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ABSTRACT
Interacting with music is a uniquely pleasurable activity that is ubiquitous across 
human cultures. Current theories suggest that a prominent driver of musical pleasure 
responses is the violation and confirmation of temporal predictions. For example, the 
pleasurable urge to move to music (PLUMM), which is associated with the broader 
concept of groove, is higher for moderately complex rhythms compared to simple 
and complex rhythms. This inverted U-shaped relation between PLUMM and rhythmic 
complexity is thought to result from a balance between predictability and uncertainty. 
That is, moderately complex rhythms lead to strongly weighted prediction errors which 
elicit an urge to move to reinforce the predictive model (i.e., the meter). However, 
the details of these processes and how they bring about positive affective responses 
are currently underspecified. We propose that the intrinsic motivation for learning 
progress drives PLUMM and informs the music humans choose to listen to, dance to, 
and create. Here, learning progress reflects the rate of prediction error minimization 
over time. Accordingly, reducible prediction errors signal the potential for learning 
progress, producing a pleasurable, curious state characterized by the mobilization 
of attentional and memory resources. We discuss this hypothesis in the context of 
current psychological and neuroscientific research on musical pleasure and PLUMM. 
We propose a theoretical neuroscientific model focusing on the roles of dopamine 
and norepinephrine within a feedback loop linking prediction-based learning, curiosity, 
and memory. This perspective provides testable predictions that will motivate 
future research to further illuminate the fundamental relation between predictions, 
movement, and reward.
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The affective responses we derive from interacting with art forms such as music, dance, film, 
and visual art permeate nearly every aspect of our lives, informing our relationships, our 
identities, and how we spend our time. However, due to their abstract and subjective nature, 
the psychological and neuroscientific underpinnings of such affective responses have proven 
difficult to elucidate. A recent and promising approach has been to frame our interactions with 
such art forms in terms of perceptual learning via probabilistic predictions. That is, such art 
forms can generate positive affective responses such as pleasure because they provide a means 
with which to improve the match between our internal models and external input, and thus to 
generate more accurate predictions in the future (Brielmann & Dayan, 2022; Gold, Pearce, Mas-
Herrero, Dagher, & Zatorre, 2019; Mas-Herrero, Maini, Sescousse, & Zatorre, 2021; Van de Cruys, 
2017; Vuust, Heggli, Friston, & Kringelbach, 2022). Predictive processes are particularly relevant 
to music as it is often highly structured in both time and tonal space, unfolding in ways that 
allow for predictions at multiple timescales (e.g., regarding the next note, the next phrase, the 
next section). Indeed, many prominent theories of the affective responses to music emphasize 
the role of prediction violations and confirmations (Belfi & Loui, 2020; Huron, 2006; Koelsch, 
Vuust, & Friston, 2019; Meyer, 1956; Salimpoor, Zald, Zatorre, Dagher, & McIntosh, 2015; Vuust 
et al., 2022). 

A pervasive phenomenon within both music and aesthetics research is the inverted U-shaped 
pattern of positive affective responses as a function of stimulus complexity (or familiarity; 
Berlyne, 1971; Chmiel & Schubert, 2017; Hargreaves & North, 2010). Unlike visual art or film, 
rhythmic music often elicits a motor response, characterized as the pleasurable urge to move 
to music (PLUMM) which is associated with the broader concept of groove (Câmara & Danielsen, 
2018; Duman, Snape, Toiviainen, & Luck, 2023; Janata, Tomic, & Haberman, 2012; Madison, 
2006; Senn et al., 2019; Stupacher, Hove, Novembre, Schütz-Bosbach, & Keller, 2013). PLUMM 
shows an inverted U-shaped pattern as a function of rhythmic complexity (Matthews et al., 
2019; Matthews, Witek, Thibodeau, Vuust, & Penhune, 2022; Sioros, Miron, Davies, Gouyon, 
& Madison, 2014; Spiech, Sioros, Endestad, Danielsen, & Laeng, 2022; Stupacher et al., 2022; 
Witek et al., 2014). Predictive processing accounts of this inverted U suggest that medium 
complexity rhythms achieve the optimal balance between predictability and surprise which 
results in the greatest PLUMM (Koelsch et al., 2019; Vuust et al., 2022; Vuust, Witek, Dietz, & 
Kringelbach, 2018; Vuust & Witek, 2014). 

However, several questions remain, particularly surrounding the pleasurable component of 
PLUMM, its relation with the urge to move and other forms of musical pleasure, as well as the 
role of individual differences in shaping the inverted U. Further, much work on music reward 
processing has focused on either brief, intensely pleasurable response to music (Grewe, Nagel, 
Kopiez, & Altenmüller, 2007; Laeng, Eidet, Sulutvedt, & Panksepp, 2016; Martínez-Molina, 
Mas-Herrero, Rodríguez-Fornells, Zatorre, & Marco-Pallarés, 2016; Salimpoor et al., 2013) or 
individuals who gain no pleasure from music (Belfi & Loui, 2020; Loui et al., 2017; Martínez-
Molina et al., 2016; Mas-Herrero, Zatorre, Rodriguez-Fornells, & Marco-Pallarés, 2014). While 
studying these extreme cases has provided many useful insights, they do not represent the 
relatively protracted (i.e., > 1 minute) and moderate intensity responses that likely characterize 
most individuals’ regular interactions with music. 

Here we focus on PLUMM as an illustrative case study, while drawing on research from music 
reward processing more generally to inform and substantiate our proposal. By drawing 
primarily on the learning progress hypothesis and integrating it with concepts such as curiosity 
and creativity, we extend the predictive processing treatment of PLUMM, and music reward 
processing more generally. We further outline a model of the potential neural mechanisms 
underlying these processes, focusing on the role of dopamine and norepinephrine in linking the 
predictive processes to learning, memory, and pleasure. 

PREDICTIVE PROCESSING AND PLUMM
To elaborate an explanation of the pleasure and motor components of PLUMM and their relation 
to each other, it is crucial to establish that although they are strongly coupled, they are in fact 
separable components. Many early studies have focused on the urge to move (Madison, 2006; 
Madison, Gouyon, & Ullen, 2009; Madison, Gouyon, Ullén, & Hörnström, 2011; Pressing, 2002) 
while more recent work has shown that this urge is accompanied by positive affect (Janata, 
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et al., 2012; Matthews et al., 2019; Matthews, Witek, Lund, Vuust, & Penhune, 2020; Matthews 
et al., 2022; Senn, Bechtold, Hoesl, & Kilchenmann, 2019; Senn, Kilchenmann, Bechtold, & 
Hoesl, 2018; Senn, Rose, et al., 2019; Witek et al., 2014). In these studies, urge to move and 
pleasure ratings are collected separately and both show an inverted U-shaped function with 
rhythmic complexity. Although pleasure and urge to move ratings tend to be highly correlated, 
these correlations tend not to be so high as to be considered colinear, particularly when the 
ratings are made in two separate listening sessions (e.g., Matthews et al., 2020: r(54) = 0.62, 
95% CI[0.36, 0.81]). Further, whereas rhythmic complexity affects both components directly, 
harmonic complexity only affects the urge to move via its effect on pleasure (Matthews et 
al., 2020). Together these results provide evidence that, although strongly linked, the two 
components of PLUMM are in fact distinguishable and can be considered separately.

Through several influential review and perspective papers, the predictive processing framework, 
along with active inference, has been deployed to interpret the inverted U-shaped relation 
between PLUMM and rhythmic complexity (see Figure 1; Koelsch et al., 2019; Vuust et al., 2022, 
2018; Vuust & Witek, 2014). The predictive processing framework proposes that the brain uses 
approximate Bayesian inference to continuously make and update predictions about incoming 
stimuli and internal states, based on generative internal models, that is, representations of 
the hidden causes of these stimuli and states (Friston, 2010). Prediction errors, which reflect 
mismatches between prediction and input, force either a refinement to the internal model or 
an alteration to the input to better fit the model, e.g., via movement. However, the degree to 
which prediction errors lead to model improvement depends on the certainty or precision of 
the antecedent predictions. That is, more precise predictions, if violated, lead to more strongly 
weighted, or salient, prediction errors, necessitating a stronger model-improving response. 

Within this framework, moderately complex rhythms lead to greater PLUMM because they 
maximize the number of strongly weighted prediction errors. Here, the internal model consists 
of the beat and meter (henceforth, metrical model). The meter is the pattern of strong and weak 
beats, including subdivisions, and represents the probability of a note occurring in any position 
of the metrical grid (Lehrdahl & Jackendoff, 1983; Palmer & Krumhansl, 1990). In Bayesian 
terms, metrical models reflect context-specific priors that are implicitly learned over years of 

Figure 1 The predictive 
processing account of PLUMM. 
A) Rhythms with three 
levels of syncopation lead 
to meter-based predictions 
whose uncertainty depend 
on both the position in the 
meter and the strength of the 
metrical model. B) Moderately 
syncopated rhythms maximize 
the number of strongly 
weighted prediction errors. 
Adapted from Stupacher et 
al., 2022.
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listening to and/or playing rhythmic music (Jacoby et al., 2021; Kaplan, Cannon, Jamone, & 
Pearce, 2022). Prediction errors occur when note timings do not conform to the meter, i.e., 
occur on a position with low probability. For example, syncopations, when notes occur on weak 
(low probability) metrical positions and are followed by a silence on strong (high probability) 
metric positions, violate metrical expectations resulting in metrical uncertainty. The degree to 
which a prediction error affects the metrical model (i.e., its weight), depends on its position in 
the meter and the strength or certainty of the metrical model itself. Therefore, prediction errors 
and metrical uncertainty form a feedback loop. As the number of strongly weighted prediction 
errors increases, metrical uncertainty increases, leading to weaker predictions, indicating the 
need for a new metrical model (e.g., a different time signature). 

Rhythms with a moderate degree of syncopation are predictable enough to allow for relatively 
strong beat and meter-based predictions, which, when violated elicit strongly weighted 
prediction errors. However, these strong prediction errors do not invalidate the model but 
rather indicate the need for modification, resulting in relatively fast and automatic model-
updating responses (Lumaca, Haumann, Brattico, Grube, & Vuust, 2019; Vuust et al., 2005). 
Increasing the number of syncopations can impede the generation of a metrical model, thus 
predictions are very imprecise, if they can be generated at all. Meanwhile, rhythms with few 
or no syncopations allow for highly precise predictions, but there are no prediction errors to 
challenge the model. 

Within the predictive processing framework, there are two ways to minimize prediction errors 
(Friston, 2010); 1) modify the model to better fit the input, e.g., by incorporating syncopations 
into the model, by phase-shifting the beat and meter to better align with the rhythm (Fitch 
& Rosenfeld, 2007), or more drastically, by switching to a different meter; 2) change the 
input, e.g., by moving or tapping along with the purported meter, thus generating additional 
proprioceptive and sensory inputs that reinforce this meter or satisfy its predictions. Temporal 
predictions, particularly relative or beat-based predictions, rely on the motor system even 
when no motor output is necessary or forthcoming (Chen, Penhune, & Zatorre, 2008; Grahn 
& Brett, 2007; Kung, Chen, Zatorre, & Penhune, 2013; Merchant & Yarrow, 2016; Morillon & 
Baillet, 2017; Schubotz, 2007; Schubotz, Friederici, & von Cramon, 2000; Teki, Grube, Kumar, 
& Griffiths, 2011). Therefore, both methods of reducing prediction errors engage the motor 
system which may underlie the urge to move. Indeed, listening to moderately syncopated, 
high-groove rhythms, even when not moving, elicits or modulates activity in motor regions in 
the brain (Matthews et al., 2020; Stupacher et al., 2013). Pleasure is also thought to result from 
this balance between strong prediction errors and metrical uncertainty (Vuust & Witek, 2014; 
Vuust et al., 2018), however, this explanation has not been thoroughly elaborated.

Of course, other rhythmic and non-rhythmic features (e.g., microtiming, dynamics, 
instrumentation, timbre, etc.) can elicit prediction errors and drive affective responses. We 
focus on syncopations as they are relatively well-studied and show a consistent relation with 
both perceived complexity (Gómez, Thul, & Toussaint, 2007) and PLUMM (Matthews et al., 
2019; Matthews, et al., 2022; Sioros et al., 2014; Stupacher et al., 2022; Witek et al., 2014). It is 
important to note that defining meter in terms of strong and weak accents or probabilities comes 
from a western tradition of music analysis. However, similar statistical learning and predictive 
processes are assumed to form in non-western music traditions (Jacoby & Mcdermott, 2017; 
Kaplan et al., 2022). Other theoretical models, such as the Dynamic Attending and Neural 
Resonance theories, have been proposed to account for rhythm and meter perception (Large & 
Jones, 1999; Large & Snyder, 2009). These accounts also emphasize predictions and prediction 
errors and therefore do not necessarily conflict with the predictive processing account. Indeed, 
neural oscillations entrained by the rhythm may provide the neural substrate for the metrical 
model (Large & Kolen, 1994; Large & Snyder, 2009; Tal et al., 2017). However, the neural 
mechanisms underlying rhythm perception are beyond the scope of this paper. 

MUSICAL PLEASURE
Like primary and secondary rewards, music is a highly motivating stimulus; humans will 
expend large amounts of time and effort for music or music-related experiences. Although 
neuroimaging data suggests that they rely on the same brain networks (e.g., Blood & Zatorre, 
2001; Blood, Zatorre, Bermudez, & Evans, 1999; Cheung et al., 2019; Gold, Mas-Herrero, Dagher, 
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& Zatorre, 2019; Salimpoor, Benovoy, Larcher, Dagher, & Zatorre, 2011; Shany et al., 2019), 
aesthetic experiences, such as musical pleasure, are distinct from primary and secondary 
rewards. Primary rewards, such as food and sex, are directly related to reproduction or the 
physiological needs that maintain homeostasis. Secondary rewards, such as money, are 
indirectly related to primary rewards via learned associations (Sescousse, Caldú, Segura, & 
Dreher, 2013). Therefore, primary and secondary rewards are highly tractable (i.e., more juice 
or money = more reward). Due to their abstraction and/or distal relation to primary rewards, 
no such relation exists for music (Hansen, Dietz, & Vuust, 2017). Further, aesthetic experiences 
are more susceptible to top-down and contextual influences (Brielmann, 2022) as well as 
interindividual differences, such as cultural background or aesthetic sensitivity (e.g., Clemente 
et al., 2022; Senn, Bechtold, et al., 2019). Another difference is that primary and secondary 
rewards are thought of as extrinsic, while musical pleasure is considered to be driven by intrinsic 
reward processes (Salimpoor et al., 2015). Finally, in computational models of reward-based 
learning, predictions tend to be about the timing or magnitude of the reward (Schultz, Dayan, 
& Montague, 1997; Sutton & Barto, 2018). In music, the predictive processes themselves are 
thought to generate reward (Ferreri et al., 2019; Gold et al., 2019; Hansen et al., 2017; Huron, 
2006; Meyer, 1956; Salimpoor et al., 2015; Sloboda, 1991). This highlights that music listening 
is seen as an active process involving the continuous generation and updating of predictions 
and that affective responses to music depend not only on the music itself but how we actively 
engage with it (Mencke, Omigie, Quiroga-Martinez, & Brattico, 2022).

Despite these differences from primary and secondary rewards, prominent theories of affective 
responses to music emphasize that these responses are rooted in the same fundamental 
processes as ‘everyday emotions’ such as happiness, sadness, and surprise (Huron, 2006; 
Juslin, 2013). For example, along with affective responses to music, prediction errors can lead 
to a fearful startle response or spontaneous laughter at an unexpected punchline (Huron, 
2006). It is also important to note that reward, including musical pleasure, is not considered a 
unitary concept, but consists of three relatively distinct mechanisms (Berridge & Kringelbach, 
2015): 1) liking, which refers to the hedonic pleasure of a consummatory experience, 2) 
wanting, which refers to the motivation to seek out rewarding stimuli, and 3) learning, which 
is the formation of associations between reward and a given stimuli. One theory suggests that 
aesthetic experiences reflect liking without wanting, that is, the sensory or consummatory 
reward mechanisms without the motivational component (Pearce et al., 2016; Scherer, 2004). 
This applies to aesthetic evaluations, such as beauty or awe, and/or the formation of aesthetic 
preferences. However, this does not seem to capture the active components of musical 
pleasure and PLUMM that we are focusing on here, which go beyond, but likely contribute to, 
‘mere’ aesthetic evaluations.

Here we propose that many positive affective responses to music, such as PLUMM, are 
driven by the intrinsic motivation for learning progress (Oudeyer, Kaplan, & Hafner, 2007; 
Oudeyer et al., 2016; Schmidhuber, 2010). In contrast to the motivation for maximizing 
extrinsic rewards, intrinsic motivation reflects an internal drive towards activities or stimuli 
that are themselves enjoyable (Barto & Şimşek, 2005; Ryan & Deci, 2000). This drive may 
have evolved via its benefit to survival (Singh, Lewis, Barto, & Sorg, 2010). For example, 
learning to detect and predict regularities in sounds could feasibly impart an evolutionary 
advantage (Juslin, 2013). Therefore, we may be pre-wired to maximize learning progress, 
but still must seek out and isolate the stimuli and activities that afford maximal learning 
by engaging with our environment (Melnikoff, Carlson, & Stillman, 2022). In the context of 
predictive processing, learning is understood as the improvement of an internal model, that 
is, increasing the fit between model and input by refining the model or generating new input 
that satisfies the model’s predictions (Friston, 2010). This reflects perceptual learning that 
is implicit and automatic, occurring spontaneously as one engages with their environment 
in intuitive ways without some explicit goal in mind, aside from maximizing pleasure or 
fun (Schmidhuber, 2010). Note that in this context, we are not referring to the statistical 
learning that forms or improves higher level schemas (e.g., Loui, 2022). Instead, we are 
assuming that individuals come in with established metrical models (Kaplan et al., 2022) 
and that learning reflects continual refinement of these established models to better match 
the incoming input. 
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THE LEARNING PROGRESS HYPOTHESIS
According to the learning progress hypothesis (LP), humans are intrinsically motivated to seek 
out stimuli or activities that maximally afford model improvement (see Figure 2; Oudeyer et al., 
2007; Oudeyer et al., 2016; Schmidhuber, 2010). Therefore, given an internal model relevant 
for a given stimuli space, e.g., relative to similar stimuli within an experimental task, or relative 
to other music within a given genre, humans will prefer and actively seek out stimuli within 
this space that optimally challenges this model. ‘Optimal challenge’ here refers to stimuli that 
are ‘just beyond our predictive capacities’, meaning those that elicit prediction errors but are 
not so complex as to be unlearnable (Oudeyer et al., 2016, pg., 9). In other words, humans 
will seek out and preferentially engage with stimuli and activities that engender, not just any 
strongly weighted prediction errors, but specifically those that are reducible via refinement 
of the current model. For example, hearing scat singing in the middle of your favourite heavy 
metal song would result in a large prediction error that would not be easily integrated into your 
model of heavy metal music or of that particular song, and would thus likely be experienced as 
aversive. Conversely, hearing scat singing in the middle of your favourite jazz standard may still 
lead to a prediction error, but this error is more easily reduced by updating your current model 
of that standard, or jazz in general, and will thus be less likely to cause aversion. Therefore, if 
we cannot reduce prediction errors by refining our current model, or our current model fails to 
generate predictions and needs to be abandoned altogether, the stimuli will not afford learning 
and will be considered unpleasant or boring. Conversely, simple stimuli that align closely to 
our model will not afford model improvement and thus will also lead to boredom. Accordingly, 
the learning progress hypothesis predicts an inverted U-shaped relation between complexity 
and positive affective responses. However, engaging with stimuli with moderate complexity is 
not the goal in and of itself but an emergent property of the motivation to maximize learning 
progress (Oudeyer et al., 2016). Further, ‘optimal complexity’ is not fixed but will be individual- 
and context-specific. Indeed, learning progress itself may transform a stimulus from ‘too 
complex’ to ‘just right’ over time. 

According to LP, the detection of reducible prediction errors, and thus learning potential, leads 
to the mobilization of resources. This includes increases in arousal, sensory gain, and effort to 
maximally capitalize on the learning opportunity. An engaged, aroused state enhances the 
integration of new input and thus the memory of the relevant stimuli or stimulus features. This 
sets off a positive feedback loop wherein an increase in prediction error minimization promotes 
further active engagement and motivation to seek out other ‘niches for learning progress’ (see 
Figure 2; Oudeyer et al., 2016, p. 11). That is, as one learns, their predictive capacity increases, 
thus continually redefining what constitutes learning and thus the nature of the stimuli that 
is sought out. For example, participants will attend to more and more complex stimuli as they 
gain experience with a given task (Forest, Siegelman, & Finn, 2021).

Curiosity is central to the learning progress hypothesis (Oudeyer et al., 2016). A common 
definition of curiosity is the intrinsic motivation for information gain (Dubey & Griffiths, 2020; 
Loewenstein, 1994), which highlights its overlap with learning progress. Curiosity can be framed 
and studied in terms of epistemic (e.g., in trivia paradigms; Kang et al., 2009) or perceptual 
information gain (e.g., with blurred or partially revealed images; Jepma, Verdonschot, van 
Steenbergen, Rombouts, & Nieuwenhuis, 2012), with common psychological and neuroscientific 
mechanisms. In addition, curiosity can be thought of in terms of a trait, that is, a relatively 
stable part of our personality, or a state, wherein certain situations, environments, or stimuli, 
temporarily increase the expectation of information gain (i.e., learning). Within LP, the aroused, 
engaged state associated with detecting learning potential in the form of reducible prediction 

Figure 2 The learning progress 
hypothesis. Humans are 
intrinsically motivated for 
learning progress, which 
is operationalized as the 
rate of prediction error 
minimization over time. 
The detection of reducible 
prediction errors mobilizes 
resources associated with 
state curiosity to maximally 
capitalize on the learning 
potential. Learning progress 
is registered as pleasure and 
enhances memory encoding, 
which in turn facilitates further 
learning progress, setting up a 
feedback loop. Adapted from 
Oudeyer et al., 2016.
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errors is linked to state curiosity and, within the feedback loop, an increase in the minimization 
of these prediction errors leads to further state curiosity. The engaged, curious state that 
accompanies the detection of learning potential is thought to foster better memory retention. 
This aligns with studies showing greater retention of information that elicit greater curiosity 
(Marvin & Shohamy, 2016). 

Certain theories of curiosity overlap particularly strongly with LP. For example, one theory 
suggests that curiosity is driven by the urge to maximize the value of one’s current model/
knowledge, which can explain why curiosity is triggered by moderately complex stimuli in some 
situations and novel stimuli in others (Dubey & Griffiths, 2020). Other theories emphasize the 
role of prediction errors in spurring curiosity, as they indicate a gap between the input and 
ones current model/knowledge and thus uncertainty about their model/knowledge, motivating 
further engagement (Gruber & Ranganath, 2019). As in LP, not just any prediction errors will 
do as curiosity is stronger as participants feel closer to the answer (Wade & Kidd, 2019), that 
is, when they are in the ‘region of proximal learning’ (Metcalfe, Schwartz, & Eich, 2020). This 
requires a metacognitive assessment of one’s current knowledge in relation to the input that 
determines one’s curiosity about the answer to the trivia question or what the rest of the image 
looks like. Conversely, the curiosity-learning cycle that is relevant in a music listening context 
is likely to be too fast and automatic to involve such an explicit, metacognitive assessment. 
However, as we discuss below, moving to music can provide an overt expression of, and thus 
metacognitive access to, our meter-based predictive processes. 

Despite its highly dynamic nature, learning progress can be simply operationalized as the 
rate of reduction of prediction errors over time; the greater the negative slope of prediction 
errors over time, the greater the reward (Oudeyer et al., 2016; Schmidhuber, 2010). In a recent 
study, researchers modeled participants behaviour in a free-choice task using an algorithm 
that included a linear combination of task performance over all trials and the improvement in 
the later compared to earlier trials (Ten, Kaushik, Oudeyer, & Gottlieb, 2021). Models with both 
variables best predicted both participants’ choice of task and time spent on each task. This 
suggests that participants monitored their learning progress along with overall performance 
to choose tasks that were not too easy or too complex but provided an optimal challenge. 
Similarly, Brielmann and Dayan (2022) developed a computational model of the aesthetic 
value of visual images. This approach involved two generative models, one for predicting the 
next image (i.e., the immediate sensory environment) and one for predicting likely future 
images in the long term. Participants’ ratings of images were then simulated based on the 
degree to which an image aligns with their short-term model (i.e., sensory prediction error) 
and the degree to which it improves the longer-term model (longer term learning). This model 
accounted for participants’ ratings, including individual differences, as well as changes in ratings 
over time (Brielmann, Berentelg, & Dayan, 2023; Brielmann & Dayan, 2022). Importantly, this 
work highlights the roles of both predictive processing and learning in affective responses to 
sensory stimuli. 

LP AND PLUMM
Within the context of LP, we can reframe the inverted U-shaped relation between degree 
of syncopation and PLUMM in terms of the reward elicited by an increase in prediction error 
minimization and the resolution of metrical uncertainty. As described above, moderately 
syncopated rhythms provide both prediction errors that indicate learning potential and 
enough regularity to allow for a relatively strong metrical model which can be leveraged to 
reduce these prediction errors. Accordingly, these rhythms lead to the greatest engagement 
in terms of both affective and motor responses. Conversely, highly syncopated rhythms elicit 
so much metrical uncertainty that minimizing or even detecting prediction errors is difficult or 
impossible. Therefore, there is little or no potential for learning and thus boredom or aversion. 
For simple rhythms with little or no syncopation, most if not all notes align with the metrical 
model, therefore there is no prediction errors, no potential for model improvement, again 
leading to boredom.

The inverted U associated with PLUMM results from operationalizing rhythmic complexity as the 
weighted sum of its syncopations (Fitch & Rosenfeld, 2007; Longuet-Higgins & Lee, 1984; Witek 
et al., 2014). However, this measure discounts the influence of individual syncopations and 
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how this influence may depend on, and contribute to, the rhythmic context (Sioros, Madison, 
Cocharro, Danielsen, & Gouyon, 2022). Due to the relatively fast and dynamic nature of musical 
rhythms (e.g., compared to harmonic progressions), responses to individual onsets are difficult 
to measure. One approach is to exploit the high temporal resolution of electroencephalography. 
For example, one study using this approach shows that fast neural indices of prediction errors 
are smaller for more complex rhythms (Lumaca et al., 2019), which presumably give rise to 
weaker metrical models. However, this approach cannot assess how individual notes influence 
affective responses, how they contribute to modifications to the metrical model, or the relation 
between these processes. Outside of rhythm, researchers have used a computational model to 
show that curiosity and pleasure are highest for melodies and chord progressions that balance 
prediction errors and uncertainty (Cheung et al., 2019; Gold et al., 2019; Omigie & Ricci, 2022). 
These results suggest that in low uncertainty contexts in which listeners can form strong 
predictions, opportunities for learning—in the form of prediction errors—are highly salient, 
leading to greater state curiosity and pleasure. Conversely, when model uncertainty is high, 
pleasure is driven by predictable notes that resolve uncertainty and thus reinforce the model. 

Applying LP to PLUMM highlights that all three components of reward are likely in play while 
engaging with music. That is, ‘wanting’ can be linked to the motivation to reduce prediction 
errors and resolve the metrical uncertainty, while ‘liking’ reflects the pleasure resulting from 
this process. The ‘learning’ component reflects the association formed between the pleasurable 
state and the rhythm or song that facilitated the learning progress. This ‘learning’ can be 
framed in terms of means-ends fusion, in which the pleasure associated with learning progress 
(the end) gets ‘fused’ to the activity of listening to a particular piece of music (the means; 
Melnikoff, Carlson, & Stillman, 2022; Szumowska & Kruglanski, 2020). This association may 
also be extended to similar rhythms, songs, or genres, potentially contributing to higher level 
preferences or schemas. In most studies investigating PLUMM, participants rate their pleasure 
and urge to move while sitting and not moving. Therefore, the urge to move may be experienced 
as a (pleasurable) tension (i.e., ‘wanting’; Witek, 2009), driven by metrical uncertainty, and 
anticipation of the resolution of this uncertainty via overt or covert movement. This is similar to 
the tension participants experience while waiting for the answer to a trivia question (Kang et 
al., 2009). This highlights that only reducible prediction errors should elicit PLUMM. The role of 
synchronous movement in reducing prediction errors, reinforcing the metrical model, and thus 
reducing metrical uncertainty is a key tenet of the predictive processing account of PLUMM. This 
has been supported by recent work showing that both PLUMM and PLUMM-related pleasure are 
increased when tapping one’s foot to the beat (Spiech, Hope, et al., 2022). 

In this context, moving to music externalizes our predictive processes allowing for the 
metacognitive assessment of the gap between our current metrical model and the input, 
and thus the potential for learning. Linking back to theories of epistemic curiosity (Gruber 
& Ranganath, 2019; Metcalfe et al., 2020), movements give the listener explicit feedback 
regarding their knowledge gap and whether they are in a ‘region of proximal learning’. Moving 
can also expand the representation of the meter and/or draw focus to other aspects of it, thus 
expanding these ‘regions’. For example, by embodying the beat, e.g., via foot taps, we offload 
this representation, freeing up attention to other (e.g., faster) metrical levels which can then be 
embodied by other bodily movements (Burger, Thompson, Luck, Saarikallio, & Toiviainen, 2014; 
Mårup, Møller, & Vuust, 2022). However, this metacognitive access is limited by the temporal 
dynamics of our perceptual and motor systems. For example, there is a limit to how fast humans 
can move, thus limiting our ability to reduce prediction errors at very fast metrical levels (Repp, 
2003). In addition, recent theoretical and empirical work suggests that our motor system 
underlies and constrains the perception of regular auditory input (Morillon, Hackett, Kajikawa, 
& Schroeder, 2015; Poeppel & Assaneo, 2020), which might limit the granularity of our metrical 
models. Further, there is a difference between how synchronously we perceive ourselves to 
be moving to the beat/meter, and how synchronously we are actually moving (Franěk, Radil, 
Indra, & Lánsky, 1987). A recent study showed that perceived synchrony better predicts ratings 
of PLUMM than objective measures of synchrony (Matthews et al., 2022), supporting the role of 
movement-supported metacognitive assessment in PLUMM. This highlights the intrinsic aspect 
of this affective response, i.e., ‘how much I am enjoying myself’ largely depends on how well I 
think I am doing. 
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A key feature of applying LP to PLUMM is that it centers the individual and their interaction 
with the stimuli, rather than the stimuli itself (Oudeyer et al., 2016). For example, the level 
of syncopation that will maximally potentiate learning will differ between individuals and 
between contexts. This also aligns with predictive processing treatments of affective responses 
to music (Schaefer, Overy, & Nelson, 2013). There is evidence that the shape of the inverted 
U associated with PLUMM varies according to several inter-individual factors such as musical 
training, age, and neurological health (Cameron, Caldarone, Psaris, Carrillo, & Trainor, 2023; 
Matthews et al., 2019; Matthews et al., 2020; Matthews et al., 2022; O’Connell, Nave-blodgett, 
Wilson, Hannon, & Snyder, 2022; Pando-Naude et al., 2023). According to an LP account of 
PLUMM, the state of the metrical model should influence the level of rhythmic complexity that 
will maximally afford learning and thus maximize PLUMM. Extensive musical training may lead 
to more developed and refined metrical models (Palmer & Krumhansl, 1990; Vuust et al., 2005; 
Zhao, Gloria Lam, Sohi, & Kuhl, 2017), thus altering the degree of syncopation that will fall 
just beyond a musicians’ predictive capacity. Conversely, healthy aging and Parkinson’s disease 
lead to a flattening of the inverted U (Pando-Naude et al., 2023), possibly due to weakening of 
the metrical model. However, other factors are likely to contribute, including working memory 
(Vuvan, Simon, Baker, Monzingo, & Elliott, 2020), trait curiosity (Galvan & Omigie, 2022), 
stimulus familiarity, and preference (Madison & Schiölde, 2017; Senn, Bechtold, et al., 2019). 

Memory is a key component of learning, which, in the current context, reflects long term 
changes to metrical models to better account for expected future rhythms (Brielmann & 
Dayan, 2022). A recent review suggests that the regularity of musical rhythms and the reward 
derived from listening to them could improve learning and memory, including for features 
that are incidental to the rhythm (e.g., speech; Fiveash et al., 2023). Although our proposal 
suggests a different causal direction, i.e., that learning drives music-induced reward, a key part 
of LP is that the detection of learning potential mobilizes resources including working memory 
and long-term encoding (Oudeyer et al., 2016). Outside of music, there is a positive link 
between curiosity and recall, even for stimulus features that are incidental to the information 
gain (Gruber & Ranganath, 2019; Kang et al., 2009). Within music, there is evidence of better 
recall of pleasurable melodies (Ferreri et al., 2021; Ferreri & Rodriguez-Fornells, 2022; Ferreri & 
Rodriguez-Fornells, 2017) as well as a link between intrinsic motivation for learning and recall 
(Ripollés et al., 2016). Meanwhile, studies on motor learning using musical sequences suggest a 
strong connection between motivation, predictability, liking, and learning performance (Bianco, 
Gold, Johnson, & Penhune, 2019; Fasano et al., 2020). Regular auditory rhythms facilitate 
perceptual and cognitive performance (Morillon, Schroeder, Wyart, & Arnal, 2016; Stefanics et 
al., 2010) which support learning, likely via the entrainment of attentional oscillations (Large & 
Jones, 1999). Whereas adding irregularities may disrupt this process, rhythms that are complex 
enough to potentiate learning are still regular enough to be accounted for by listeners’ current 
metrical model. Therefore, these rhythms may balance the regularity necessary for conferring 
perceptual advantages via entrainment, and the effects of intrinsic learning-based reward on 
memory processes. 

The highly structured nature of music, along with recently developed methods for tracking the 
complexity of music in a way that aligns with perception (Pearce & Wiggins, 2012; Senn, 2023), 
makes testing LP within musical contexts not only feasible but highly promising. One approach 
could be to apply the computational approach of Brielmann et al., (2022; 2023) to rhythmic 
stimuli. For example, one could simulate affective responses to rhythms of varying complexity 
based on immediate and rhythm-level prediction errors (e.g., using Bayesian surprisal; Senn, 
2023), along with the longer term influence on the metrical model (e.g., using Kullback-Liebler 
divergence). This would account for both the detection of learning potential of individual 
syncopations in the short term, as well as the tracking of learning progress in the longer term. 
Another approach could be to test state curiosity directly following the approach of Omigie and 
Ricci (2022). For example, participants could be asked to rate their curiosity regarding the way 
rhythms of variying complexity will unfold. Depending on their musical training and familiarity 
with the stimuli, participants would be expected to show greater curiosity for moderately 
syncopated rhythms. These approaches could be combined with neuroimaging, physiological 
measures, and/or pharmacological interventions to assess the purported neural mechanisms 
underlying LP within PLUMM (see below).
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THE TIME-COURSE OF LP IN THE CONTEXT OF PLUMM
Given the dynamic nature of music, LP and the resulting affective responses, such as PLUMM, 
can occur on multiple timescales, from onset to onset, to years of listening to the same song 
(Brattico, Bogert, & Jacobsen, 2013). Within a single musical piece, three forms of prediction-
based learning can be considered (Brielmann et al., 2023); 1) each onset elicits a prediction 
error or confirmation signal depending on its alignment with the metrical model, 2) these 
signals are integrated over short epochs relevant to the meter (e.g., phrases or repetitions), 3) 
to improve longer-term, more stable models thus reducing prediction errors encountered in 
similar rhythms in the future. Therefore, the specific time-course over which learning progress 
is monitored and leads to affective responses will need to be determined. There is evidence that 
participants can form accurate aesthetic judgements of music within 500 or 750 ms, however, 
these initial aesthetic responses are likely based on timbral or harmonic information (Belfi et al., 
2018). Conversely, PLUMM relies on temporal processes requiring at least one or two beat cycles 
and reflects a low-level but protracted affective response rather than an aesthetic judgment. 

Brief, more intense responses can also occur, for example resulting from a slow build up 
and sudden resolution of metrical uncertainty, a common motif in electronic dance music. 
Alternatively, a relatively low complexity rhythm may initially be misinterpreted with regards 
to the type (e.g., 3/4 vs 4/4) or phase of the meter. Altering the meter or its phase can then 
lead to a sudden reduction of prediction errors (Fitch & Rosenfeld, 2007) and thus an increase 
in pleasure. These examples may correspond to rhythmic versions of an ‘aha moment’ like that 
seen in epistemic curiosity where providing the answer to trivia question provides a sudden 
resolution of uncertainty (Gruber & Ranganath, 2019). A similar example is found in atonal 
music where the initial lack of perceived structure leads to uncertainty and an exploratory 
mode of listening (Mencke et al., 2022; Mencke, Omigie, Wald-Fuhrmann, & Brattico, 2019). 
Eventually, the underlying structure is discovered, leading to a sudden reduction in uncertainty 
and a brief yet strong increase in pleasure (Mencke et al., 2022). 

As discussed above, moving to a rhythm provides a way to decrease predictions errors while 
revealing new avenues to learning progress. In addition, synchronous movements, or those 
perceived as synchronous, can provide prediction confirmation signals, and thus a fast and 
salient indication of learning progress. Therefore, through a decrease in prediction errors and an 
increase in prediction confirmations, synchronous movement can increase pleasure, suggesting 
a causal directionality. However, the urge to move, framed as the ‘wanting’ component of 
reward, is itself potentially pleasurable. Further, refinement of the metrical model may 
be necessary before one has the urge to move. For example, a prerequisite for moving to a 
rhythm is perceiving a beat. Then, moving to the beat would lead to further pleasure as more 
uncertainty regarding the metrical model is reduced. This suggests that the two components 
of PLUMM are likely bidirectional, engaging both ‘wanting’ and ‘liking’ components of reward in 
repeating and continuously evolving cycles. 

Anecdotally, a given piece of music can induce PLUMM even after many years of regular listening. 
This may result from the ‘learning’ component of reward and means-ends fusion, where a song 
or rhythm becomes strongly associated with a motor or affective response even as learning 
progress is exhausted. This component may also account for the fact that our tastes tend to 
solidify at an early age when many such associations are being formed (Krumhansl & Zupnick, 
2013). Music can be thought of as a multidimensional space that can be explored as it unfolds 
over time. Due to our limited attentional capacities, we may focus on only a subset of this 
space at a given moment or take a more holistic mode of listening (Brattico, Brattico, & Vuust, 
2017). Therefore, repeated listening can continue to uncover new sources of learning progress 
that are only apparent, or draw interest, as attention moves within this space. This implies 
that the degree to which a given piece of music affords learning and induces pleasure over 
repeated listens will depend on its complexity. Outside of PLUMM, there is evidence that more 
complex melodies lead to a greater increase in liking over repeated listens (Smith & Cuddy, 
1986), however, others have shown decreases in liking and/or no dependence on complexity 
(Gold et al., 2019; Madison & Schiölde, 2017). Further, many songs rated high in PLUMM, such 
as those from James Brown or The Meters (Janata et al., 2012), can be quite simple in structure 
and relatively sparse in terms of instrumentation. One possibility is that relatively sparse, 
repetitive music facilitates a highly detailed metrical model for which relatively small changes 
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can have relatively large impacts. One example is microtiming, in which small deviations from 
the metrical grid can lead to reducible prediction errors even within a simple repeating pattern. 
In this way, new learning potential is uncovered as focus shifts to the finer grained details of a 
rhythmic pattern. Therefore, the effects of familiarity are complex and likely depend on several 
factors, including the range of complexity, the ecological validity of the stimuli and listening 
contexts, genre familiarity, and inter-individual differences. 

THE NEUROSCIENTIFIC UNDERPINNINGS OF LP IN THE CONTEXT 
OF PLUMM
Theoretical and empirical work strongly implicate nigrostriatal dopamine within motor 
corticostriatal networks as crucial for beat- and meter-based timing (Cameron, Pickett, 
Earhart, & Grahn, 2016; Cannon & Patel, 2020; Grahn & Brett, 2009). This is in part based on 
evidence from those with Parkinson’s disease, which is characterized by reduced nigrostriatal 
dopamine, leading primarily to motor problems, but also changes to cognitive and affective 
processes (Dauer & Przedborski, 2003). Participants with Parkinson’s show a reduced ability to 
discriminate rhythms (Cameron et al., 2016; Grahn & Brett, 2009) and judge rhythms as more 
complex compared to healthy controls (Vikene, Skeie, & Specht, 2019). There is also evidence 
that musical training counteracts the effect of Parkinson’s on beat perception (Hsu, Ready, & 
Grahn, 2022). The motor corticostriatal loop, which connects premotor cortical regions and 
dorsal striatum and overlaps with the nigrostriatal dopamine pathway (Alexander, DeLong, 
& Strick, 1986), is associated with motor learning (Graybiel & Grafton, 2015). Crucially, the 
motor corticostriatal loop is strongly associated with processing predictable rhythmic auditory 
patterns (Bengtsson et al., 2009; Grahn & Brett, 2007, 2009; Grahn & Rowe, 2013; Kung et al., 
2013; Matthews et al., 2020; Schubotz et al., 2000; Thaut, 2003). These results, along with the 
flattening effect of Parkinson’s on the inverted U (Pando-Naude et al., 2023), suggest that the 
nigrostriatal pathway and motor corticostriatal loop are crucial for the metrical models and 
predictive processes thought to underlie PLUMM (see Figure 3A).

Along with its role in beat-based timing, dopamine within the mesolimbic pathway is known 
to play a crucial role in the motivation for primary rewards (i.e., ‘wanting’) and the formation 
of value-stimulus associations (i.e., ‘learning’; Berridge & Kringelbach, 2015). The mesolimbic 
pathway involves dopaminergic neurons in the ventral tegmental area projecting to the ventral 
striatum. The ventral striatum forms the limbic corticostriatal loop with ventromedial prefrontal 
cortex (Alexander et al., 1986), and is implicated in the experience and anticipation of primary, 
secondary (Berridge & Kringelbach, 2015; Schultz et al., 1997), and music-induced rewards 
(Gold et al., 2019; Martinez-Molina, Mas-Herrero, Rodríguez-Fornells, Zatorre, & Marco-Pallarés, 
2019; Martínez-Molina et al., 2016; Mas-Herrero, Maini, Sescousse, & Zatorre, 2021; Salimpoor 
et al., 2011, 2013). Outside of music, mesolimbic dopamine is purported to encode reward 
prediction errors (RPEs; Schultz, 2016a) which reflect the difference between the expected 
magnitude of a reward and the actual reward received. In this context, dopamine does not 
encode the consummatory experience of reward (‘liking’), which is likely controlled by the 
endogenous opioid system, but is instead involved in the predictive processes necessary for 
reward-based learning (Berridge & Kringelbach, 2015; Schultz, 2016b).

Recent evidence strongly implicates dopamine in music reward processing. Interestingly, this 
includes the anticipation of peak pleasurable moments (i.e., chills) during music listening, the 
motivation to buy preferred music, and the experience of musical pleasure (Ferreri et al., 2019; 
Salimpoor et al., 2011). This suggests, that unlike primary and secondary rewards, dopamine’s 
role in musical pleasure includes ‘liking’, along with ‘wanting’ and ‘learning’. Activity in the 
ventral striatum was also linked to RPEs associated with chord progressions (Gold et al., 2019). 
However, there is debate regarding how exactly music or musical features can be considered 
better or worse than expected in terms of (extrinsic) reward (De Fleurian, Harrison, Pearce, & 
Quiroga-Martinez, 2019; Gold et al., 2019; Hansen et al., 2017). Further, this still leaves open the 
question of how music-induced reward comes about in the first place. 

Along with dopamine’s role in beat-based timing (Cameron et al., 2016; Cannon & Patel, 2020; 
Grahn & Brett, 2009), the above results suggest that dopamine is crucial to the proposed role 
of LP in PLUMM. We propose that mesolimbic dopamine signals learning potential via reducible 
prediction errors, triggering state curiosity, and the associated increase in arousal and attention 
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(see Figure 3B). In this model, nigrostriatal dopamine within the motor corticostriatal loop 
underlies the metrical model and its relative certainty via phasic pulses and tonic dopamine 
signals, respectively (Cannon & Patel, 2020; Tomassini, Ruge, Galea, Penny, & Bestmann, 
2016). Meanwhile, mesolimbic dopamine within limbic corticostriatal loop detects reducible 
prediction errors (e.g., syncopations) leading to the mobilization of sensory and cognitive 
(including memory) resources. This aligns with work implicating dopamine in the link between 
intrinsic motivation, learning, liking, and memory retention in both language (Ripollés et al., 
2018) and melody tasks (Ferreri et al., 2021) via a circuit formed by the ventral tegmental 
area, the hippocampus, and ventral striatum (Ripollés et al., 2018). In non-human primates, 
dopamine is modulated by information gain even when this gain involves sacrificing a primary 
reward (Bromberg-Martin & Hikosaka, 2009). Similarly, in humans, activity in ventral striatum 
and dopaminergic midbrain increases along with curiosity about the answer to a trivia question, 
but not when the answer is given (Gruber, Gelman, & Ranganath, 2014). Rather than reward 
anticipation, this may reflect the reward that accompanies state curiosity. This proposed role 
of dopamine within LP aligns well with theories linking dopamine to sensory prediction errors 
and their certainty (Friston et al., 2014; Gershman & Uchida, 2019), rather than RPE’s per se. 
On the other hand, framing dopamine’s role within LP may provide a bridge between these two 
hypotheses. That is, since intrinsic reward is linked to learning progress, dopamine may increase 
along with greater-than-expected learning progress and thus greater-than-expected reward. 

The LP hypothesis implies a system in the brain that monitors learning progress derived from 
a stimulus or activity. For the longer term modification of metrical models, this role may be 
served by lateral prefrontal cortex (cf. Gruber & Ranganath, 2019). According to a recent 
model, monitoring learning progress in the shorter term may be driven by the dorsal anterior 
cingulate cortex (dACC; Silvetti, Vassena, Abrahamse, & Verguts, 2018). The ACC is linked with 
state curiosity and the mobilization of resources in the face of an information gap (Gruber & 
Ranganath, 2019). For example, ACC activity is positively associated with perceptual curiosity 
(Jepma et al., 2012) and melodic prediction errors (Omigie et al., 2019). Further, the ACC is active 
when listening to rhythms judged as beautiful (Kornysheva, Cramon, Jacobsen, & Schubotz, 
2010). The dACC receives dopaminergic input from the ventral tegmental area (Silvetti et 
al., 2018), which according to our model, signals reducible prediction errors relative to the 
metrical model (see Figure 3B). At some threshold, dACC signals the locus coeruleus which 
releases norepinephrine both back to the dACC, and more widely in the cortex. An increase in 
norepinephrine leads to greater sensory gain, attention, arousal, and increased effort (Mather, 
Clewett, Sakaki, & Harley, 2016), in other words, leads to the engaged, ready-to-learn state 
associated with state curiosity. 

Norepinephrine is strongly linked with pupil dilation, which has been used as an objective 
measure of state arousal and effort (Wilhelm, Wilhelm, & Lüdtke, 1999). Recent studies have 
shown that listening to music with higher PLUMM leads to greater pupil dilation (Bowling, 
Ancochea, Hove, Fitch, & Madison, 2019). Another study showed greater pupil response for 
rhythms considered low or medium in PLUMM, particularly when the isochronous hihat 
was removed (Skaansar, Laeng, & Danielsen, 2019) which may increase reducible metrical 
uncertainty to further potentiate learning. Finally, pupil dilation as well as drift in pupil dilation 
over time show an inverted U-shaped function with rhythmic complexity (Spiech, Danielsen, 

Figure 3 A neuroscientific 
model of the LP account of 
PLUMM. A) Phasic pulses of 
nigrostriatal dopamine into 
the dorsal striatum initiate 
cycles of meter-based timing 
mechanisms via excitatory 
and inhibitory signals within 
the motor corticostriatal 
loop. Adapted from Cannon & 
Patel, 2020. B) The detection 
of reducible prediction errors 
relative to the metrical model 
leads to mesolimbic dopamine 
signals to the hippocampus 
to enhance memory, and 
to the dACC which in turn 
activates the LC to release 
norepinephrine, leading to the 
mobilization of attentional 
resources. The PFC updates 
metrical models along with 
higher level schemas. Adapted 
from Ripollés et al., 2016 and 
Silvetti et al., 2018. dACC, 
dorsal anterior cingulate 
cortex; Hipp, hippocampus; LC, 
locus coeruleus; NAc, nucleus 
accumbens; PFC, prefrontal 
cortex; SMA, supplementary 
motor area; SN/VTA, 
substantia nigra/ventral 
tegmental area; VP, ventral 
pallidum. 



13Matthews et al  
Journal of Cognition  
DOI: 10.5334/joc.320

Laeng, & Endestad, 2023; Spiech, Sioros, Endestad, Danielsen, & Laeng, 2022). This pattern 
of pupil drift was only seen in participants with stronger beat perception, while weaker beat 
perceivers showed a flattened pupil drift response, supporting the link between strength of the 
metrical model and state curiosity. In the current context, a stronger metrical model would 
lead to stronger prediction errors, resulting in greater dopamine signalling to the dACC-locus 
coeruleus network, greater norepinephrine release, and thus arousal associated with state 
curiosity. This is further supported by recent work showing greater pupil responses to pitch 
deviants in more certain melodic contexts (Bianco, Ptasczynski, & Omigie, 2020) as well as a 
link between pupil dilation and epistemic curiosity (Kang et al., 2009).

PERSPECTIVES ON LP, CREATIVITY, INTERPERSONAL 
SYNCHRONY, AND PLUMM
In the following section, we suggest that, in addition to determining the stimuli that humans 
seek out and enjoy, curiosity and an intrinsic motivation for learning progress may also drive 
how they create and interact with music (e.g., via dancing). A generative model can only be 
improved by finding its limits, which can then be expanded as new information is integrated. 
Accordingly, one role of creative activities may be to self-generate stimuli that challenge our 
predictive capacities and thus maximally potentiate learning (Schmidhuber, 2010). The classic 
definition of a creative product has two components; 1. Originality, novelty, or innovation, and 
2. Functionality, usefulness, utility, or fit (Runco & Jaeger, 2012). That is, a creative product or 
act needs to be both novel and useful, however, in more abstract forms of art, such as music, 
what constitutes utility is less obvious. Within LP, the utility of a creative act or product is the 
degree to which it affords learning (Schmidhuber, 2010). That is, the novelty or surprise leads 
to prediction errors, while the utility is determined by the reducibility of the prediction errors. 
Within PLUMM, this suggests generating rhythms and music that optimally challenge our own 
meter-based predictions to maximize our own learning progress, pleasure, and fun. As our 
experience increases and our models improve, it requires more musical skill and knowledge 
to generate rhythms that provide an optimal challenge. Therefore, in this context, the intrinsic 
motivation to learn goes hand in hand with the intrinsic motivation for competence and 
knowledge (Oudeyer & Kaplan, 2007). 

The optimal balance between challenge and skill is also a crucial contributor to the psychological 
construct of flow, which is characterized by a pleasurable, absorptive feeling of high fluency 
in the context of a relatively difficult task (Csikszentmihalyi, 1990). Fluency of performance, 
a dimension of flow (Engeser & Rheinberg, 2008), was shown to be positively associated 
with motor synchrony with moderately and highly syncopated rhythms (Stupacher, 2019). 
This finding suggests that moving to the beat will only induce flow if there is some challenge 
(Abuhamdeh & Csikszentmihalyi, 2012). A recent model of flow suggests that an activity will 
induce flow only insofar as it reduces uncertainty regarding the associated goal (Melnikoff et al., 
2022), which, in the current context, is learning progress. Therefore, moving to music will lead 
to flow only if it affords learning, thus helping to narrow which music one will prefer to move to. 
This can also be linked to music creation in the form of musical improvisation (Norgaard, Bales, 
& Hansen, 2023; Pressing, 1988) which can be framed as self-reproducing the curious state via 
the generation of reducible prediction errors. In this context, musical creativity can be seen as 
a form of exploratory play wherein one can expand their predictive capacities within a uniquely 
structured and multidimensional space. 

This highly structured context also creates an ideal environment for collaborative activities which 
can further amplify learning progress. Beat and meter allow for a shared, or extended, predictive 
model across listeners and/or performers thus providing a common structure within which to 
interact and create (Savage et al., 2021; Stupacher et al., 2022; Vuust et al., 2022; Witek, 2019). 
Whether dancing or making music, this common metrical model allows for synchronization 
between individuals as well as with the music, and thus a common space for learning progress 
where others’ meter-based predictions and prediction errors are communicated via movement. 
In this context, learning is amplified as people observe the externalization of others’ predictive 
processes, incorporating and building upon these observations in a cyclic fashion to generate 
positive feedback loops of learning (Oudeyer et al., 2016). Therefore, a social setting can 
facilitate collective confirmation and violation of predictions, thus increasing learning progress 
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beyond what would occur alone. For example, prediction errors from a complex rhythm far 
beyond one’s predictive capacity may still be reduced by observing a more skilled dancer 
moving to this rhythm (Foster Vander Elst, Vuust, & Kringelbach, 2021). Alternatively, a simple, 
and thus potentially boring rhythm can be made more interesting as other dancers embellish 
the rhythm with more complex movements. This suggests that the strong link between 
interpersonal synchronization and social bonding (reviewed in Fiveash et al., 2023; Savage et 
al., 2021) may be in part driven by shared learning progress. 

Interpersonal rhythmic synchronization has been shown to increase affiliation among 
participants (Kokal, Engel, Kirschner, & Keysers, 2011), including in young children and even 
infants (Cirelli, Einarson, & Trainor, 2014; Kirschner & Tomasello, 2009). However, synchronization 
alone is unlikely to drive the pleasure and affiliation from musical interactions such as dancing at 
a club or collective improvisation if it does not facilitate learning. To increase learning potential, 
reducible complexity needs to be injected into the activity. Evidence for this comes from a 
study using the mirror game paradigm in which dyads try to synchronize their movements but 
are not instructed with regards to the movements they make. How much the members of the 
dyad like each other are not only driven by the degree of synchronization but also the degree 
of complexity of the movements (Ravreby, Shilat, & Yeshurun, 2022). Indeed, participants 
sacrificed synchrony to increase complexity, suggesting that they prioritized learning and thus 
the fun of the activity, which in turn increased affiliation. Similarly, in the context of rhythmic 
music, the perceived affiliation between virtual avatars depends not only on the synchrony with 
the rhythm but also the complexity of the rhythm (Stupacher, Witek, Vuoskoski, & Vuust, 2020). 

SUMMARY
Here we expand on predictive processing accounts to suggest that the intrinsic motivation for 
learning progress is a crucial driver of PLUMM, providing a thorough and testable explanation of 
this powerful and ubiquitous affective response to music. Crucially, this proposal accounts for 
inter-individual and contextual influences on the inverted U-shaped relation between PLUMM 
and rhythmic complexity. In addition, this proposal ties together prominent psychological and 
neuroscientific theories of reward, motivation, and learning, with prediction as a fundamental 
underlying principle. We suggest that the feedback loop linking learning progress, PLUMM, 
and memory retention is subserved by dopaminergic and noradrenergic transmission within 
loops connecting cortical, subcortical, and brainstem regions. This forms the link between 
neural mechanisms underlying motor and reward processing, which together motivate 
active, exploratory learning, and creative social interactions. The highly structured nature of 
music provides an ideal testbed for individuals and groups to test and refine their predictive 
processes and thus generate learning progress. Further, this structured, and thus tractable, 
nature makes rhythmic music highly amenable for the investigation of the link between 
curiosity, learning progress, aesthetic pleasure, and creativity. Along with new technological 
developments and approaches, these investigations can provide exciting possibilities for 
researchers to better understand the important role of music in our lives as well as its utility 
in clinical settings.
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	Here we propose that many positive affective responses to music, such as PLUMM, are driven by the intrinsic motivation for learning progress (; ; ). In contrast to the motivation for maximizing extrinsic rewards, intrinsic motivation reflects an internal drive towards activities or stimuli that are themselves enjoyable (; ). This drive may have evolved via its benefit to survival (). For example, learning to detect and predict regularities in sounds could feasibly impart an evolutionary advantage (). Theref
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	THE LEARNING PROGRESS HYPOTHESIS
	According to the learning progress hypothesis (LP), humans are intrinsically motivated to seek out stimuli or activities that maximally afford model improvement (see ; ; ; ). Therefore, given an internal model relevant for a given stimuli space, e.g., relative to similar stimuli within an experimental task, or relative to other music within a given genre, humans will prefer and actively seek out stimuli within this space that optimally challenges this model. ‘Optimal challenge’ here refers to stimuli that a
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	According to LP, the detection of reducible prediction errors, and thus learning potential, leads to the mobilization of resources. This includes increases in arousal, sensory gain, and effort to maximally capitalize on the learning opportunity. An engaged, aroused state enhances the integration of new input and thus the memory of the relevant stimuli or stimulus features. This sets off a positive feedback loop wherein an increase in prediction error minimization promotes further active engagement and motiv
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	Curiosity is central to the learning progress hypothesis (). A common definition of curiosity is the intrinsic motivation for information gain (; ), which highlights its overlap with learning progress. Curiosity can be framed and studied in terms of epistemic (e.g., in trivia paradigms; ) or perceptual information gain (e.g., with blurred or partially revealed images; ), with common psychological and neuroscientific mechanisms. In addition, curiosity can be thought of in terms of a trait, that is, a relativ
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	Certain theories of curiosity overlap particularly strongly with LP. For example, one theory suggests that curiosity is driven by the urge to maximize the value of one’s current model/knowledge, which can explain why curiosity is triggered by moderately complex stimuli in some situations and novel stimuli in others (). Other theories emphasize the role of prediction errors in spurring curiosity, as they indicate a gap between the input and ones current model/knowledge and thus uncertainty about their model/
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	Despite its highly dynamic nature, learning progress can be simply operationalized as the rate of reduction of prediction errors over time; the greater the negative slope of prediction errors over time, the greater the reward (; ). In a recent study, researchers modeled participants behaviour in a free-choice task using an algorithm that included a linear combination of task performance over all trials and the improvement in the later compared to earlier trials (). Models with both variables best predicted 
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	LP AND PLUMM
	Within the context of LP, we can reframe the inverted U-shaped relation between degree of syncopation and PLUMM in terms of the reward elicited by an increase in prediction error minimization and the resolution of metrical uncertainty. As described above, moderately syncopated rhythms provide both prediction errors that indicate learning potential and enough regularity to allow for a relatively strong metrical model which can be leveraged to reduce these prediction errors. Accordingly, these rhythms lead to
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	A key feature of applying LP to PLUMM is that it centers the individual and their interaction with the stimuli, rather than the stimuli itself (). For example, the level of syncopation that will maximally potentiate learning will differ between individuals and between contexts. This also aligns with predictive processing treatments of affective responses to music (). There is evidence that the shape of the inverted U associated with PLUMM varies according to several inter-individual factors such as musical 
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	Memory is a key component of learning, which, in the current context, reflects long term changes to metrical models to better account for expected future rhythms (). A recent review suggests that the regularity of musical rhythms and the reward derived from listening to them could improve learning and memory, including for features that are incidental to the rhythm (e.g., speech; ). Although our proposal suggests a different causal direction, i.e., that learning drives music-induced reward, a key part of LP
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	The highly structured nature of music, along with recently developed methods for tracking the complexity of music in a way that aligns with perception (; ), makes testing LP within musical contexts not only feasible but highly promising. One approach could be to apply the computational approach of Brielmann et al., (; ) to rhythmic stimuli. For example, one could simulate affective responses to rhythms of varying complexity based on immediate and rhythm-level prediction errors (e.g., using Bayesian surprisa
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	THE TIME-COURSE OF LP IN THE CONTEXT OF PLUMM
	Given the dynamic nature of music, LP and the resulting affective responses, such as PLUMM, can occur on multiple timescales, from onset to onset, to years of listening to the same song (). Within a single musical piece, three forms of prediction-based learning can be considered (); 1) each onset elicits a prediction error or confirmation signal depending on its alignment with the metrical model, 2) these signals are integrated over short epochs relevant to the meter (e.g., phrases or repetitions), 3) to im
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	Brief, more intense responses can also occur, for example resulting from a slow build up and sudden resolution of metrical uncertainty, a common motif in electronic dance music. Alternatively, a relatively low complexity rhythm may initially be misinterpreted with regards to the type (e.g., 3/4 vs 4/4) or phase of the meter. Altering the meter or its phase can then lead to a sudden reduction of prediction errors () and thus an increase in pleasure. These examples may correspond to rhythmic versions of an ‘a
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	As discussed above, moving to a rhythm provides a way to decrease predictions errors while revealing new avenues to learning progress. In addition, synchronous movements, or those perceived as synchronous, can provide prediction confirmation signals, and thus a fast and salient indication of learning progress. Therefore, through a decrease in prediction errors and an increase in prediction confirmations, synchronous movement can increase pleasure, suggesting a causal directionality. However, the urge to mov
	Anecdotally, a given piece of music can induce PLUMM even after many years of regular listening. This may result from the ‘learning’ component of reward and means-ends fusion, where a song or rhythm becomes strongly associated with a motor or affective response even as learning progress is exhausted. This component may also account for the fact that our tastes tend to solidify at an early age when many such associations are being formed (). Music can be thought of as a multidimensional space that can be exp
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	THE NEUROSCIENTIFIC UNDERPINNINGS OF LP IN THE CONTEXT OF PLUMM
	Theoretical and empirical work strongly implicate nigrostriatal dopamine within motor corticostriatal networks as crucial for beat- and meter-based timing (; ; ). This is in part based on evidence from those with Parkinson’s disease, which is characterized by reduced nigrostriatal dopamine, leading primarily to motor problems, but also changes to cognitive and affective processes (). Participants with Parkinson’s show a reduced ability to discriminate rhythms (; ) and judge rhythms as more complex compared 
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	Along with its role in beat-based timing, dopamine within the mesolimbic pathway is known to play a crucial role in the motivation for primary rewards (i.e., ‘wanting’) and the formation of value-stimulus associations (i.e., ‘learning’; ). The mesolimbic pathway involves dopaminergic neurons in the ventral tegmental area projecting to the ventral striatum. The ventral striatum forms the limbic corticostriatal loop with ventromedial prefrontal cortex (), and is implicated in the experience and anticipation o
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	Recent evidence strongly implicates dopamine in music reward processing. Interestingly, this includes the anticipation of peak pleasurable moments (i.e., chills) during music listening, the motivation to buy preferred music, and the experience of musical pleasure (; ). This suggests, that unlike primary and secondary rewards, dopamine’s role in musical pleasure includes ‘liking’, along with ‘wanting’ and ‘learning’. Activity in the ventral striatum was also linked to RPEs associated with chord progressions 
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	Along with dopamine’s role in beat-based timing (; ; ), the above results suggest that dopamine is crucial to the proposed role of LP in PLUMM. We propose that mesolimbic dopamine signals learning potential via reducible prediction errors, triggering state curiosity, and the associated increase in arousal and attention (see ). In this model, nigrostriatal dopamine within the motor corticostriatal loop underlies the metrical model and its relative certainty via phasic pulses and tonic dopamine signals, respe
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	The LP hypothesis implies a system in the brain that monitors learning progress derived from a stimulus or activity. For the longer term modification of metrical models, this role may be served by lateral prefrontal cortex (cf. ). According to a recent model, monitoring learning progress in the shorter term may be driven by the dorsal anterior cingulate cortex (dACC; ). The ACC is linked with state curiosity and the mobilization of resources in the face of an information gap (). For example, ACC activity is
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	Norepinephrine is strongly linked with pupil dilation, which has been used as an objective measure of state arousal and effort (). Recent studies have shown that listening to music with higher PLUMM leads to greater pupil dilation (). Another study showed greater pupil response for rhythms considered low or medium in PLUMM, particularly when the isochronous hihat was removed () which may increase reducible metrical uncertainty to further potentiate learning. Finally, pupil dilation as well as drift in pupil
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	PERSPECTIVES ON LP, CREATIVITY, INTERPERSONAL SYNCHRONY, AND PLUMM
	In the following section, we suggest that, in addition to determining the stimuli that humans seek out and enjoy, curiosity and an intrinsic motivation for learning progress may also drive how they create and interact with music (e.g., via dancing). A generative model can only be improved by finding its limits, which can then be expanded as new information is integrated. Accordingly, one role of creative activities may be to self-generate stimuli that challenge our predictive capacities and thus maximally p
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	The optimal balance between challenge and skill is also a crucial contributor to the psychological construct of flow, which is characterized by a pleasurable, absorptive feeling of high fluency in the context of a relatively difficult task (). Fluency of performance, a dimension of flow (), was shown to be positively associated with motor synchrony with moderately and highly syncopated rhythms (). This finding suggests that moving to the beat will only induce flow if there is some challenge (). A recent mod
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	This highly structured context also creates an ideal environment for collaborative activities which can further amplify learning progress. Beat and meter allow for a shared, or extended, predictive model across listeners and/or performers thus providing a common structure within which to interact and create (; ; ; ). Whether dancing or making music, this common metrical model allows for synchronization between individuals as well as with the music, and thus a common space for learning progress where others’
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	Interpersonal rhythmic synchronization has been shown to increase affiliation among participants (), including in young children and even infants (; ). However, synchronization alone is unlikely to drive the pleasure and affiliation from musical interactions such as dancing at a club or collective improvisation if it does not facilitate learning. To increase learning potential, reducible complexity needs to be injected into the activity. Evidence for this comes from a study using the mirror game paradigm in
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	SUMMARY
	Here we expand on predictive processing accounts to suggest that the intrinsic motivation for learning progress is a crucial driver of PLUMM, providing a thorough and testable explanation of this powerful and ubiquitous affective response to music. Crucially, this proposal accounts for inter-individual and contextual influences on the inverted U-shaped relation between PLUMM and rhythmic complexity. In addition, this proposal ties together prominent psychological and neuroscientific theories of reward, moti
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