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Abstract

Imaging in the shortwave-infrared region (SWIR, λ = 1000 − 2500 nm) has the potential to enable 

deep tissue imaging with high resolution. Critical to the development of these methods is the 

identification of low molecular weight, biologically compatible fluorescent probes that emit 

beyond 1000 nm. Exchanging the bridging oxygen atom on the xanthene scaffold (C10’ position) 

with electron withdrawing groups has been shown to lead to significant redshifts in absorbance 

and emission. Guided by quantum chemistry computational modeling studies, we investigated 

the installation of a ketone bridge at the C10’ position. This simple modification extends the 

absorbance maxima to 860 nm and the emission beyond 1000 nm, albeit with reduced photon 

output. Overall, these studies demonstrate that broadly applied xanthene dyes can be extended into 

the SWIR range.

INTRODUCTION

Fluorescence-based methods have transformed modern biological research. Shifting 

absorbance and emission to longer wavelengths reduces competitive excitation of 

biomolecules and light scattering - both of which can improve imaging quality. This has 

led to a concerted effort to identify long-wavelength emitting fluorophores for use in 

experiments ranging from cellular analysis to in vivo imaging (1,2). Recent efforts have 

shown that the shortwave infrared (SWIR, λ = 1000 − 2500 nm) or near-infrared II (NIR-II) 

region provides enhanced resolution and depth penetration in bulk tissue (3,4). Critical to 

the development of these methods was the availability of InGaAs detector-based cameras. 

These hardware developments have been complemented by significant progress in the design 

and synthesis of dyes that absorb and emit above 1000 nm (5–7). However, existing probes 

involve challenging multistep synthesis and exhibit low fluorescence quantum yields (8,9). 
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Overall, there remains a significant need for novel, biologically compatible, small-molecule 

fluorophores in this range.

Rhodamine and fluorescein dyes are important fluorophores and foundational components 

of many cellular imaging experiments. This is due to their excellent cell permeability, low 

toxicity and fluorogenic properties allowing for imaging cellular processes in real time (10). 

One strategy for extending the absorbance and emission maxima of these dyes involves 

extending the π-system, which can lead to an undesirable increase in hydrophobicity 

and molecular weight (11). Another more subtle strategy is to alter the C10’ bridging 

atom of the xanthene scaffold (Fig. 1A). Prior reports have shown that modifying the 

bridging oxygen atom on the xanthene scaffold at the C10’ position can lead to significant 

redshifts in absorbance and emission (12–23). In particular, recently reported phospho- and 

sulforhodamine derivatives have been reported with emission up to ~740 nm (Fig. 1A).

Here, we report the computational design, synthesis and initial analysis of xanthene 

derivatives substituted with a ketone at the C10’ position. Across a series of known C10’-

substituted systems, quantum chemical predictions of absorbance and emission maxima are 

in good agreement with experiment, and further calculations indicate that a ketone moiety 

would lead to a dramatic redshift. Additional analyses of the molecular orbitals involved in 

the electron excitations clearly demonstrate the link between substituent πelectronegativity 

and bathochromic shift. While a C10’ ketone-substituted rhodamine had been described in 

a single report in the patent literature (24), no detailed information was available. Here, 

we report optimized syntheses of ketone-substituted xanthenes and rhodamines, as well 

as amide derivatives. Additionally, we detail that di-halogenated derivatives can undergo a 

bis-Heck reaction to provide pH-responsive exo-olefin derivatives. These synthetic efforts 

allowed key photophysical properties of these probes to be determined. Overall, these 

studies reveal the significant potential, as well as limitations, of these redshifted xanthene-

based dyes as imaging agents in the SWIR range.

MATERIALS AND METHODS

Computational chemistry.

Quantum chemistry calculations were performed using a local version of the GAMESS 

package (25,26), where cc-pVTZ basis sets (spherical harmonics) were used throughout 

(27,28). Molecular orbitals were illustrated with MacMolPlt (29). Density functional theory 

(DFT) (30) and time-dependent density functional theory (TDDFT) (31–33) utilizing the 

B3LYP (34–36) functional were used to compute absorbance (S0 → S1*) and emission (S1 

→ S0*) (37) energies. The occupation restricted multiple active space (ORMAS) (38,39) 

method with second-order perturbation theory correction (ORMAS-PT2) (40) was also used 

to compute absorbance and emission energies at B3LYP and TDDFT-B3LYP optimized 

geometries respectively. ORMAS active spaces included all valence π-electrons and orbitals 

and state-averaged energies were optimized. Water-solvent effects were included in all 

calculations via the polarizable continuum model (PCM) (41–45) approach. Mulliken 

electron population analysis (46) was used to analyze the highest occupied molecular 

orbitals (HOMOs) and lowest unoccupied molecular orbitals (LUMOs). Full details and 
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results, including ORMAS active space partitioning scheme, are available in the Supporting 

Information.

Synthetic chemistry.

Detailed experimental procedures and characterization data are available in the Supporting 

Information.

Determination of molar absorption coefficients and fluorescence quantum yield of KR-1.

All spectroscopic measurements were carried out in duplicate at room temperature using 10 

mm × 10 mm quartz cuvettes (Hellma GmbH) and high-purity spectroscopic grade solvents. 

High-purity water σ < 55 μS  was obtained using a MilliPore filter system. Methanol 

(MeOH; Uvasol), Dimethylsulfoxide (DMSO; spectroscopic grade) and Dichloromethane 

(DCM; anhydrous) were purchased from Merck. The reference dye IR140 that was 

previously studied by us (47) was purchased from Lambda Physik.

Absorption measurements for the quantum yield determination were carried out on a 

calibrated absorption spectrometer Cary 5000 from Varian, Inc., using a step width of 1 

nm, an integration time of 0.1 s and a spectral bandwidth of 2 nm. The absorbance spectra 

are corrected for blank absorption and scattering. The absorbance of the dye solutions used 

for fluorescence quantum yield determinations was generally kept below 0.1 to minimize 

dye aggregation and reabsorption effects for the measurements of the emission spectra and 

integral emission intensities (48).

Fluorescence emission measurements were performed with a calibrated spectrofluorometer 

FLS-920 from Edinburgh Photonics, equipped with a Xenon lamp, double monochromators, 

and a nitrogen-cooled PMT R5509P from Hamamatsu. A 550 nm cut-on filter was used 

in the excitation light path. The emission spectra were obtained by averaging 2 to 4 scans 

of the emission spectra (depending on the signal-to-noise ratio) with a step width of 1 nm, 

an integration time of 2 s and excitation and emission slit widths of 16 nm and 8 nm. 

Magic-angle conditions with the excitation and emission polarizers set to 0° and 54.7°, 

respectively, were employed to render the measured emission intensities independent of the 

emission anisotropy of the NIR emitter. All emission spectra were corrected for excitation 

intensity fluctuations using the signal of a reference detector as well as for blank emission 

and scattering by subtraction of the solvent spectra and for the wavelength dependence of 

the instrument’s spectral responsivity utilizing a previously determined emission correction 

curve (48). The instrument was flushed with nitrogen during the measurements to avoid light 

absorption from atmospheric water (47).

The fluorescence quantum yield was determined relatively to the dye IR140 following a 

published procedure (48), the fluorescence quantum yield of which had been previously 

determined absolutely and relatively with different setups (49), and calculated according to 

the following equation:

ϕx = ϕref
Fxfref λex, ref nx

2

Freffx λex, x nref
2
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where ϕ is the fluorescence quantum yield, F  is the integral photon flux, f is the absorption 

factor at the excitation wavelength λex and n is the refractive index of the solvent. The 

indices x and ref denote the sample and reference respectively. For the reference dye 

IR140, a fluorescence quantum yield of 0.20 in DMSO was used that was previously 

measured absolutely with a calibrated and validated integrating sphere setup (49). The 

absorption factor f at the excitation wavelength was obtained by averaging the absorption 

over the excitation bandwidth. The spectral width of the spectrofluorometer’s excitation 

monochromator was not considered. An excitation wavelength of λex = 780 nm was used for 

the dyes IR140 and KR-1. The refractive indices that were employed in the calculations 

were 1.479 for DMSO and 1.424 for DCM. The integrated photon fluxes required for the 

determination of the number of emitted photons were obtained in the wavelength ranges 

970–1200 nm for KR-1 and IR140.

For additional details, including extinction coefficients, relative quantum yield 

measurements with KR-2 and KR-3 and details of the measurements taken in Fig. 2, see 

Section S5.

RESULTS AND DISCUSSION

Computational design

We first sought to identify the role of the central R-group fused at the C10’ position in 

dimethylamino-xanthene-derived scaffolds (Fig. 1A). While our main goal was to identify 

a chemical modification that would significantly redshift absorbance and emission, we 

also sought to correlate spectroscopic properties with R-group electronic effects. We first 

computed absorbance and emission energies of the known series of systems R1-R6 and 

the ketone derivative R7 (Fig. 1C, Figure S4 and Table S4). We found the ORMAS-PT2-

PCM(H2O) method to be very reliable (absorbance/emission mean unsigned errors, MUEs, 

of 0.065/0.039 eV) and the TDDFT-B3LYP-PCM(H2O) theory slightly less so (absorbance/

emission MUEs of 0.397/0.167 eV). Importantly, both methods ranked the fluorophores in 

the correct order and, perhaps surprisingly, computed emission energies were generally more 

accurate than absorbance data. Most notably, the ketone derivative R7 was predicted to 

absorb/emit above 800/900 nm—a dramatic bathochromic shift relative to other systems. As 

described below, this prediction was subsequently confirmed experimentally.

After verifying that all singlet states had predominant HOMO (π) → LUMO(π*) characters 

(see SI for TDDFT-B3LYP-PCM excitation/deexcitation amplitudes), we further analyzed 

these orbitals. While HOMO structures and energies remain consistent across the series 

R1-R7 (Fig. 1B,D), LUMO energies decrease substantially (by ~25 kcal mol−1, Fig. 1D). 

The gradual change in LUMO character is visually apparent where C–C10’ antibonding 

nodes are easily discernable for R1 and R2 but not for the other substituents that show a 

gradual extension of the bonding lobe to the C10’ position for R3 → R6 and beyond for 

R7 (Fig. 1B). Indeed, quantified C–C10’ bond orders in the LUMOs (Table S5) correlate 

very well with absorbance energies (Fig. 1E), thus rationalizing LUMO stabilization across 

the series. Furthermore, signed R-group LUMO electron populations (50) increase steadily 

across the series (Table S6) and show an excellent correlation with the absorbance energies 
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(Fig. 1F), indicating that excitation energies are lowered as the R-group π-electronegativity 

increases. In complete contrast, HOMO C-C10’ bond orders and R-group populations are 

essentially zero throughout (Table S6). These observations can be reconciled by noting 

that: (1) HN− and O− substitutions add two electrons to the π-system, thus destabilizing 

the LUMO, (2) the other R-groups except OC—stabilize the LUMO by withdrawing some 

π-electron density and (3) OC—substitution adds two electrons and an empty antibonding 

π-orbital that the LUMO can extend into.

Computed TDDFT-B3LYP-PCM(H2O) oscillator strengths rise steadily across the series 

R1 → R4, but then suddenly decrease with the ketone derivative R7 predicted to have 

the lowest absorption and emission intensities (Fig. 1G). Notably, this trend is confirmed 

experimentally with a strong correlation between oscillator strengths and absorption 

coefficients (Fig. 1 H), which includes the ketone-substituted compound detailed below. 

Further studies are needed to determine the origin of the trend between oscillator strengths 

and the C10’ functional group—particularly for the design of brighter systems. While 

the computational chemistry results for the substituted series R1-R7 are themselves 

illuminating, these studies clearly suggest that ketone substitution should yield a fluorophore 

with dramatically bathochromic-shifted absorption and emission bands.

Synthesis of keto-rhodamine (KR) dyes

Initial synthetic efforts focused on generating the parent ortho-methyl derivative KR-1 using 

previously reported conditions (Scheme 1A) (24). We found that we could prepare KR-1 in 

yields between 5% and 8% through the AlCl3-promoted addition of 1 to 2-methylbenzoyl 

chloride. A screen of Lewis acids did not identify improved conditions. Although this 

reaction provided KR-1, it was difficult to purify and low yielding. Consequently, we 

considered alternative routes and were particularly inspired by a recent report by Lavis 

and coworkers that detailed the organolithium-mediated route to rhodamine derivatives 

(51). Building on this report, we developed the synthetic scheme shown in Scheme 1B, 

which could be used to generate KR-1 in 25% yield over six steps. The synthesis started 

with methylation of bis(3-aminophenyl)methanone 6 with iodomethane in the presence 

of Cs2CO3 to give 1. This was followed by regioselective bis-bromination alpha to the 

ketone bridge to generate dihalogenated 7. The ketone 7 was reduced using NaBH4 before 

subsequent alkylation to give a MOM (2a), Me (2b) and TBS (2c) protected intermediates 

2a-c respectively. These intermediates were screened for their ability to undergo lithiation 

and bisaddition to methyl 2-methylbenzoate. Both the MOM (2a) and Me (2b) protected 

compounds provided 3a and 3b in good yields of 58% and 54% respectively. Interestingly, 

the t-butyldimethylsilyl protected 2c underwent transmetalation followed by silyl protecting 

group migration in a Retro-Brook-type rearrangement to give a organosilicon (C-Si) product 

(see Supporting Information for further details) (52). Upon deprotection using either TFA or 

BBr3, KR-1 could be accessed in 25% overall yield from the MOM protected 3a or 22% for 

the Me 3b, a ~ 3-fold improvement on the previously reported route.

Given the benefits of the late stage deprotection, the MOM-protected compound 2a 
was chosen as our key intermediate. Phthalic anhydride underwent bis-aryl addition to 

generate 4 which remained as a ring-opened 9,10-anthracenediyl derivative until subsequent 
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deprotection with TFA to give ring-closed KR-2 in 27% overall yield (Scheme 1B). We also 

set out to prepare a water-soluble “always on” amide derivative KR dye, as related probes 

have been described extensively in the rhodamine literature (53–60). The carboxylic acid 4 
underwent amide coupling under standard conditions to give doubly protected intermediate 

9. Upon treatment with DDQ, 9 underwent MOM deprotection and in situ oxidation before 

standard tert-butyl ester deprotection with TFA in CH2Cl2 gave title compound KR-3 in 

18% yield over eight steps (Scheme 1). While TBS-protected dihalogenated 2c was not 

suitable for Li-Br exchange and subsequent bis-addition, we hypothesized that it might 

undergo a palladium-mediated tandem Heck reaction with a protected acrylate species. 

Prior reports of similar chemistry have been applied to the generation of xanthene and 

anthracene derivatives from o, o’-dibromobiaryls with ethyl acrylate (61). However, to our 

knowledge this strategy has not been applied to generate rhodamine-based derivatives. 

Initially, methyl acrylate was chosen to screen reaction conditions and it was found 

employing Pd (PPh3)4, TEA and DMF at 150°C provided TBS-protected 10 in 40% 

yield (see Supporting Information). This product likely results from intermolecular Heck 

followed by an intramolecular Heck reaction to form the xanthene core. Deprotection was 

achieved using the mild conditions of ACN: H2O: formic acid (2:1:0.05) to give exocyclic 

11. Upon subjecting 11 to an acidic environment (1:1 MeCN:H2O w/1% formic acid), a 

longwavelength (λmax = 870 nm) absorption band appeared (Figure S1). Encouraged by this 

result and in an effort to synthesize water-soluble conjugatable derivatives, compound 2c 
was subjected to the same tandem-Heck ring-closing conditions with tert-butyl acrylate 

affording 5 in 71% yield (Scheme 1C). 5 underwent tert-butyl ester deprotection in TFA in 

CH2Cl2 and subsequent TSTU mediated activated ester formation before coupling with a 

heterobifunctional pegylated linker. Finally, using the same mild deprotection conditions of 

ACN: H2O: formic acid (2:1:0.05), exocyclic KR-4 could then be accessed in 63% yield 

from 5.

Photophysical properties

Initial photophysical measurements concentrated on comparing the always-ON KR-1 and 

KR-3 to the parent ether-bridged reference dye tetramethylrosamine (Ros) (62). KR-1 
exhibited absorption λmax  and emission λem  maxima of 862/1058 nm respectively (Table 

1). This equates to bathochromic shifts in absorbance/emission of 313/488 nm relative 

to Ros in PBS. KR-1 and KR-3 showed similar λmax and λem values in CH2Cl2 and a 

similarly pronounced redshift in λem of 1065 nm was observed for KR-3 in PBS 7.4 

(Table 1 and Fig. 2A–C). Notably, KR-1 and KR-3 exhibit significantly reduced absorption 

coefficients, which is in line with the computationally derived oscillator strengths (see 

above). The fluorescence quantum yields were determined to be 0.013 and 0.0031 in 

CH2Cl2, respectively, and were approximately two orders of magnitude lower in PBS. 

Therefore, this dramatic bathochromic shift in absorbance and emission is accompanied 

by significantly reduced photon output. This is to be expected according to the energy 

gap rule, which states that a smaller energy gap between S1 and S0 favors internal 

conversion relative to fluorescence (63). Thus, the reduced quantum yield is due to solvent-

mediated nonradiative deactivation pathways—a feature also found in other SWIR dyes 

(4,8). Notably, however, previously reported cyanine-based SWIR probes maintain excellent 
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absorption coefficients (64–66). This leads to overall brighter dyes, with brightness defined 

as the product of the absorption coefficient at the excitation wavelength and quantum yield

—a useful metric to determine the magnitude of the observable fluorescence signal.

In addition to conventional photon output, a useful feature of rhodamine dyes is their 

fluorogenic properties. Specifically, an equilibrium exists between a spirolactone “ring-

closed,” nonfluorescent form and “ring-opened” fluorescent species (67,68). Having 

synthesized KR-2 and KR-4, their fluorogenic switching properties were examined (Fig. 

2D,G). In 5% TFA CH2Cl2, KR-2 underwent ring opening as indicated by the increase 

in λmax 848 nm and λem at 907 nm respectively. Notably, TFA was required to induce the 

appearance of the NIR absorption band and we could not identify other conditions that led to 

the ring-opened form.

An additional feature of certain xanthene derivatives is an exocyclic double bond (69,70). 

This was recently investigated by Johnsson and coworkers, where photoactivatable silicon 

rhodamines possessing an exocyclic alkene were generated through bisaryl lithium addition 

to glutaric anhydride (69). Our palladiummediated approach to KR-4 provided a simple 

way to prepare ester-substituted exoalkenes. NMR studies of KR-4 in 9:1 CD3CN, D2O 

revealed a proton singlet at 6.60 ppm which showed strong HSQC coupling to a CH unit 

at 119.5 ppm (see Supporting Information). Additionally, KR-4 exhibits a λabs of 455 nm in 

PBS at pH 7. These results suggest that under neutral conditions, these compounds prefer 

the exoform. We hypothesized that acidic conditions might promote the conversion to an 

endoform, which would reestablish the long-wavelength optical properties of the xanthene 

core. In practice, we found that decreased pH led to the formation of new absorbance 

maxima λabs of 874 nm with a pKa of 4.4 (Fig. 2E–G). These studies suggest this endo/

exoisomerization chemistry can be used as a bioresponsive fluorogenic mechanism in the 

physiological pH range—an observation which may extend to other xanthene-based probes.

CONCLUSION

Here, we describe the longest emitting xanthene derivatives reported to date. This was 

achieved by the replacement of the ether bridge with a π-electron withdrawing ketone 

functional group on the xanthene core, leading to dramatic bathochromic shifts in 

absorbance and emission maxima. These studies demonstrate the significant impact of 

π-electron-withdrawing groups at this position on the electronic structure of the xanthene 

core. While carboxylic acid substituted KR-2 remained in the nonfluorescent lactone form 

under biological conditions, their methyl and tertiary amine counterparts KR-1 and KR-3 
exhibited large Stokes shifts and absorption and emission maxima that extend into the SWIR 

region at physiological pH. A fluorogenic exoolefin KR-4 was synthesized and was shown 

to undergo an acid mediated exo–endo switching mechanism.

Broadly, these studies reveal that ketone substitution can have a dramatic effect on the 

absorption and emission maxima of xanthene dyes like rhodamines. However, the moderate 

absorption coefficients and quantum yields of these molecules need to be considered in the 

design of future strategies that seek to apply these probes. In this regard, we anticipate that 
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the low molecular weight of these molecules suggests that multimerization approaches have 

significant potential.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
(A) Computational and experimental absorbance/emission maxima data for substituents (1–

7) at R-position on a dimethylamino-xanthene-derived scaffold (see Table S1 for X-group 

substituent). (B) Comparisons between the HOMOs and LUMOs of R1-R7. (C) Correlation 

between experimental and predicted λmax absorbance using TDDFT-B3LYP-PCM(H2O) and 

ORMAS-PT2-PCM(H2O). (D) Correlation between the computed λmax absorbance (TDDFT-

B3LYP-PCM(H2O)) and HOMO/LUMO orbital energies. (E) Correlation (R2 = 0.94) 

between experimental λmax absorbance and C–C10’ bond order in the LUMO. (F) Correlation 
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(R2 = 0.97) between signed R-group Mulliken population in LUMO and computed 

λmax absorbance. (G) Comparison between computed absorbance and emission oscillator 

strengths (TDDFT-B3LYP-PCM(H2O)) for R1-R7. H) Comparison between computed 

absorbance oscillator strengths (TDDFT-B3LYP-PCM(H2O)) for R1-R7 and experimental 

extinction coefficient values for structurally related compounds (see Supporting Information 

for further details).
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Figure 2. 
(A) Normalized absorption (dashed) and emission (solid) data of KR-1 and KR-3 in 

CH2Cl2. (B) Normalized absorption (dashed) and emission (solid) data of KR-1 in PBS 

pH 7.4. (C) Normalized absorption (dashed) and emission (solid) data of KR-3 in PBS 

pH 7.4. (D) Normalized absorption (dashed) and emission (solid) data of KR-2 in CH2Cl2 

(black trace) and CH2Cl2 supplemented with 5% TFA (red trace). (E) Exo-KR-4 (250 μM) 

in PBS buffered from pH 7.5 (black trace) to pH 3.5 (red trace) to generate KR-4. (F) Plot of 

absorbance intensity at λmax = 875 nm vs pH; sigmoidal plot fit resulted in apparent pKa = 4.4.
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Scheme 1. 
(A) Friedel–Crafts approach to KR-1. a(1 eq.), 2-methylbenzoyl chloride (1.1 eq.), AlCl3 

(1.75 eq.), solvent (2–2.5 M). b1 (1 eq.), 2-methylbenzoyl chloride (1.1 eq.), Lewis acid 

(1.75 eq.) and CH2Cl2 (2 M). (B) Organolithium-mediated approach to KR-2 and KR-3. (C) 

Double Heck Approach to KR-4. See Sections S3 and S4 for detailed synthetic procedures 

and analysis.
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