Three-dimensional turbo-spin-echo amide proton transfer MR 
imaging at 3-Tesla and its application to high-grade human brain tumors. Mol Imaging Biol. 
2013;15(1):114–122. doi:10.1007/s11307-012-0563-1 [PubMed: 22644987] 

18. Togao O, Keupp J, Hiwatashi A, et al. Amide proton transfer imaging of brain tumors using a 
self-corrected 3D fast spin-echo Dixon method: comparison with separate B0 correction. Magn 
Reson Med. 2017;77(6):2272–2279. doi:10.1002/mrm.26322 [PubMed: 27385636] 

19. Zhou J, Zaiss M, Knutsson L, et al. Review and consensus recommendations on clinical APT-
weighted imaging approaches at 3T: application to brain tumors. Magn Reson Med. 2022;88:546–
574. [PubMed: 35452155] 

20. Sotirios B, Demetriou E, Topriceanu CC, Zakrzewska Z. The role of APT imaging in gliomas 
grading: a systematic review and meta-analysis. Eur J Radiol. 2020;133:109353.

21. Ma B, Blakeley JO, Hong X, et al. Applying amide proton transfer-weighted MRI to distinguish 
pseudoprogression from true progression in malignant gliomas. J Magn Reson Imaging. 
2016;44(2):456–462. doi:10.1002/jmri.25159 [PubMed: 26788865] 

22. Park KJ, Kim HS, Park JE, Shim WH, Kim SJ, Smith SA. Added value of amide proton transfer 
imaging to conventional and perfusion MR imaging for evaluating the treatment response of newly 
diagnosed glioblastoma. Eur Radiol. 2016;26:4390–4403. [PubMed: 26883333] 

23. Liu J, Li C, Chen Y, et al. Diagnostic performance of multiparametric MRI in the evaluation 
of treatment response in glioma patients at 3T. J Magn Reson Imaging. 2020;51(4):1154–1161. 
doi:10.1002/jmri.26900 [PubMed: 31430008] 

24. Park YW, Ahn SS, Kim EH, et al. Differentiation of recurrent diffuse glioma from 
treatment-induced change using amide proton transfer imaging: incremental value to diffusion 
and perfusion parameters. Neuroradiology. 2021;63:363–372. doi:10.1007/s00234-020-02542-5 
[PubMed: 32879995] 

25. Mehrabian H, Myrehaug S, Soliman H, Sahgal A, Stanisz GJ. Evaluation of glioblastoma 
response to therapy with chemical exchange saturation transfer. Int J Radiat Oncol Biol Phys. 
2018;101:713–723. [PubMed: 29893279] 

26. Paech D, Dreher C, Regnery S, et al. Relaxation-compensated amide proton transfer (APT) MRI 
signal intensity is associated with survival and progression in high-grade glioma patients. Eur 
Radiol. 2019;29(9):4957–4967. doi:10.1007/s00330-019-06066-2 [PubMed: 30809720] 

27. Joo B, Han K, Ahn SS, et al. Amide proton transfer imaging might predict survival and 
IDH mutation status in high-grade glioma. Eur Radiol. 2019; 29(12):6643–6652. doi:10.1007/
s00330-019-06203-x [PubMed: 31175415] 

28. Meissner JE, Korzowski A, Regnery S, et al. Early response assessment of glioma patients to 
definitive chemoradiotherapy using chemical exchange saturation transfer imaging at 7 T. J Magn 
Reson Imaging. 2019;50(4):1268–1277. doi:10.1002/jmri.26702 [PubMed: 30864193] 

29. Jiang S, Zou T, Eberhart CG, et al. Predicting IDH mutation status in grade II gliomas using amide 
proton transfer-weighted (APTw) MRI. Magn Reson Med. 2017;78(3):1100–1109. doi:10.1002/
mrm.26820 [PubMed: 28714279] 

Jiang et al. Page 11

NMR Biomed. Author manuscript; available in PMC 2023 September 15.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



30. Paech D, Windschuh J, Oberhollenzer J, et al. Assessing the predictability of IDH mutation and 
MGMT methylation status in glioma patients using relaxation-compensated multi-pool CEST MRI 
at 7.0 Tesla. Neuro-Oncology. 2018;20(12):1661–1671. doi:10.1093/neuonc/noy073 [PubMed: 
29733378] 

31. Jiang S, Wen Z, Ahn SS, et al. Applications of chemical exchange saturation transfer magnetic 
resonance imaging in identifying genetic markers in gliomas. NMR Biomed. 2022;e4731. 
doi:10.1002/nbm.4731 [PubMed: 35297117] 

32. Jiang S, Eberhart CG, Lim M, et al. Identifying recurrent malignant glioma after treatment using 
amide proton transfer-weighted MR imaging: a validation study with image-guided stereotactic 
biopsy. Clin Cancer Res. 2019;25(2):552–561. doi:10.1158/1078-0432.CCR-18-1233 [PubMed: 
30366937] 

33. Lu CF, Hsu FT, Hsieh KL, et al. Machine learning-based radiomics for molecular subtyping of 
gliomas. Clin Cancer Res. 2018;24:4429–4436. [PubMed: 29789422] 

34. Liu X, Li Y, Qian Z, et al. A radiomic signature as a non-invasive predictor of progression-free 
survival in patients with lower-grade gliomas. NeuroImage Clin. 2018;20:1070–1077. [PubMed: 
30366279] 

35. Arita H, Kinoshita M, Kawaguchi A, et al. Lesion location implemented magnetic resonance 
imaging radiomics for predicting IDH and TERT promoter mutations in grade II/III gliomas. Sci 
Rep. 2018;8(1):11773. doi:10.1038/s41598-018-30273-4 [PubMed: 30082856] 

36. Zhang Z, Yang J, Ho A, et al. A predictive model for distinguishing radiation necrosis from tumour 
progression after gamma knife radiosurgery based on radiomic features from MR images. Eur 
Radiol. 2018;28(6):2255–2263. doi:10.1007/s00330-017-5154-8 [PubMed: 29178031] 

37. Park YW, Choi YS, Ahn SS, Chang JH, Kim SH, Lee SK. Radiomics MRI phenotyping with 
machine learning to predict the grade of lower-grade gliomas: a study focused on nonenhancing 
tumors. Korean J Radiol. 2019;20:1381–1389. [PubMed: 31464116] 

38. Nie D, Lu J, Zhang H, et al. Multi-channel 3D deep feature learning for survival time prediction 
of brain tumor patients using multi-modal neuroimages. Sci Rep. 2019;9(1):1103. doi:10.1038/
s41598-018-37387-9 [PubMed: 30705340] 

39. Wei J, Yang G, Hao X, et al. A multi-sequence and habitat-based MRI radiomics 
signature for preoperative prediction of MGMT promoter methylation in astrocytomas 
with prognostic implication. Eur Radiol. 2019;29(2):877–888. doi:10.1007/s00330-018-5575-z 
[PubMed: 30039219] 

40. Wang K, Qiao Z, Zhao X, et al. Individualized discrimination of tumor recurrence from radiation 
necrosis in glioma patients using an integrated radiomics-based model. Eur J Nucl Med Mol 
Imaging. 2020;47(6):1400–1411. doi:10.1007/s00259-019-04604-0 [PubMed: 31773234] 

41. Chougule T, Gupta RK, Saini J, et al. Radiomics signature for temporal evolution and 
recurrence patterns of glioblastoma using multimodal magnetic resonance imaging. NMR Biomed. 
2022;35(3):e4647 doi:10.1002/nbm.4647 [PubMed: 34766380] 

42. Chawla S, Bukhari S, Afridi OM, et al. Metabolic and physiologic magnetic resonance imaging 
in distinguishing true progression from pseudoprogression in patients with glioblastoma. NMR 
Biomed. 2022;35(7):e4719. doi:10.1002/nbm.4719 [PubMed: 35233862] 

43. Han Y, Wang W, Yang Y, et al. Amide proton transfer imaging in predicting isocitrate 
dehydrogenase 1 mutation status of Grade II/III gliomas based on support vector machine. Front 
Neurosci. 2020;14:144. doi:10.3389/fnins.2020.00144 [PubMed: 32153362] 

44. Sartoretti E, Sartoretti T, Wyss M, et al. Amide proton transfer weighted (APTw) imaging based 
radiomics allows for the differentiation of gliomas from metastases. Sci Rep. 2021;11(1):5506. 
doi:10.1038/s41598-021-85168-8 [PubMed: 33750899] 

45. Su C, Jiang J, Zhang S, et al. Radiomics based on multicontrast MRI can precisely differentiate 
among glioma subtypes and predict tumour-proliferative behaviour. Eur Radiol. 2019;29(4):1986–
1996. doi:10.1007/s00330-018-5704-8 [PubMed: 30315419] 

46. Li J, Liu S, Qin Y, Zhang Y, Wang N, Liu H. High-order radiomics features based on T2 FLAIR 
MRI predict multiple glioma immunohistochemical features: a more precise and personalized 
gliomas management. PLoS ONE. 2020;15:e0227703.

Jiang et al. Page 12

NMR Biomed. Author manuscript; available in PMC 2023 September 15.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



47. Park JE, Kim HS, Kim D, et al. A systematic review reporting quality of radiomics research in 
neuro-oncology: toward clinical utility and quality improvement using high-dimensional imaging 
features. BMC Cancer. 2020;20(1):29. doi:10.1186/s12885-019-6504-5 [PubMed: 31924170] 

48. Guo P, Wang P, Yasarla R, Zhou J, Patel VM, Jiang S. Anatomic and molecular MR image 
synthesis using confidence guided CNNs. IEEE Trans Med Imaging. 2020;40(10):2832–2844. 
doi:10.1109/TMI.2020.3046460

49. Zhou J, Zhu H, Lim M, et al. Three-dimensional amide proton transfer MR imaging of 
gliomas: Initial experience and comparison with gadolinium enhancement. J Magn Reson Imaging. 
2013;38(5):1119–1128. doi:10.1002/jmri.24067 [PubMed: 23440878] 

50. Kim M, Gillen J, Landman BA, Zhou J, van Zijl PCM. Water saturation shift referencing (WASSR) 
for chemical exchange saturation transfer (CEST) experiments. Magn Reson Med. 2009;61:1441–
1450. [PubMed: 19358232] 

51. Tustison NJ, Avants BB, Cook PA, et al. N4ITK: improved N3 bias correction. IEEE Trans Med 
Imaging. 2010;29(6):1310–1320. doi:10.1109/TMI.2010.2046908 [PubMed: 20378467] 

52. Nyúl LG, Udupa JK, Zhang X. New variants of a method of MRI scale standardization. IEEE 
Trans Med Imaging. 2000;19:143–150. [PubMed: 10784285] 

53. Lowekamp BC, Chen DT, Ibáñez L, Blezek D. The design of SimpleITK. Front Neuroinform. 
2013;7:45. doi:10.3389/fninf.2013.00045 [PubMed: 24416015] 

54. Lipkova J, Angelikopoulos P, Wu S, et al. Personalized radiotherapy design for glioblastoma: 
integrating mathematical tumor models, multimodal scans, and Bayesian inference. IEEE Trans 
Med Imaging. 2019;38(8):1875–1884. doi:10.1109/TMI.2019.2902044 [PubMed: 30835219] 

55. PyRadiomics. https://pyradiomics.readthedocs.io

56. van Griethuysen JJM, Fedorov A, Parmar C, et al. Computational radiomics 
system to decode the radiographic phenotype. Cancer Res. 2017;77(21): e104–e107. 
doi:10.1158/0008-5472.CAN-17-0339 [PubMed: 29092951] 

57. Rizzo S, Botta F, Raimondi S, et al. Radiomics: the facts and the challenges of image analysis. Eur 
Radiol Exp. 2018;2(1):36. doi:10.1186/s41747-018-0068-z [PubMed: 30426318] 

58. Avanzo M, Wei LS, Stancanello J, et al. Machine and deep learning methods for radiomics. Med 
Phys. 2020;47(5):E185–E202. doi:10.1002/mp.13678 [PubMed: 32418336] 

59. Koo TK, Li MY. A guideline of selecting and reporting intraclass correlation coefficients for 
reliability research. J Chiropr Med. 2016;15:155–163. [PubMed: 27330520] 

60. de Jong EEC, Sanders KJC, Deist TM, et al. Can radiomics help to predict skeletal muscle 
response to chemotherapy in stage IV non-small cell lung cancer? Eur J Cancer. 2019;120:107–
113. doi:10.1016/j.ejca.2019.07.023 [PubMed: 31514107] 

61. Kass GV. An exploratory technique for investigating large quantities of categorical data. Appl Stat. 
1980;29(2):119. doi:10.2307/2986296

62. Baltzer PA, Dietzel M, Kaiser WA. A simple and robust classification tree for differentiation 
between benign and malignant lesions in MR-mammography. Eur Radiol. 2013;23:2051–2060. 
[PubMed: 23579418] 

63. DeLong ER, DeLong DM, Clarke-Pearson DL. Comparing the areas under two or more correlated 
receiver operating characteristic curves: a nonparametric approach. Biometrics. 1988;44:837–845. 
[PubMed: 3203132] 

64. Ion-Margineanu A, Van Cauter S, Sima DM, et al. Classifying glioblastoma multiforme follow-
up progressive vs. responsive forms using multi-parametric MRI features. Front Neurosci. 
2016;10:615. [PubMed: 28123355] 

65. Qian X, Tan H, Zhang J, Zhao W, Chan MD, Zhou X. Stratification of pseudoprogression and 
true progression of glioblastoma multiform based on longitudinal diffusion tensor imaging without 
segmentation. Med Phys. 2016;43(11):5889–5902. doi:10.1118/1.4963812 [PubMed: 27806598] 

66. Akbari H, Rathore S, Bakas S, et al. Histopathology-validated machine learning radiographic 
biomarker for noninvasive discrimination between true progression and pseudo-progression in 
glioblastoma. Cancer. 2020;126(11):2625–2636. doi:10.1002/cncr.32790 [PubMed: 32129893] 

67. Zhou J, Payen J, Wilson DA, Traystman RJ, van Zijl PCM. Using the amide proton signals of 
intracellular proteins and peptides to detect pH effects in MRI. Nat Med. 2003;9:1085–1090. 
[PubMed: 12872167] 

Jiang et al. Page 13

NMR Biomed. Author manuscript; available in PMC 2023 September 15.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://pyradiomics.readthedocs.io


68. Zhou J, Lal B, Wilson DA, Laterra J, van Zijl PCM. Amide proton transfer (APT) contrast for 
imaging of brain tumors. Magn Reson Med. 2003;50: 1120–1126. [PubMed: 14648559] 

69. Cho H, Lee S, Kim J, Park H. Classification of the glioma grading using radiomics analysis. PeerJ. 
2018;6:e5982. [PubMed: 30498643] 

70. Li G, Li L, Li Y, et al. An MRI radiomics approach to predict survival and tumour-infiltrating 
macrophages in gliomas. Brain. 2022;145(3):1151–1161. doi:10.1093/brain/awab340 [PubMed: 
35136934] 

71. Depeursinge A, Andrearczyk V, Whybra P, et al. Standardised convolutional filtering for radiomics. 
arXiv. 2021:2006.05470v05475.

72. Safavian SR, Landgrebe D. A survey of decision tree classifier methodology. IEEE Trans Syst Man 
Cybern. 1991;21:660–674.

73. Wu MX, Zhong XL, Peng QZ, et al. Prediction of molecular subtypes of breast cancer using 
BI-RADS features based on a “white box” machine learning approach in a multi-modal imaging 
setting. Eur J Radiol. 2019;114:175–184. doi:10.1016/j.ejrad.2019.03.015 [PubMed: 31005170] 

74. Mueller S, Stirnberg R, Akbey S, et al. Whole brain snapshot CEST at 3T using 3D-EPI: aiming 
for speed, volume, and homogeneity. Magn Reson Med. 2020;84(5):2469–2483. doi:10.1002/
mrm.28298 [PubMed: 32385888] 

Jiang et al. Page 14

NMR Biomed. Author manuscript; available in PMC 2023 September 15.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



FIGURE 1. 
Overall workflow and pipeline of the project. First, data preprocessing, including co-

registration, skull-stripping, N4-bias field correction, and MRI standardization, were 

performed sequentially. Second, the lesion masks on T2w MR images were identified and 

annotated. Features were extracted using PyRadiomics, and features with high redundancy 

were removed using a statistical strategy. Finally, the top features were selected and used to 

construct CHAID models.

Jiang et al. Page 15

NMR Biomed. Author manuscript; available in PMC 2023 September 15.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



FIGURE 2. 
Structural and APTw MR images before and after image preprocessing, as well as masks for 

two post-treatment patients. Top case, a glioblastoma patient (male, 65 years) with treatment 

effect. The lesion showed a homogeneous isointensity to minimal hyperintensity on the 

APTw image. Bottom case, an anaplastic astrocytoma patient (female 42 years) with tumor 

recurrence. The lesion showed a strong hyperintensity on the APTw image. In this case, 

the cerebrospinal fluid in ventricles presented some artifact (APTw hyperintensity). Notably, 

the masks covered only the tumor and tumor-associated vasogenic edema. To focus on the 

direct effects related to the tumor, the masks did not include the periventricular edema in the 

bilateral frontal lobes, which were detached from the original location (bottom case).
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FIGURE 3. 
CHAID decision tree analysis based on the data from APTw and structural MR images 

(Model I). Four features (a–d) were identified as independent predictors with which to build 

a CHAID decision tree with three levels of tree depth and nine terminal nodes.
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TABLE 1

Demographic characteristics of subjects

Treatment effect Tumor recurrence P value

Subject number (%) 26 (30.2%) 60 (69.8%)

Age (mean ± SD; year) 55.6 ± 13.1 50.7 ± 12.4 0.323

Gender (n)
Male 14 39

0.345

 Female 12 21

Time after (chemo)radiation completion (median, range; day) 171, 28–1746 190, 18–3655 0.502

WHO grade (n)
III 4 22

0.073

 IV 22 38

Surgery (n)
Gross total resection 15 31

0.607

 Other surgical procedures 11 29

2nd line therapy (n)
With 7 16

0.980

 Without 19 44

Pathological type (n)
Glioblastoma 21 36

0.073

 Anaplastic oligodendroglioma 1 4

 Anaplastic astrocytoma 3 20

 Other 1 gliosarcoma 0

Diagnostic standards (n)
Integrated clinical diagnosis 19 43

0.893

 Pathological report 7 17

Independent t test, Pearson’s chi-squared test and Kruskal–Wallis test were applied for numerical data or categorical data separately.
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TABLE 2

Average diagnostic performance of 10-fold cross-validation on different CHAID models for tumor recurrence 

prediction

Accuracy (%) Sensitivity (%) Specificity (%) AUC (%)

(I) All 89.5 (81.1–95.1) 85.0 (73.4–92.9) 100 (86.8–100) 92.5 (84.8–97.1)

(IIA) APTw 86.0 (76.7–89.9) 70.6 (58.7–75.4) 96.2 (88.4–99.3) 87.8 (79.0–93.9)

(IIB) T1w 74.4 (63.9–83.2) 96.7 (88.5–99.6) 23.1 (9.0–43.7) 59.9 (48.7–70.3)

(IIC) T2w 76.7 (66.3–83.6) 58.3 (45.9–66.6) 90.0 (81–95.9) 77.9 (67.6–86.1)

(IID) FLAIR 83.7 (74.2–90.8) 88.3 (77.4–95.2) 73.1 (52.2–88.4) 80.7 (70.8–88.4)

(IIE) Gd-T1w 76.7 (70.3–76.7) 100 (53.5–100) 75.0 (71.5–75) 61.5 (50.4–71.8)

(III) T1w, T2w, FLAIR, Gd-T1w 82.6 (72.9–89.9) 85.0 (73.4–92.9) 76.9 (56.4–91) 81.0 (71.1–88.6)

(IV) T1w, T2w, FLAIR, APTw 90.7 (82.5–95.9) 88.3 (77.4–95.2) 96.2 (80.4–99.9) 92.2 (84.4–96.9)

Note: Data in parentheses are 95% confidence intervals. Based on the comparison of ROC curves, AUCs between I and III and between III and 
IV were significantly different (P = 0.031 and 0.006, respectively); AUCs between IIA and IIB and between IIA and IIE were also significantly 
different (P < 0.0001); AUCs between IIA and IIC were marginally significantly different (P = 0.061).
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TABLE 3

The influential radiomic features identified by different CHAID models

Connected node

Model
Tree 
depth Basic feature name Filter Feature class MRI sequence

ICC 
value

Feature 
label

(I) All 1 Robust mean absolute 
deviation

LoG (5 mm) first order FLAIR 0.915 a

2 Informal measure of 
correlation 2

LoG (1 mm) GLCM APTw 0.976 b

2 Informal measure of 
correlation 2

LoG (1 mm) GLCM Gd-T1w 0.959 c

3 Large dependence low gray 
level emphasis

wavelet (H) GLDM APTw 0.683 d

(IIA) APTw 1 Informal measure of 
correlation 2

LoG (1 mm) GLCM APTw 0.976 b

2 Minor axis length original first order mask 0.893 e

2 Long run low gray level 
emphasis

original GLRLM APTw 0.932 f

(IIB) T1w 1 Minor axis length original first order mask 0.893 e

(IIC) T2w 1 Minor axis length original first order mask 0.893 e

2 Small area emphasis LoG (5 mm) GLSZM T2w 0.906 g

(IID) FLAIR 1 Robust mean absolute 
deviation

LoG (5 mm) first order FLAIR 0.915 a

2 Minor axis length original first order mask 0.893 e

(IIE) Gd-
T1w

1 Informal measure of 
correlation 2

LoG (1 mm) GLCM Gd-T1w 0.959 c

2 Gray level non-uniformity original GLSZM Gd-T1w 0.955 h

(III) T1w, 
T2w, FLAIR,

1 Robust mean absolute 
deviation

LoG (5 mm) first order FLAIR 0.915 a

Gd-T1w 2 Informal measure of 
correlation 1

LoG (1 mm) GLCM Gd-T1w 0.931 i

2 Informal measure of 
correlation 2

LoG (1 mm) GLCM Gd-T1w 0.959 c

(IV) T1w, 
T2w, FLAIR,

1 Robust mean absolute 
deviation

LoG (5 mm) first order FLAIR 0.915 a

APTw 2 Informal measure of 
correlation 2

LoG (1 mm) GLCM APTw 0.976 b

2 Minor axis length original first order mask 0.893 e

3 Large dependence low gray 
level emphasis

wavelet (H) GLDM APTw 0.683 d

Abbreviations: GLCM, gray level co-occurrence matrix; GLDM, gGray level dependence matrix; GLSZM, gray level size zone matrix; GLRLM, 
gray level run length matrix; LoG, Laplacian of Gaussian.

Note:Filter “original” indicates no filter applied. For filter “LoG”, the value in brackets indicates the filter width used for the Gaussian kernel. For 
filter “wavelet”, the label in brackets indicates the filter (H, high-pass filter; L, low-pass filter) applied.
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