FEMS Microbiology Reviews, 2023, 47, 1-8

DOI: 10.1093/femsre/fuad050
Advance access publication date: 1 September 2023

Review Article

FEMS

What’s in a name? Characteristics of clinical biofilms

OXFORD

Mads Lichtenberg !, Tom Coenye *~ 2, Matthew R. Parsek?, Thomas Bjarnsholt *~ 4, Tim Holm Jakobsen %"

Costerton Biofilm Center, Department of Immunology and Microbiology, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen, Denmark
?Laboratory of Pharmaceutical Microbiology, Ghent University, Ottergemsesteenweg 460, 9000 Ghent, Belgium

3Department of Microbiology, University of Washington School of Medicine, 1705 NE Pacific St., WA 98195 Seattle, United States

“Department of Clinical Microbiology, Copenhagen University Hospital, Ole Maalges vej 26, 2100 Copenhagen, Denmark

*Corresponding author. Costerton Biofilm Center, Department of Immunology and Microbiology, University of Copenhagen, Blegdamsvej 3B, 2200 Kgbenhavn,
Denmark. Tel: +45 22542727; E-mail: tholm@sund ku.dk

Editor: [Andrew McBain]

Abstract

In vitro biofilms are communities of microbes with unique features compared to individual cells. Biofilms are commonly character-
ized by physical traits like size, adhesion, and a matrix made of extracellular substances. They display distinct phenotypic features,
such as metabolic activity and antibiotic tolerance. However, the relative importance of these traits depends on the environment and
bacterial species. Various mechanisms enable biofilm-associated bacteria to withstand antibiotics, including physical barriers, phys-
iological adaptations, and changes in gene expression. Gene expression profiles in biofilms differ from individual cells but, there is
little consensus among studies and so far, a ‘biofilm signature transcriptome’ has not been recognized. Additionally, the spatial and
temporal variability within biofilms varies greatly depending on the system or environment. Despite all these variable conditions,
which produce very diverse structures, they are all noted as biofilms. We discuss that clinical biofilms may differ from those grown
in laboratories and found in the environment and discuss whether the characteristics that are commonly used to define and charac-
terize biofilms have been shown in infectious biofilms. We emphasize that there is a need for a comprehensive understanding of the

specific traits that are used to define bacteria in infections as clinical biofilms.

Keywords: aggregates, gene expression, infection, microcolonies, microenvironment, phenotypic

Introduction

Historically, biofilms have been characterized by various features
that distinguish them from planktonic populations. The first de-
scriptions of biofilms were based on their morphological proper-
ties, as tools for visible observations were the only methods avail-
able until a few decades ago. The term ‘biofilm’ was used for the
first time in a publication from 1981 (McCoy et al. 1981). Before
introducing the term ‘biofilm’, several studies have described the
phenomenon of bacteria making clumps or small microcolonies.
In the 1930s, some of the first detailed descriptions of micro-
bial attachment to glass surfaces submerged in water were pub-
lished. They observed growing cells on the surface forming micro-
colonies increasing in size and described the organisms to grow
in ‘a fairly uniform film’ (Henrici 1933, Zobell and Allen 1935).
The first reported clinical observation of what we today recog-
nize as biofilms were presented in 1977. A Gram-stained smear
of a sputum sample from a cystic fibrosis (CF) patient revealed
‘heaps of bacteria’ (Hoiby 1977). However, clumps of bacteria had
already been reported in the 1650s by van Leeuwenhoek and were
also mentioned in a publication from 1883 that described how
bacteria grow on a surface to form clumps, i.e. ‘biofilms’ (Weis-
mann et al. 2007). The visual inspection of biofilms entered a new
era after the introduction of confocal laser scanning microscopy,
which allowed investigation of the formation of in vitro grown
bacterial communities in greater detail (Lawrence et al. 1991).
The subsequent introduction of various molecular methods al-
lowed a more holistic approach to characterize biofilms. For ex-
ample, staining of specific exopolysaccharides has revealed the

existence of self-produced matrix components (Cowan et al. 2000,
Sohm et al. 2011). Further, the introduction of various system level
approaches made it possible to characterize genomic, transcrip-
tomic, proteomic, and metabolomic differences between microor-
ganisms living different lifestyles. As we continue to investigate
environmental and clinical systems, it will be important to know
if small clusters or groups of cells (that are commonly observed in
these samples) are exhibiting biofilm-like properties and physiol-
ogy. There have been many descriptions and discussions regard-
ing the definition of biofilms (Costerton et al. 1999, Sauer et al.
2022) and the main goal of this review is not to establish a new
definition of a biofilm, but rather to discuss the various charac-
teristics, alone or in combination, that can be used to define a
biofilm.

How to diagnose a biofilm?

Biofilms can exhibit great diversity depending on their species,
composition, and local environment. Factors such as nutrient
availability, pH, temperature, and the presence of multiple organ-
isms all have an impact on the structure and composition of a
biofilm within a single species. As a result, the characteristics of a
biofilm can vary greatly between different ecosystems. Thus, un-
der certain conditions biofilms are intricate and highly dynamic
communities of microorganisms that interact with each other
and with their surroundings, adapting to create complex struc-
tures (Flemming and Wuertz 2019). These communities are ex-
tremely resilient and can endure harsh conditions. As a conse-
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quence, biofilms can survive and thrive in a variety of environ-
ments and can range in size from a few microns to several mil-
limeters in thickness (Reysenbach and Cady 2001, Bjarnsholt et
al. 2013) and can be enclosed in a matrix consisting of extracel-
lular polymeric substance (EPS) that can promote individual cells
to stick together, adhere to surfaces, and provide protection from
environmental stressors (Wingender et al. 1999).

Not surprisingly, there are obvious differences between in vivo
biofilms (i.e. those occurring in a clinical setting and in the natural
or man-made environment), and in vitro biofilms grown in the lab-
oratory (Hall-Stoodley et al. 2004), but even in vitro biofilms can be
diverse in terms of phenotype and architecture (Pamp and Tolker-
Nielsen 2007, McBain 2009). This diversity highlights the impor-
tance of a discussion on which characteristics can be considered
hallmarks of a biofilm. The various characteristics shown in Fig. 1
will serve as the foundation for this review. We divided the cen-
tral aspects that can be used to characterize a biofilm into the
following four features, (i) physical, (i) chemical, (iii) phenotypic,
and (iv) gene expression profiles. This review will include findings
of biofilms from various settings, but the primary focus will be on
clinical biofilms.

Physical features

The physical features of bacterial biofilms are complex and varied
and can play an important role in the survival and persistence of
bacteria in diverse environments. The three key physical features
traditionally used to describe a biofilm are (i) a community of cells
in close proximity, (ii) adhesion/attachment of cells to a biotic or
abiotic surface, and (iii) aggregates encased in a self-produced or
externally provided matrix. These characteristics vary greatly de-
pending on the environment and the microorganisms involved,
resulting in a diverse range of biofilm sizes and structures. If one
were to take this approach to define a biofilm, an obvious question
is whether a cellular aggregate must be a certain size or contain
a minimum number of cells before it can be characterized as a
biofilm? For example, can we define two cells embedded in a ma-
trix as a biofilm? Or conversely, can we define thousands-millions
of cells in close contact as a biofilm even if they are not embedded
in an obvious matrix?

Physical size

Biofilms have been found in a broad size range in infections rang-
ing from large multicellular aggregates to small clusters of only a
few um in diameter (Bjarnsholt et al. 2013). The physical dimen-
sions of aggregates is increasingly recognized as an important fac-
tor as it influences the development of physiological heterogene-
ity within biofilms (Stewart and Franklin 2008). The dynamics un-
derlying the observed size distribution are not clear, but they are
influenced by multiple parameters such as access to metabolic
substrates, grazing by predators or immune cells, antimicrobial
compounds, physical constraints, and so on. In theory, there is
no upper limit of biofilm size but in many soft tissue infections,
biofilms are typically found in the range from 5 to 200 um (Bjarn-
sholt et al. 2013). In the environment, biofilms such as the pho-
tosynthetic mats commonly found in hot springs can easily be
observed by the naked eye. While there is no consensus on a spe-
cific threshold for the number of cells required to form a biofilm,
many articles have used a lower diameter of 5 pm to distinguish
biofilms from single cells (Bay et al. 2018, Kolpen et al. 2022). In
a recent study, it was further shown that successful phagocytosis
of bacterial aggregates by polymorphonuclear leucocytes (PMNs)

dramatically decreased with aggregate diameters of >5 pum (Al-
hede et al. 2020b, Pettygrove et al. 2021).

Thus, a selective pressure may act on biofilms to attain a cer-
tain size to resist such competition. However, such selective pres-
sures are complex and can vary depending on the specific environ-
mental conditions and species involved. It thus appears that the
size and structure of biofilms can be influenced by a combination
of genetic factors, environmental cues, and microbial interactions
within the community and with their surroundings.

Matrix

Self-produced EPS, or the biofilm matrix, remains one of the most
common characteristics used in definitions of biofilms. The bac-
terial EPS consists of a range of different biopolymers such as
polysaccharides, proteins, and DNA and its function, composition,
and diversity have been thoroughly reviewed elsewhere (Flem-
ming et al. 2023).

Production of self-produced matrix has been demonstrated in
e.g. CF sputum (Jennings et al. 2021) and in chronic wounds (Kir-
keterp et al. 2008). However, is a self-produced matrix a neces-
sity to define an aggregate of cells as a biofilm? It has, e.g. been
shown that several species rely on the matrix production of other
species to form biofilm (Chenicheri et al. 2017). In airway infec-
tions, bacteria are found in aggregates embedded in host mucus
and it has been shown that host-derived eDNA surrounds aggre-
gates of bacteria effectively shielding them from their surround-
ings (Alhede et al. 2020a). In wounds, bacteria can be immobilized
in necrotic tissue and wound slough (Kirketerp-Moller et al. 2008)
and in many other soft tissue infections, host secretions have been
found to contain bacteria (Bjarnsholt et al. 2013).

Interestingly, a recent study showed a multitude of single, spa-
tially separated, bacterial cells in secretions from a range of acute
and chronic pulmonary infections (Kolpen et al. 2022). The study
showed the presence of polysaccharides within the biofilms by Al-
cian Blue staining but the finding questions whether the conven-
tional ‘biofilm’ mode of growth and self-produced EPS is necessary
for surviving a persistent inflammatory response. Finally, Jennings
et al. (2021) recently demonstrated that self-produced matrix is
produced and surrounds Pseudomonas aeruginosa aggregates from
CF sputum. The infectious microenvironment is often character-
ized by being high in nutrients, but oxygen depleted, thus creating
a limit for the metabolic rate (Bjarnsholt et al. 2022, Lichtenberg et
al. 2022a), which may hinder production of EPS as this production
is associated with elevated metabolic expenditure (Lichtenberg et
al. 2022a).

Aggregation and adhesion mechanisms

A multitude of different mechanisms of biofilm formation have
been elucidated through decades of research and an expansion
of the biofilm life cycle was recently proposed to include both at-
tached and nonattached biofilms (Sauer et al. 2022). Initial sur-
face colonization by bacteria is achieved through active adhesion
(via e.g. type IV pili) and followed by clonal growth and potential
recruitment of other bacteria that can ‘stick’ to the matrix. For
nonattached biofilms, three mechanisms are currently known: (i)
restricted motility whereby clonal expansion will create aggre-
gated bacteria, (ii) bridging aggregation where bacteria stick to
each other by production of EPS, and (iii) depletion aggregation
where aggregates can be enclosed by polymers by entropic forces
in certain environments (Kragh et al. 2023).

These mechanisms describe how attached or nonattached
clusters of bacteria can form. If the mechanism can be identi-
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Figure 1. Characteristics that are commonly used to define biofilms include the number of cells attached to a surface and/or present in aggregates,
attachment factors, presence of (heterogeneous) (sub)populations and physicochemical gradients, tolerance to antibiotics and external stressors,
cell-to-cell communication, altered gene expression, metabolically distinct phenotypes, and the presence of self-produced extracellular matrix.

fied from a given cluster of cells, this can be used to infer other
information about the bacterial community, e.g. certain gene ex-
pression patterns are correlated with some of the mechanisms.
For example, in Gram-negative species an increased levels of c-di-
GMP is associated with matrix production (Andersen et al. 2021).
However, none of these mechanisms can infer extensive informa-
tion on the behaviour or phenotypical traits of the bacteria in
the biofilm, other than that they, at some point, formed a biofilm.
Additionally, these mechanisms do not explain the occurrence of
slow growing, spatially separated, single cells in inflamed host se-
cretions (Kolpen et al. 2022).

Gene expression profiles

There is an ever-growing number of studies in which gene expres-
sion is compared between planktonic (suspended) microbial cells
and biofilm-associated cells (Whiteley et al. 2001, Schembri et al.
2003, Dotsch et al. 2012, 2015, Alio et al. 2020, Zheng et al. 2022,
Wang et al. 2022b, Toliopoulos and Giaouris 2023). In almost all of
these studies differences in expression levels are observed for a
smaller or larger fraction of genes, although comparisons between

different studies are difficult at best, due to differences in experi-
mental conditions (different model systems for biofilm and plank-
tonic growth, temperature, growth media, duration of biofilm for-
mation, and so on) and as a consequence there is very little over-
lap between genes identified as up- or downregulated in biofilms
in different studies (Coenye 2010). In addition, many studies are
limited by the low accuracy of the laboratory models used, and
the transcriptomic profiles obtained from in vitro or nonhuman
in vivo models, may differ substantially from the transcriptome
during human infection, as was, e.g. shown for P. aeruginosa (Corn-
forth etal. 2018, 2020, Harrington et al. 2022, Lewin et al. 2023) and
Staphylococcus aureus (Xu et al. 2016, Ibberson and Whiteley 2019,
Le Masters et al. 2021).

In addition, microbial biofilms are not homogeneous popula-
tions (Lenz et al. 2008) and as a consequence gene expression
data obtained from such populations by definition present an ‘av-
erage picture’, that may not necessarily reflect meaningful bio-
logical signals. Early studies on heterogeneity in biofilms required
generating mutants in which gene expression could be moni-
tored microscopically (e.g. by creating GFP transcriptional fusions)
(Ito et al. 2009), a combination of isolating single cells and gPCR
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(Perez-Osorio et al. 2010), or isolating subpopulations, followed by
transcriptional profiling with microarrays (Williamson et al. 2012,
Heacock-Kang et al. 2017). More recently, probe hybridization-
based approaches have been used to map spatial differences in
bacterial biofilms (Dar et al. 2021, Livingston et al. 2022). While
these approaches differ in resolution and throughput, they all
confirm that spatially resolved heterogeneity is the norm, not the
exception, highlighting the importance of the (physicochemical)
microenvironment in shaping the microbial transcriptome and
phenotype (Dar et al. 2021, Bjarnsholt et al. 2022, Lichtenberg et
al. 2022a). This heterogeneity is not only observed in biofilms, but
also in planktonic cultures (Lenz et al. 2008, Ryall et al. 2012). For
example, it was found that up to 90% of the biomass of P. aerug-
inosa ‘planktonic’ cultures consists of cellular aggregates with a
diameter of 10-400 pum (Schleheck et al. 2009). Recent technolog-
ical advances have made it possible to perform single-cell RNA
(scRNA) sequencing on bacterial cells and pioneering scRNA-seq
studies have confirmed heterogeneity in various planktonic bac-
terial populations, including Bacillus subtilis, Salmonella enterica, Es-
cherichia coli, and Clostridium perfringens grown in various rich me-
dia (Brennan and Rosenthal 2021, Kuchina et al. 2021, Homberger
et al. 2023, McNulty et al. 2023). Various innovative scRNA-seq
approaches hold great promise for the future investigation of
heterogeneity of microbial populations, both sessile and plank-
tonic, and especially approaches that allow to link specific expres-
sion profiles with spatial information and/or information about
the physicochemical microenvironment will yield novel insights
(Wang et al. 2023).

Variability between strains from one species or multiple closely
related species should also be considered. In P. aeruginosa, vari-
ability in transcriptional profiles between 77 clinical strains was
higher when these were grown as biofilms than when they were
grown planktonically, suggesting the impact of the genetic back-
ground of individual strains on which genes are expressed in
biofilms is bigger than the impact on which genes are expressed
in planktonic cultures (Thoming et al. 2020). The core biofilm
transcriptome (i.e. genes differentially expressed between plank-
tonic and sessile cultures in all 77 clinical P. aeruginosa isolates)
consisted of only 143 genes, 103 that were commonly upreg-
ulated in biofilms and 30 commonly downregulated compared
to planktonic cultures. Among the upregulated genes were sev-
eral genes required for pyoverdine biosynthesis, heme assimila-
tion, and central carbon metabolism, as well as genes encoding
superoxide dismutase and fumarate hydratase. Downregulated
core genes include genes involved in denitrification and aerobic
arginine catabolism (Thoming et al. 2020). Among the top 250
biofilm-expressed genes in seven Stenotrophomonas maltophilia iso-
lates, 106 genes were commonly expressed in all isolates, while
142 of the 250 most strongly expressed genes were only expressed
in one of seven isolates (Alio et al. 2020). Notably, the expres-
sion of the majority of these 250 genes strongly expressed in S.
maltophilia biofilms is not biofilm-specific, as they are also highly
expressed in planktonic cultures. In S. aureus, profound differ-
ences were observed in biofilm-associated gene expression in rep-
resentatives of three important MRSA clones (Vlaeminck et al.
2022). When comparing expression differences between plank-
tonic and sessile populations at the KEGG pathway level, the num-
ber of pathways varied from 11 (S. aureus ST239), over 27 (S. au-
reus USA300) to 58 (S. aureus HEMRSA-15). Moreover, only a sin-
gle common differentially expressed gene was identified across
these three S. aureus clones, i.e. clfA, encoding clumping factor A
(Vlaeminck et al. 2022). Interstrain heterogeneity in gene expres-
sion was also observed in Salmonella Typhimurium (Zheng et al.

2022) and Listeria monocytogenes (Toliopoulos and Giaouris 2023)
biofilms.

While most studies have focused on differences between
planktonic and sessile cultures, it is worth mentioning that based
on transcriptomic analyses, dispersed P. aeruginosa cells (i.e. cells
released from a biofilm) are different from both planktonic and
sessile cells, and that the mode of dispersion has a profound in-
fluence on gene expression in dispersed cells (Chua et al. 2014,
Wille et al. 2020).

The currently available data seem to indicate that there is no
such thing as a universal ‘biofilm transcriptome’, nor is there any
evidence for a universal ‘planktonic transcriptome’ or ‘dispersed
cell transcriptome’. An important reason for this is the hetero-
geneity commonly found in microbial populations; these popula-
tions more resemble a collection of subpopulations with distinct
properties, rather than a collection of cells with identical prop-
erties. With further technical advances in transcriptome analysis
and imaging, it will likely become feasible to determine spatial
differences in gene expression in microbial biofilms at the single-
cell level. This may shed more light on the relationship between
the microenvironment, local differences in gene expression, and
phenotype.

Chemical features

From a spatial perspective, the distribution of e.g. metabolites
may be used to characterize biofilms. In planktonic cultures, a ho-
mogenous distribution will be expected whereas biofilms will pro-
duce heterogeneous landscapes of metabolite concentration due
to reaction-diffusion processes (Stewart 2003, Pabst et al. 2016,
Stewart et al. 2016, 2019, Kirketerp-Mgller et al. 2020).

Are certain metabolic products always present in biofilms? Of-
ten e.g. active denitrification or fermentation is used to exem-
plify that oxygen has been consumed by dense biofilm structures
(Pabst et al. 2016). However, the expression of anaerobic metabolic
pathways is not biofilm specific.

There are only few studies investigating the proteome of
biofilms by proteomics and/or metabolomics. A recent study
used targeted and untargeted metabolomics to compare the
metabolism of biofilm and planktonic cultures of the clinical
uropathogenic E. coli UTI 89 strain. A metabolic reprogramming
was found to be involved in biofilm formation by increasing
metabolites, such as amino acids, sugars, lipids, uridines, and or-
ganic acids that are essential for EPS synthesis (Lu et al. 2019).
The metals Fe3*, Mn?*, and Mg?* have been reported to regulate
biofilm formation by regulation of functional metabolism in E. coli
(Guo and Lu 2020, Guo et al. 2021, Wang et al. 2022a).

The nucleotide second messengers cAMP and bis-(3'-5')-cyclic
dimeric GMP (c-di-GMP) are involved in biofilm formation. High
intracellular levels of c-di-GMP are associated with formation of
a biofilm, while low levels are associated with the planktonic
lifestyle (Hengge 2009, Dahlstrom and O’Toole 2017, Collins et
al. 2020, Martinez-Mendez et al. 2021). In general, the expression
and/or activity of flagella is reduced by high levels of c-di-GMP
whereas the expression of adhesins and biofilm-associated ex-
opolysaccharides is upregulated. In P. aeruginosa, c-di-GMP pos-
itively regulates the production of several matrix components
(alginate, CdrA adhesin, Cup fimbriae, and Pel/Psl polysaccha-
rides) (Borlee et al. 2010, Baraquet and Harwood 2013, Fazli et
al. 2014). Opposite to c-di-GMP, the global transcription factor
cAMP receptor protein (CRP) can both promote and inhibit biofilm
formation. As an example, CRP promote biofilm formation in
E. coli and P aeruginosa, whereas it inhibits biofilm formation



in Serratia marcescens and Vibrio cholerae (Liu et al. 2020). In ad-
dition, it modulates biofilm maintenance in Shewanella putrefa-
ciens by interaction with the c-di-GMP effector, BpfD (Liu et al.
2022). There is compelling evidence that these secondary mes-
sengers are key biofilm modulators. During biofilm formation, a
high level of intercellular c-di-GMP forces the cells to use a large
amount of energy for the production of exopolysaccharides that
can subsequently lead to resource depletion and a low cellu-
lar metabolic state (Lichtenberg et al. 2022b). The level of c-di-
GMP is supposedly a good indicator of the presence of biofilms.
The challenge is whether it can be measured direct in clinical
biofilms and furthermore, can we expect continuous high levels of
c-di-GMP in biofilm cells after prolonged embedment in human
tissue?

Phenotypic features

The phenotypic features of biofilms have been studied extensively
to gain insights into how a biofilm functions in different environ-
ments. They are crucial for the survival and persistence of biofilms
in different harsh environments. All the characteristics presented
in this review influence the phenotype of a biofilm. Biofilms of-
ten exhibit a high degree of heterogeneity, meaning that different
regions within the biofilm can have different populations of bac-
teria with distinct phenotypes. The phenotypic variations of the
individual bacterial cells can be attributed to genetic differences
(Hallet 2001), epigenetic modifications (Guespin-Michel 2001,
Smits et al. 2006), or environmental cues (Spratt and Lane 2022).
This phenotypic heterogeneity enables some bacteria to adopt
specialized roles within the biofilm, such as metabolically active
cells in surface layers or dormant cells in deeper regions which
forms distinctive microenvironments in the spatial organization
of a biofilm (Pamp et al. 2008). The heterogeneity of biofilms has
predominantly been studied in vitro, and it is unclear whether the
same spatial differences occur in clinical biofilms; likewise, it is
unclear how this differs across various infection sites, bacterial
species, and infection durations.

The metabolic state of a biofilm

Biofilms per se are often characterized as inactive/dormant as well
as hypoxic or anaerobic. However, this is a dynamic process, as O,
is consumed because they have high metabolism during growth;
when O, is then depleted, growth will decrease. In the absence
of external oxygen sinks, O, will then build up again by diffusion
and growth can resume until a steady state is reached, However,
in vivo, other O, consumers will be present such as PMNs that use
O, for their oxygen radical production. This will lead to persis-
tent hypoxic conditions surrounding the biofilms. On the scale of
a single biofilm or aggregate, heterogenic metabolic states can de-
velop in very small aggregates (Wessel et al. 2014) where the outer
layers of the biofilm are supplied with substrate, which is then
depleted towards the inner parts of the biofilm. This can lead to
subpopulations displaying different susceptibilities to antibiotics
that are influenced by metabolic state (Lichtenberg et al. 2022c).
The metabolic state can be manipulated by increasing the sup-
ply of substrate, which has been demonstrated by applying hyper-
baric oxygen treatment to biofilms which resensitized the biofilm
to antibiotics that target actively growing bacteria (Kolpen et al.
2016, 2017, Lerche et al. 2017). A recent publication suggested that
single-celled bacteria also displayed low metabolic rates in infec-
tions of the lower respiratory tract (Kolpen et al. 2022). Thus, the
inactive state is dictated by the environment and may give insight
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into the phenotype of the bacteria but cannot be used as a defin-
ing factor of biofilms.

Biofilm tolerance

Biofilms possess various mechanisms to increase tolerance to
antibiotics and to evade and persist the host immune system.
The mechanisms of tolerance towards antibiotics have been thor-
oughly reviewed elsewhere (see e.g. Van Acker et al. 2014, Ciofu
and Tolker-Nielsen 2019, Ciofu et al. 2022), but briefly it can be
subdivided into different categories; (i) the physical tolerance, i.e.
achieved when penetration is restricted and the antibiotic does
not reach all bacteria in the biofilm. (ii) The physiological toler-
ance, where e.g. slow growth renders the antibiotic target inactive
(e.g. protein synthesis). (iii) The transcriptional tolerance, where
expression of specific (sets of) genes confers tolerance. This has
been argued to include e.g. elevated c-di-GMP levels that lead to
upregulation of efflux pumps (Gupta et al. 2014).

To withstand and persist despite a highly activated immune
defense some pathogenic bacteria produce various compounds
causing necrotic killing of PMNs (Jensen et al. 2007, Loffler et al.
2010). In addition, it has been reported that the size of bacterial
aggregates significantly affects the outcome of phagocytosis of S.
aureus, E. coli, P. aeruginosa, and S. epidermidis. Aggregates with a di-
ameter size of 5 um or smaller were successfully phagocytosed by
PMNs, while larger aggregates were less likely to be phagocytosed
(Alhede et al. 2020Db).

The subject of biofilm tolerance is still widely debated but
many of the tolerance mechanisms are associated with bac-
teria residing in dense biofilms while tolerance also occurs in
cells not associated with a biofilm. The tolerance of biofilms
must be considered the most crucial characteristic in relation to
infections.

Characteristics of clinical biofilms—where
are we?

All the characteristics and mechanisms described above, have
been shown to contribute to the ‘biofilm’ lifestyle in environmen-
tal and in vitro grown biofilms. However, the relative importance
of each factor is unknown for clinical biofilms. The question is
whether they are all present and required to define a clinical
biofilm. Microscopy images of tissue sections from patients re-
veal that clinical biofilms can be organized in very small aggre-
gates consisting of less than 100 cells (Kolpen et al. 2022), but it
is unknown whether these small microcolonies show the same
characteristics as larger colonies in terms of metabolic state and
increased tolerance—characteristics, which are normally used to
distinguish biofilms from single cells.

The self-produced EPS matrix has been shown to confer in-
creased tolerance in some settings (Goltermann and Tolker-
Nielsen 2017) but on the other hand, the metabolic state of the
microorganisms has also been shown to be of major importance
(Lopatkin et al. 2019). Thus, an increased antibiotic tolerance may
be acquired independently of EPS production. Biofilm infections
often have a long-time span with a potential change in charac-
teristics that are not well understood (Cao et al. 2023). Such lon-
gitudinal changes are, thus still very difficult to investigate using
laboratory- and animal experiments. New technologies, such as
MALDI imaging (MALDI mass spectrometry imaging) and scRNA-
seq are starting to emerge and being used on clinical samples
making it possible to investigate spatial differences in proteomics,
metabolomics, and gene expression in and around bacterial com-
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munities directly in the infection site. This will undoubtedly yield
more knowledge of the clinical biofilm characteristics in the
future.

The term ‘biofilm’ can be associated with all the factors de-
scribed in this review (and more), but despite all the character-
istics that have been used to describe biofilms, very few are om-
nipresent, if any. We are still dependent on visualizing bacteria in
the infection to determine if the cells are situated in a biofilm, but
even then, the role of nongrowing single cells may be neglected.
This questions whether the classification of bacteria according to
architecture promotes a better understanding of infections and
we argue that for infections, it may be more appropriate to clas-
sify bacteria according to treatment response.
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