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Abstract

Purpose of Review—CD8+ T cell responses are a key component of the host immune response 

to HIV but vary significantly across individuals with distinct clinical outcomes. These differences 

help inform the qualitative features of HIV-specific CD8+ T cells that we should aim to induce by 

vaccination.

Recent Findings—We review previous and more recent findings on the features of 

dysfunctional and functional CD8+ T cell responses that develop in individuals with uncontrolled 

and controlled HIV infection, with particularly emphasis on proliferation, cytotoxic effector 

function, epitope specificity and responses in lymph nodes. We also discuss the implications of 

these findings for both prophylactic and therapeutic T cell vaccine development within the context 

of T cell vaccine trials.

Summary—The induction of HIV specific CD8+ T cell responses is an important goal of 

ongoing vaccine efforts. Emerging data on the key features of CD8+ T cell responses that 

distinguish individuals who spontaneously control from those with progressive disease continues 

to provide key guidance.
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Introduction

CD8+ T cells play a pivotal role in the adaptive immune response to HIV infection. 

However, progressive HIV disease induces a dysfunctional T cell phenotype due to chronic 

antigen exposure. In rare instances, CD8+ T cells are able to durably control HIV infection 

due to a combination of unique functionality, specificity and anatomic location – findings 

which are being actively leveraged to generate new prophylactic and therapeutic T cell 

vaccines. In this review, we discuss recent advances in each of these key areas of HIV T cell 

immunology and vaccinology.
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Features of Dysfunctional CD8+ T cells During Chronic HIV Infection

Functional HIV-specific CD8+ T cells have the capacity to proliferate, produce cytokines 

and release cytotoxic effector molecules, with proliferative capacity being the single 

strongest predictor of an effective response [1]. However, because of the persistent 

nature of HIV infection, the vast majority of HIV-specific CD8+ T cell responses 

become dysfunctional due to chronic antigen exposure, resulting in a loss of cytokine 

secretion, cytolytic activity and proliferative capacity [2]. Dysfunctional CD8+ T cells also 

demonstrate increased and sustained expression of inhibitory receptors. Among these is the 

canonical marker programmed cell death protein 1 (PD-1), which was classically shown to 

be upregulated on chronic antigen-exposed HIV-specific CD8+ T cells [3,4] and strongly 

correlated with measures of disease progression, such as viral load and low CD4+ T 

cell count. Subsequent studies have demonstrated that PD-1 functionally impairs T cells 

by upregulating the transcription factor BATF, which alone is sufficient to disrupt T cell 

proliferation and cytokine secretion [5].

In addition to PD-1, co-expression of other surface molecules, such as T cell 

immunoglobulin and immunoreceptor tyrosine-based inhibitory motif domain (TIGIT) and 

T cell immunoglobulin and mucin-domain containing protein-3 (TIM-3), have been linked 

to more severe CD8+ T cell dysfunction in both mouse models of chronic viral infection 

(i.e. lymphocytic choriomeningitis virus; LCMV) and HIV [6–9]. Compared to HIV-specific 

CD8+ T cells expressing PD-1 alone, those expressing a multitude of inhibitory receptors 

were shown to have even more reduced proliferation and secretion of cytokines IL-2 and 

IFN-γ [7]. In addition, CD8+ T cells expressing PD-1, TIGIT and TIM-3 have been shown 

to have altered glucose metabolism, which is part of an emerging set of observations 

regarding the critical role of glycolysis and metabolic plasticity in maintaining antiviral 

CD8+ T cell activity [10–12]. In fact, recent work has shown that restoration of HIV-specific 

CD8+ T cell function following blockade of PD-1 and TIGIT was enhanced by utilization of 

pro-glycolytic drugs in combination [13].

The loss of CD8+ T cell proliferative capacity is key feature of the dysfunctional cellular 

immune phenotype that emerges during chronic HIV infection. Prior work has demonstrated 

that decreased proliferation of HIV-specific CD8+ T cells was associated with increased 

necroptotic cell death and reversed by small molecule scavengers of mitochondrial reactive 

oxygen species [14]. This is consistent with numerous recent studies elucidating the 

contribution of altered mitochondrial function to HIV-specific CD8+ T cell dysfunction 

[15,16]. Longitudinal studies of individuals who spontaneously lose immune control of HIV 

(e.g. previous controllers) have further demonstrated that HIV-specific CD8+ T cells develop 

diminished proliferative capacity prior to increases in plasma viremia [17]. Importantly, 

this early stage of CD8+ T cell dysfunction was not characterized by increased surface 

expression of inhibitory molecules (e.g. PD-1, TIGIT, TIM-3). However, RNA sequencing 

analysis did identify transcription factor KLF2 as a putative regulator of early HIV-specific 

CD8+ T cell dysfunction , which has previously been shown to modulate CD8+ T cell 

proliferation [18].

Bhattacharyya et al. Page 2

Curr Opin HIV AIDS. Author manuscript; available in PMC 2024 September 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



While substantial progress has been made towards understanding inhibitory molecule 

expression and metabolic features of T cell dysfunction in chronic HIV infection, studies 

of the epigenetic CD8+ T cell landscape have revealed additional features. In mouse 

models and primary HIV infection, antigen-specific CD8+ T cells undergo extensive 

changes in chromatin accessibility that are largely irreversible and therefore reflect a 

stable dysfunctional state [19,20]. This epigenetic “scarring” remains fixed even when the 

antigenic stimulus is removed, such as following anti-retroviral therapy (ART) [21], and 

greatly hinders functional memory CD8+ T cell differentiation resulting in compromised 

recall capacity [22]. This is consistent with previous reports of demethylation of the PD-1 

locus in HIV-specific CD8+ T cells, which also remained following initiation of ART 

[23]. Another recent study showed that even during early HIV infection, individuals had 

substantial epigenetic changes in HIV-specific CD8+ T cells, similar to those seen in chronic 

HIV infection, which only partially shifted with ART initiation [24]. Collectively, these 

findings reveal a need for therapies that can counteract this extensive epigenetic remodeling, 

in addition to ones aimed at blocking inhibitory receptors, in order to effectively reverse T 

cell dysfunction.

Features of CD8+ T cell Responses During Spontaneous HIV Control

While most untreated individuals infected with HIV experience uncontrolled viral 

replication and develop progressive HIV-specific CD8+ T cell dysfunction, approximately 1 

in 300 individuals control viral replication below the thresholds associated with transmission 

and disease progression [25]. These spontaneous controllers have provided insights into the 

features of CD8+ T cell responses that are able to control viral replication and provide 

guidance on the types of T cell responses that we should aim to achieve through vaccination 

for prevention of progressive HIV disease or therapeutic HIV cure strategies.

Studies of HIV-specific CD8+ T cells in spontaneous controllers have consistently revealed 

that they have highly advanced functional properties, which include the ability to secrete 

multiple cytokines, robustly proliferate in response to HIV antigen, upregulate cytotoxic 

effector molecules within lytic granules and suppress autologous viral replication [1,26–30]. 

These polyfunctional and proliferative characteristics are observed not only in controllers 

with robust effector HIV-specific CD8+ T cells, but also in those with low to absent 

effector CD8+ T cell responses of a largely central memory phenotype that rapidly expand 

upon exposure to ex vivo HIV antigen [31], putatively due to increased expression of 

transcription factor TCF-1 [32]. This potentially explains why some studies have suggested 

that spontaneous controllers lack functional and cytotoxic CD8+ T cell responses, when it is 

likely the lack of recent in vivo antigen exposure in these extraordinarily virally suppressed 

individuals which leads to poorly detected circulating HIV-specific CD8+ T cells in the 

absence of antigenic stimulation.

In addition to the functionality of HIV-specific CD8+ T cells, epitope specificity is another 

key determinant of spontaneous HIV control [33]. This was initially suggested by the 

observation that specific HLA class I alleles (e.g. HLA-B*57), which present a set of 

HIV epitopes distinct from other HLA alleles, were consistently enriched in cohorts of 

spontaneous HIV controllers [34–36]. This influence of HLA class I, with some alleles 
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conferring protection and others conferring risk, was confirmed in several independent 

genome-wide association studies [37–41]. Moreover, these studies found that specific amino 

acid positions within the HLA-B peptide binding groove that facilitates epitope binding and 

presentation (amino acids 67, 70 and 97) were critical for defining protective (HLA-B*57, 

HLA-B*27, HLA-B*52, HLA-B*14) and risk HLA class I alleles [40,42]. A more recent 

GWAS, which analyzed a larger and more diverse multi-ancestry population, identified 

HLA-B residue 156 as also being independently implicated in HIV control, in addition to 

residues at positions 67 and 97 [43]. Collectively, these studies suggested that the distinct 

epitope presentation by HLA class I alleles for recognition by HIV-specific CD8+ T cells is a 

major genetic determinant of spontaneous HIV control.

Given the immense range of intra-host viral sequence diversity, it was initially hypothesized 

that targeting of epitopes with a high degree of sequence conservation could explain 

spontaneous control. However, no such association was observed when comparing the 

sequence entropy of epitopes targeted by spontaneous controllers and individuals with 

progressive disease [44], which may be attributable to the lack of clear association between 

residue conservation and mutational constraint that has been observed for HIV and other 

model proteins [45–47]. In a subsequent study, application of network theory to protein 

structure led to the development of a new method – structure-based network analysis – 

which outperformed sequence conservation in its ability to identify mutation constrained 

residues [48]. The structure-based network analysis approach was then applied to the HIV 

proteome and identified both mutation-constrained residues and CD8+ T cell epitopes (i.e. 

‘highly networked’ epitopes), which were among the list of optimal A-list epitopes that have 

established immunogenicity [49]. Highly networked epitopes were preferentially targeted by 

the functional and proliferative CD8+ T cell responses in spontaneous controllers, although 

this was not observed in HIV progressors. These highly networked epitopes are presented by 

a diverse array of HLA class I alleles, but have been demonstrated to preferentially stabilize 

protective HLA class I alleles [50] as identified by GWAS [40], providing a molecular 

rationale for the observed genetic associations between HLA alleles and HIV control. A 

recent study of a specific highly networked epitope (QW9, Gag p24176–184) demonstrated 

that cross-reactive HIV-specific CD8+ T cells of the wild-type epitope and a naturally arising 

variant (S3T) in spontaneous controllers were only present when the epitope was presented 

by a protective HLA class I allele (B*5701), but not a non-protective allele (B*5301) [51]. 

This suggests an additional potential advantage ascribed to protective HLA class I alleles 

that facilitates durable immune control. Importantly though, a distinct HIV-specific CD8+ T 

cell response that recognized the variant QW9 S3T epitope was present in both HLA class 

I allele backgrounds, as has previously been described [52], indicating that the QW9 S3T 

networked epitope mutation does not lead to immune escape.

Recent studies of the latent viral reservoir in spontaneous controllers have revealed an 

enrichment of genomes present in transcriptionally repressed sites [53], with emerging 

evidence suggesting that this is the result of ongoing immune selection pressure [54]. These 

data suggest that HIV-specific immune responses may be able to achieve a possible cure 

of HIV infection, which has been suggested in a small number of distinct individuals 

[55,56]. Among the barriers to this level of immune-mediated HIV clearance however, are 

follicular CD4+ T cells, which are a major cellular harbor of the HIV reservoir in both 
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HIV progressors and controllers [57–59]. While CXCR5+ follicular CD8+ T cells have been 

shown to be important for control of viral infections within lymph nodes for a number of 

pathogens, including SIV [60–63], the immune-privileged status of the lymph node follicle 

has raised questions as to the mechanism and extent that CD8+ T cells can suppress HIV 

replication in lymphoid tissue [64,65].

Recent studies evaluating the lymph nodes of spontaneous controllers identified an 

enrichment of antiviral tissue-resident HIV-specific CD8+ T cells in lymphoid tissues [66], 

which were suggested to control viral replication within the follicle without demonstrable 

cytolytic activity [67]. However, similar to studies of HIV controllers with low to absent 

effector CD8+ T cell function [31], the minimal antigenic viral load in these study 

participants and the absence of ex vivo antigen stimulation, likely contributed to a primarily 

memory CD8+ T cell phenotype and observed low ex vivo cytolytic activity. Consequently, 

a recent study demonstrated that when HIV-specific CD8+ T cells derived from the lymph 

nodes of spontaneous controllers were stimulated with ex vivo antigen, they did in fact 

upregulate high levels of cytotoxic effector molecules perforin and granzyme B [68], 

indicating the clear capacity for cytolytic function. Moreover, cytotoxic CD8+ T cells 

could be identified near foci of active viral replication in lymph nodes and expression of 

perforin and granzyme B was directly correlated to their proximity to HIV-infected cells. 

Collectively, these findings suggest that HIV-specific CD8+ T cells are a key component of 

immune control at relevant tissue sites that harbor the latent reservoir such as lymph nodes 

and that cytotoxic effector function likely maintains control of ongoing viral replication.

Implications for HIV T cell Vaccine Development

Elucidating the features of successful and unsuccessful HIV-specific CD8+ T cell responses 

during natural HIV infection provides guidance for the development of efficacious 

prophylactic and therapeutic HIV T cell vaccines. These findings will be critical to move 

beyond the STEP and Phambili trials [69,70], which despite inducing robust HIV-specific 

CD8+ T cell responses in >75% of participants after vaccination with an adenovirus 

serotype 5 vector encoding full-length HIV Gag/Pol/Nef subtype B, failed to show evidence 

of protection or reduction in viral setpoint. These disappointing results led to a shift in 

effort towards the induction of HIV-specific broadly neutralizing antibody responses (bNab), 

but this has also been marked by challenges despite some recent successes inducing bNab 

precursors in humans [71]. In addition, insights from the Antibody Mediated Prevention 

(AMP) trial demonstrate that particularly high serum levels of bNabs will likely be needed 

to protect against HIV acquisition [72]. Consequently, there has been a growing interest 

in approaches that utilize T cell vaccines to bolster antibody-based approaches. A recent 

study demonstrated that non-human primates vaccinated with heterologous viral vectors 

(HVVs) expressing SIVmac239 Gag (shown to induce durable and functional CD8+ T 

cell responses) in concert with prototype native-like trimer BG505 SOSIP.664 (shown 

to produce high neutralizing antibody titers) resulted in the majority of dual vaccinated 

macaques being protected against infection at a lower nAb titer [73]. This suggested that 

vaccine-induced CD8+ T cells may be able to synergize with nAbs to lower the threshold 

needed for protection, providing support for additional investigation into combined B and T 

cell vaccination approaches.
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A central component to these T cell vaccine efforts, as revealed by work on spontaneous 

controllers, will be the development of immunogens that induce functional HIV-specific 

CD8+ T cell responses that are focused on mutationally constrained sites. Vaccines that 

incorporate full-length proteins, such as the one used in the STEP trial, are likely to be 

suboptimal as evidenced by the observed sieve effect where breakthrough infections in 

vaccine recipients have significant genetic distance at mutable HLA-restricted epitope sites 

specifically within vaccine-encoded Gag, Pol and Nef [74]. Newer immune-focusing vaccine 

candidates include those that specifically incorporate multivalent mosaic antigens [75,76], 

highly sequence conserved viral regions [77–79] or epitopes that have been statistically 

associated with spontaneous controllers [80]. These T cell-based vaccines have been 

largely tested in therapeutic vaccine trials with mixed results. The BCN02 study utilized a 

conserved HIV T cell immunogen [77] delivered by Modified Vaccinia Ankara (MVA) virus 

vaccination, followed by three doses of latency reversal agent Romidepsin [81,82] and then a 

second MVA boost, before ART cessation [83]. Interestingly, ~23% of individuals, who had 

previously been vaccinated in the BCN01 study [84] prior to enrollment in BCN02, showed 

sustained suppression of plasma viremia up to 32 weeks. In comparison, the AELIX002 

study utilized the HIVACAT T cell immunogen (HTI) delivered by a combination of DNA, 

MVA and ChAdOx.1 vector [85] to perform a randomized, placebo-controlled study in early 

ART treated individuals to evaluate the safety, immunogenicity and therapeutic effect of 

this vaccine regimen on viral rebound [86]. While there was no significant difference in 

the percentage of participants in each study group that remained off ART, there was an 

apparent difference in placebo and HTI-vaccine recipients who lacked protective HLA class 

I alleles (although some of the alleles classified as protective, e.g. B*15, have not previously 

been delineated as such by GWAS) [37,40,43]. Nonetheless, this study did demonstrate 

significant correlations between CD8+ GzmB+ HTI-specific CD8+ T cell responses and both 

time off ART and viral load at the end of the acute treatment interruption, further illustrating 

the importance of cytotoxic CD8+ T cell responses, as was observed with spontaneous 

controllers.

Vaccine studies involving highly networked epitope immunogens remain in development, 

although an ex vivo DC-based priming model demonstrated a relative enhancement of CD8+ 

T cell response induction in comparison to both full-length Gag and conserved antigens 

[87]. Additionally, while highly networked epitopes are derived from the optimal A-list [49], 

they have quite limited overlap with other epitope-based immunogens [88], indicating that 

they will target distinct regions of the viral proteome. The key next step is determining the 

optimal vaccine modality to elicit highly functional and de novo CD8+ T cell responses, 

particularly in cure settings given concerns regarding the irreversible dysfunctional features 

of pre-existing responses [21]. A number of recent studies using neoantigen epitope-based 

vaccines in novel formats, such as mRNA [89,90] and heterologous simian adenovirus/self-

amplifying RNA immunization [91] provide reason for optimism. Inducing tissue-resident 

HIV-specific CD8+ T cell memory responses at relevant mucosal sites will also be another 

important part of future vaccine efforts [92].
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Conclusion

Studies of HIV-specific CD8+ T cells in progressive and controlled HIV infection have 

provided critical insight into their function and dysfunction, specificity and features in both 

blood and lymph nodes that modulate immune-mediated outcomes to HIV infection. With 

these findings in hand, we now collectively move forward to realize the potential and power 

of CD8+ T cells to limit HIV acquisition and curtail pathogenesis through continued T cell 

vaccine development.
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Key Points

• Progressive HIV disease leads to a dysfunctional HIV-specific CD8+ T cell 

phenotype that is increasingly observed as being irreversible even with fully 

suppressive treatment.

• Successful T cell-mediated control of HIV infection is mediated by a highly 

functional and cytolytic response directed towards mutationally constrained 

epitopes in blood and anatomical sites that harbor foci of ongoing viral 

replication.

• Prophylactic and therapeutic HIV T cell vaccines are being developed to 

induce responses similar to those observed in spontaneous controllers.
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