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Abstract

Jamestown Canyon virus (JCV), a negative-sense arbovirus, is increasingly common in the

upper Midwest of the USA. Transmitted by a range of mosquito genera, JCV’s primary

amplifying host is white-tailed deer. Aedes aegypti is responsible for transmitting various

positive-sense viruses globally including dengue (DENV), Zika, chikungunya, and Yellow

Fever. Ae. aegypti’s distribution, once confined to the tropics, is expanding, in part due to cli-

mate change. Wolbachia, an insect endosymbiont, limits the replication of co-infecting

viruses inside insects. The release and spread of the symbiont into Ae. aegypti populations

have been effective in reducing transmission of DENV to humans, although the mechanism

of Wolbachia-mediated viral blocking is still poorly understood. Here we explored JCV infec-

tion potential in Ae. aegypti, the nature of the vector’s immune response, and interactions

with Wolbachia infection. We show that Ae. aegypti is highly competent for JCV, which

grows to high loads and rapidly reaches the saliva after an infectious blood meal. The mos-

quito immune system responds with strong induction of RNAi and JAK/STAT. Neither the

direct effect of viral infection nor the energetic investment in immunity appears to affect mos-

quito longevity. Wolbachia infection blocked JCV only in the early stages of infection. Wolba-

chia-induced immunity was small compared to that of JCV, suggesting innate immune

priming does not likely explain blocking. We propose two models to explain why Wolbachia’s

blocking of negative-sense viruses like JCV may be less than that of positive-sense viruses,

relating to the slowdown of host protein synthesis and the triggering of interferon-like factors

like Vago. In conclusion, we highlight the risk for increased human disease with the pre-

dicted future overlap of Ae. aegypti and JCV ranges. We suggest that with moderate

Wolbachia-mediated blocking and distinct biology, negative-sense viruses represent a fruit-

ful comparator model to other viruses for understanding blocking mechanisms in

mosquitoes.
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Author summary

Jamestown Canyon virus (JCV), a newly emerging virus in North America, can result in

disease spillover from wild mammals into human populations via the bite of infected mos-

quitoes. We show that the mosquito Aedes aegypti, known for transmitting many viral

pathogens to humans globally, and whose distribution is creeping northward in the USA

toward regions where JCV is present, is likely able to transmit the virus. Wolbachia is an

endosymbiotic bacterium being released in wild mosquito populations of because it limits

the replication of human viruses inside the mosquito, limiting their transmission to

humans. We show that Wolbachia has a limited ability to control the replication of JCV,

which is likely because Wolbachia-induced antiviral response is quite weak, and unique

aspects of negative-sense virus biology make them less susceptible to blocking. Our find-

ings suggest that JCV may serve as a comparative model to positive-sense viruses like den-

gue in dissecting the mechanism of Wolbachia-mediated virus blocking. It also warns that

shifting mosquito distributions, as expected under a changing climate, could bring JCV

and Aedes mosquitoes into greater contact, potentially increasing the incidence of JCV in

humans.

Introduction

Jamestown Canyon virus (JCV) is a negative-sense arbovirus in the genus Orthobunyavirus
(family Peribunyaviridae), and a relative of La Crosse (LACV) and California Encephalitis

viruses. JCV is part of an enzootic cycle involving White-tailed deer, as well as other ungulates,

(reviewed in [1]). Transmitted between mammals by mosquitoes, JCV has been found in

numerous species including at least 22 members [2] of the genera Aedes, Culex, Culiseta,

Ochlerotatus, and Coquillettidia (reviewed in [3]). Currently, the upper Midwest of the USA,

including the states of Minnesota and Wisconsin, has the highest incidence of human JCV [4].

Seroprevalence in humans in some communities has been found to be as high as 20–40% [2].

Infection is usually asymptomatic but can induce fever, malaise, and headache [1]. Unlike

most arboviral illnesses, JCV can also cause respiratory symptoms. In rare instances, the dis-

ease becomes neuroinvasive, with death occurring in < 2% of cases [5]. JCV in humans has

been on the rise over the last few decades, exhibiting a> 9-fold increase in symptomatic cases.

The increase may be explained by better detection and awareness [3,6] as well as factors

known to drive enzootic disease spillovers like the destruction of habitat, human encroach-

ment, and climate change [2].

Ae. aegypti, and to some extent its sister species Aedes albopictus, transmit some of the most

prevalent arboviruses globally including dengue (DENV), Zika, chikungunya, and Yellow

Fever [7]. The distribution of both vector species has expanded in recent decades, from tropi-

cal to subtropical and even to some temperate regions around the world [8,9]. By 2050, the

more tropical Ae. aegypti is expected to occur consistently in the upper Midwest [8], where

there are already sporadic reports during the summer months [4]. In addition, both case and

seroprevalence data for JCV in humans and animals suggest the virus is present beyond the

upper Midwest, including in the Western, Northeastern, and Southern regions of the USA [3].

To date, JCV has not been isolated from field-caught Ae. aegypti or Ae. albopictus and there

have been no laboratory studies to test for vector competence.

Without deployable vaccines for many of the above viruses, vector control has been the pri-

mary means of limiting arboviral diseases in human populations. A recent and promising

approach has involved the use of the insect bacterial endosymbiont, Wolbachia as a biocontrol
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agent [10]. Wolbachia infection in insects has the effect of limiting the ability of any co-infect-

ing positive-sense viruses to replicate. This effect combined, with the vertically transmitted

microbe’s ability to spread through populations has rendered it a powerful agent against virus

transmission. Wolbachia’s release into Ae. aegypti populations in the field have conferred sub-

stantial reductions in dengue fever incidence in human populations living in the release zones

in Malaysia, Brazil, and Indonesia [11–13]. Since the discovery of Wolbachia-viral mediated

blocking, its mechanistic basis has been highly sought after but remains incomplete. Under-

standing the basis of the blocking trait is a priority for the effective rollout of this agent across

a diverse global landscape and into the future where virus [14] or mosquito [15] evolution may

challenge the effectiveness of blocking. The current consensus is that the trait is likely multifac-

eted (reviewed in [16]), involving diverse aspects of insect physiology, part of which includes

the insect immune response, triggered by the bacterial endosymbiont. Specific antiviral path-

ways and more generalist antioxidant responses [17–19] are part of this ‘innate immune prim-

ing’ response. Wolbachia’s ability to block positive-sense RNA viruses including DENV, Zika,

chikungunya, and Yellow Fever has been well characterized [20–22]. In contrast, blocking of

the negative-sense viruses LACV, vesicular stomatitis virus (VSV), and cell-fusing agent virus

has only been tested in vitro, with little evidence of blocking [23,24]. With a poor understand-

ing of whether blocking is mediated locally at the level of the cell, systemically [25,26], or both,

vector competence experiments in the whole mosquito are needed for negative-sense viruses.

Comparing the virus-blocking ability of Wolbachia with different types of viruses may offer a

means to further dissect the blocking mechanism.

The innate immune landscape of a mosquito is shaped independently by Wolbachia and

viral infections, and by their interactions during co-infection. The RNAi and the Toll pathways

are considered the most important immune responses against positive-sense DENV in mos-

quitoes [27,28]. In Drosophila RNAi has also been shown to be critical for limiting negative-

sense viruses [29]. In mosquitoes, the antiviral JAK-STAT pathway, activated by Vago protein

[30][30], an interferon-like factor, is necessary for controlling DENV [31]. The activation of

Vago through another pathway, IMD, is likely a means by which Wolbachia reduces loads of

co-infecting positive-sense viruses [32,33]. Wolbachia infection triggers the expression of both

Toll and IMD pathways by inducing reactive oxygen species (ROS) in mosquitoes [17]. Inter-

estingly, in mammals, interferons represent one of the key host defenses against infection with

negative RNA viruses, like Rift Valley fever virus [34].

We carried out a vector competence study of JCV in wildtype and Wolbachia-infected Ae.
aegypti to understand the potential emergence of this mosquito species as a vector, and to fur-

ther explore the limits of Wolbachia-mediated blocking. We also examined the innate immune

gene expression of Ae. aegypti in response to JCV, Wolbachia, and co-infection with both, to

assess the reaction of the non-native vector to this new virus and the potential role of immu-

nity in blocking negative-sense viruses.

Material and methods

Mosquito rearing

We used two mosquito lines in our experiments. A wildtype, Wolbachia-free line derived from

a lab-established colony of wildtype mosquitoes collected ~5 years prior in Mérida, Mexico.

The second line consisted of a laboratory colony of Ae. aegypti infected with the wAlbB strain

of Wolbachia [35] that was backcrossed into the Mérida line. All mosquitoes were maintained

in a climate-controlled insectary, at 26 ± 1˚C and 68 ± 5% relative humidity, with a 12:12 hour

light: dark cycle. Larvae were reared in plastic trays (40 × 30 × 8cm) containing deionized (DI)

water at a density of 300 larvae/3L of water and fed with one tablet of Tropical Fish Food
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(Tetramin: Tetra Werke, W. Germany) every two days. Adult mosquitoes received 10%

sucrose solution ad libitum, and females were blood-fed weekly with human blood from anon-

ymous donors (BioIVT: Westbury, NY) using a Hemotek membrane feeder (Hemotek Ltd.,

UK) when eggs were required for experimental or colony rearing purposes.

Infection of mosquitoes with Jamestown Canyon virus

Vero cells were cultured at 37˚C (5% CO2) with Dulbecco’s Modified Eagle Medium (DMEM)

containing 10% FBS (Fetal bovine serum) and 1% Penicillin-Streptomycin (Pen-Strep). The

Jamestown Canyon virus (strain CT 15-8-72591 –passage history = Vero 2) was obtained from

the UTMB Arbovirus Reference collection. When cells reached 80% confluency, the medium

was removed and replaced with new media containing 2% FBS. Cell culture supernatants were

collected 3 days post-infection, and the number of virus gene copy numbers was determined

through RT-qPCR. Virus-infected cell supernatant was then re-suspended 1:1 in fresh whole

human blood and used in an infectious blood meal. 6 ± 1 day-old adult mosquitoes were

immobilized on ice and females were spread into 2 L paper containers (Zoro, Cat. no.

G4215843) and were starved for ~18 hours before feeding. Females were fed on the blood-

virus mixtures or blood-mock mixtures (1: 1) for 40 minutes using the Hemotek membrane

feeder system to keep the blood warm at 37˚C. After feeding, females were immobilized on ice

the second time, and engorged females were sorted into 16 oz paper containers (Zoro, Cat. no.

G4141713) and provided with 10% sucrose solution ad libitum through a mesh lid.

At 0 dpi, whole females from both the Wolbachia infected or uninfected lines were collected

in 2 mL micro tubes containing a ceramic bead and 300 μL of TRI Reagent (Sigma-Aldrich,

Cat. no. T9424). These individuals were then used to assess initial viral load post-feeding (S1

Table), with individuals averaging ~106 viral copies per individual. The remaining fully

engorged females were separated into containers for collection at 3, 7, 10, and 14 days post-

infection (dpi). In the first replicate, at each time point we collected samples of females from

four tissues: wings + legs, saliva, abdomen and head + thorax. The saliva samples were first col-

lected using a previously established capillary method [21]. All samples were stored in 300μL of

TRI Reagent, kept at -80˚C until further processing. In the second independent replicate, we

only tested abdomen and head + thorax. Infection rates (virus prevalence) in the abdomen were

explored to capture early infection events, including virus in the midgut tissue, whereas head/

thorax measures served as proxies for dissemination. Legs and saliva measurements are used to

indicate the potential transmissibility of virus and the result from legs might be more accurate

[36]. Viral loads (viral copy numbers) were measured to quantify strength of infection.

Jamestown Canyon virus quantification

For nucleic acid extraction, samples were homogenized as previously described [37] using a

Bead Ruptor Elite (Omni International, Kennesaw, GA). Trizol (Invitrogen) extraction of total

RNA from individual whole mosquitoes was performed following manufacturer’s instructions,

resuspended in nuclease-free water, and quantified using the NanoDrop 2000 spectrophotom-

eter system (ThermoFisher Scientific). Each RNA sample was then diluted to 20 ng/μL in

20 μL nuclease-free water and stored at -80˚C. JCV levels per tissue were quantified by RT-

qPCR using a LightCycler 480 instrument (Roche). The primer set was designed by Kinsella

et al [5] and quantified by SYBR Green assay (S1 Text).

Wolbachia qualification and gene expression assays

After infectious blood feeding, whole-body Wolbachia positive and negative females were col-

lected at 3, 7, 10 and 14 dpi, stored in 300μL of TRI Reagent, kept at -80˚C for confirmation of
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their total body virus loads DNA and RNA were extracted from all samples collected above

using a Direct-zol DNA/RNA Miniprep kit (Zymo Research, Cat No. R2080), and RNA was

used for gene expression, while DNA was used for Wolbachia quantification followed the

methods described previously [1]. Relative Wolbachia density was based on a 2-ΔCt method

using mosquito (RPS17 forward: 5’-TCCGTGGTATCTCCATCAAGCT-3’, reverse: 5’-CAC

TTCCGGCACGTAGTTGTC-3’) [15] and Wolbachia Walb (gene WD0513) [38] forward:

5’-CCTTACCTCCTGCACAACAA-3’, reverse: 5’-GGATTGTCCAGTGGCCTTA -3’) primer

sets that described previously. The qRT-PCR cycle was activated at 95˚C for 30 seconds (Ramp

Rate: 4.4˚C/s), followed by 40 amplification cycles and melting curve analysis same as the viral

quantification assays described (S1 Text).

To test the immune response of female Wolbachia positive and negative Ae. aegypti after

Jamestown Canyon virus infection, we selected four genes: MYD88, IMD, hopscotch and AGO2
to represent the immune response from the Toll pathway [17], IMD pathway [17], JAK/STAT

pathway [31,39], and RNAi pathway [40] respectively (Table 1). In addition, we also tested the

expression level of AeVago1, which encodes Vago protein, an interferon-like factor. The qPCR

was run under the same conditions as above for virus quantification. We used gene rps17 to

normalize expression levels through the 2-ΔΔCt method [41]. Primers used are listed in S2 Table.

Female longevity

The longevity of Aedes aegypti females was tested under the infection of Wolbachia and/or

JCV virus (that fed with JCV or its mock media). After feeding, engorged females were immo-

bilized on the ice and isolated in groups of 14–15 females in 16 oz containers. Each line was

represented by eight to eleven cups. Mosquitoes were fed through mesh lids using 2 cotton

balls, one soaked in 10% sucrose and another with only water, that were changed every 2 days.

Female survival was checked every two days from 4 to 66 days post-infectious feeding.

Statistical analysis

We used R v. 4.2.1 to conduct data analyses and visualizations. For virus quantification and dis-

semination, we used a generalized linear model to test the infection prevalence in different tissues

and a generalized additive model to test the viral load after JCV infectious blood feeding. The rela-

tive gene expression and Wolbachia density data were log 10 transformed for ANOVA analysis.

Longevity data was compared using the Log-Rank survival test. We also carried out pair-wise

comparisons between Wolbachia infected and uninfected strains using Mann-Whitney-U-Test

(for viral load), Chi-squared test (for infection prevalence) or Tukey’s HSD test (gene expression).

Results

Vector competence for Jamestown Canyon virus

We infected mosquito lines with and without Wolbachia infection with Jamestown Canyon

virus (JCV) by oral feeding and then studied viral prevalence and viral load across key tissues

Table 1. Current evidence from the literature on role of immune genes in response to Wolbachia and RNA virus infection.

Gene ID pathway Responds to Wolbachia? Inhibits positive sense RNA viruses?

MYD88 (AAEL007768) Toll pathway Yes [18] Yes [28]

IMD (AAEL010083) IMD pathway Yes [18] unknown

hopscotch (AAEL012553) JAK/STAT pathway unknown Yes [31]

AGO2 (AAEL017251) RNAi pathway unknown Yes [42]

AeVago1 (AAEL000200) encode Vago protein Yes [32] Yes [32]

rps17 (AAX84650) 40S ribosomal protein S17 Reference gene

https://doi.org/10.1371/journal.pntd.0011616.t001
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(abdomen, head & thorax) at several days post-infection (dpi). The Wolbachia-free (wildtype

line) showed very strong viral prevalence in mosquito tissues in both replicate experiments,

with rates >90% by three dpi (Figs 1A and S1A), in both the abdomen and head & thorax,

indicating dissemination of virus. Viral loads averaged across all dpi and both replicate experi-

ments were high; 5.25 × 107 copies/tissue in abdomen and 8.39 × 107 copies/tissue in the head

& thorax (Fig 1B). Viral loads were also highly bimodal, a common feature of viral loads in

mosquitoes [43]. Virus prevalence in legs and saliva (Fig 2A) were near 100% across all dpi,

and above 50% after dpi 7, respectively. Saliva estimates of viral prevalence are a conservative

estimate of transmissibility [36]. Average viral loads in the legs and saliva (Fig 2B) were

6.84 × 107 and 1.00 × 104 copies/tissue, respectively. These data strongly demonstrate that, Ae.

Fig 1. (A) Jamestown Canyon virus (JCV) infection prevalence (proportion infected) in adult female mosquito

abdomen and head & thorax at 3, 7, 10 and 14 days post-infection (dpi) for replicate experiment 1. (B) Quantification

of JCV load (viral copy number) in adult female mosquito abdomen and head & thorax at 3, 7, 10 and 14 days post-

infection (dpi) for replicate experiment 1. n = 24–30 per treatment.

https://doi.org/10.1371/journal.pntd.0011616.g001
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aegypti is highly competent for JCV, allowing rapid virus dissemination through the mosquito

body and excretion into the saliva.

The effect of Wolbachia infection on JCV prevalence (Figs 1A and S1A) varied by tissue but

was consistent across two replicate experiments (replicates: z = -1.29, p = 0.20; Wolbachia
infection: z = -5.65, p< 0.001; dpi: z = 5.68, p< 0.001, tissue: z = 1.79, p = 0.074). There was

no effect of Wolbachia infection in abdomen (z = -1.14, p = 0.25), nor an effect of dpi (z =

-0.09, p = 0.93). There was, however, a significant interaction (z = 4.11, p < 0.001), whereby

Wolbachia reduced prevalence at dpi 3 and 14 in replicate one (Fig 1A) and dpi 3 (S1A Fig) in

replicate two. For head & thorax, Wolbachia infection (z = -3.32, p< 0.001), dpi (z = 2.99,

p = 0.003), and the interaction (z = 3.19, p = 0.001) were all significant. Like in abdomen,

Fig 2. (A) Jamestown Canyon virus (JCV) infection prevalence (proportion infected) in adult female mosquito saliva

and legs at 3, 7, 10, and 14 days post-infection (dpi) for replicate experiment 1. (B) Quantification of JCV load (viral

copy number) in adult female mosquito abdomen and head & thorax at 3, 7, 10, and 14 days post-infection (dpi) for

replicate experiment 1. n = 17–30 per treatment.

https://doi.org/10.1371/journal.pntd.0011616.g002
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Wolbachia infection showed the greatest ability to reduce the prevalence of JCV at 3 and 14

dpi (Fig 1A) in replicate one, and 3 dpi in replicate two (S1A Fig). When Wolbachia infection

was associated with reduced prevalence, reductions ranged from 20–50%.

The effect of Wolbachia on viral load (Figs 1B and S1B) varied across the two replicate

experiments (replicate: t = 4.49, p< 0.001; Wolbachia infection: t = -0.48, p = 0.63; dpi:

t = 1.74, p = 0.082, tissue: t = 3.83, p< 0.001). We, therefore, analyzed the replicates separately.

For replicate one (Fig 1B), Wolbachia had no effect in the abdomen (t = -0.68, p = 0.49), nor

dpi (t = - 0.67, p = 0.51), but had a significant interaction (t = 4.80, p< 0.001). Specifically,

Wolbachia led to decreased loads in JCV at dpi 14 in replicate 1 and day 3 in replicate 2 (S3

Table). For head & thorax, Wolbachia infection (t = -2.34, p = 0.020), dpi (t = 3.04, p = 0.002)

and the interaction (t = 2.57, p = 0.011) were all significant. Wolbachia infection reduced viral

loads on average by a factor of 0.68 across all time points in the head & thorax, with the greatest

effect at day 3. In contrast, for replicate two (S1B Fig), in either tissue Wolbachia (abdomen:

t = 0.22, p = 0.82; head & thorax: t = 1.94, p = 0.053) or dpi (abdomen: t = 1.84, p = 0.066; head

& thorax: t = - 0.97, p = 0.33) had no effect on viral load, but a significant interaction was

found for head & thorax but not for abdomen (abdomen: t = 0.22, p = 0.83; head & thorax:

t = 2.67, p = 0.008). Like replicate 1, the greatest reduction in JCV in association with Wolba-
chia infection was at dpi 3 (S3 Table). In summary, the ability for Wolbachia to control JCV is

most pronounced both early and late during infection. This may suggest an ability to both

delay early replication as well as speed clearance.

Saliva and legs were tested in addition to measure JCV dissemination efficiency, an approx-

imation of viral transmissibility. The prevalence of virus in saliva was affected by Wolbachia
infection (z = -3.66, p< 0.001) and dpi (z = 3.57, p< 0.001), and with a significant interaction

(z = - 2.36, p = 0.018). Wolbachia infection was more likely to reduce viral load in the early

time points (Fig 2A). In legs there was no effect of Wolbachia infection (z = - 0.01, p = 0.995)

or dpi (z = - 0.78, p = 0.43). For viral load in saliva (Fig 2B), there was no effect of dpi (t = -

1.03, p = 0.31) or Wolbachia infection (t = - 0.69, p = 0.49). Viral load in legs (Fig 2B) was sig-

nificant for both dpi (t = - 3.64, p< 0.05) and Wolbachia infection (t = 6.07, p< 0.05). On

average, across all time points, Wolbachia infection only reduced infection prevalence by

0.23% in saliva. Viral load in saliva was reduced by ~50% on average (Wolbachia: 5.06×103

copies/tissue; uninfected: 9.62×103 copies/tissue) but unexpectedly increased it by ~9.5 times

on average in legs (Wolbachia: 3.28×107 copies/tissue; uninfected: 4.72×106 copies/tissue).

Effect of Jamestown Canyon virus infection on immune gene expression

We selected five mosquito immune genes whose expression has been shown to control virus

infections and/or be responsive to Wolbachia infection. We then tested their relative expres-

sion levels in Wolbachia wAlbB infected and uninfected lines, with and without JCV infection

at different dpi (Fig 3). Mosquito samples from the same line fed with mock-infected blood

served as controls. Although the response of these pathways varied significantly by dpi, our

results showed that the RNAi pathway (represented by gene AGO) was the major responder to

JCV infection, as well as Vago (encodes an interferon-like factor), with expression levels

increasing ~1000-fold at 10 dpi in both lines. We also found that the JAK/STAT pathway (rep-

resented by hop) demonstrated a 100-fold increase in expression at 14 dpi in the Wildtype

(Wolbachia-free) line. AGO, Vago, and hop showed rising trends with increasing dpi (Fig 3).

MYD88 and IMD which represent Toll and IMD pathways, respectively, exhibited very little

expression level change (< 10-fold) in response to JCV infection. When each gene was consid-

ered separately, we found all genes showed significant differences at different dpi (MYD88:

F3,247 = 41.71, p< 0.001; IMD: F3,247 = 23.20, p< 0.001; hop: F3,247 = 9.24, p< 0.001; AGO:
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F3,247 = 77.45, p< 0.001; Vago: F3,247 = 78.57, p< 0.001). Specifically, hop (F3,247 = 28.24,

p = 0.018), AGO (F3,247 = 4.97, p = 0.027), and Vago (F3,247 = 16.02, p< 0.001) showed higher

expression in the wildtype versus Wolbachia-infected lines. Wolbachia had no effect on the

expression of gene MYD88 (F3,247 = 1.203, p = 0.274) and IMD (F3,247 = 1.589, p = 0.209) after

mosquito infection with JCV. In general, the impact of Wolbachia on mosquito immune gene

expression was smaller in comparison to JCV (S2 Fig and S4 Table), reducing the expression

of the JAK/STAT pathway and increasing the expression of the IMD pathway up to 5-fold dpi.

Effect of Jamestown Canyon virus infection on Wolbachia density and

female longevity

We quantified the relative density of Wolbachia for the whole body of wAlbB-infected mosqui-

toes at different days post-feeding with JCV-infected or mock-infected blood (S3 Fig). We

found there was no effect of JCV infection (F1,120 = 3.78, p = 0.054), a slight effect of dpi (F3,120

= 2.78, p = 0.044), and no interaction (F3,120 = 2.35, p = 0.08). Wolbachia significantly reduced

survival (Fig 4) by pair-wise log-rank tests whether females had been fed with JCV (χ2 = 14.5,

df = 1, p< 0.001) or mock (χ2 = 15.3, df = 1, p< 0.001). JCV infection had no effect on female

survival for either Wolbachia infected (χ2 = 0.4, df = 1, p = 0.52) and uninfected (χ2 < 0.1,

df = 1, p = 0.89) lines.

Discussion

In this study, we tested the vector competence of Ae. aegypti for Jamestown Canyon virus

(JCV) and investigated whether there is Wolbachia-mediated blocking against this negative-

sense RNA virus. We demonstrated Ae. aegypti’s potential to be a highly competent vector

given the following: 1) the infection prevalence and viral loads were very high, near 100% and

107 viral copies/tissue, respectively, and 2), the virus disseminated rapidly, showing dissemina-

tion and presence in the saliva at only 3 days post-infectious feed. Additionally, the virus did

Fig 3. Fold expression change for immunity genes in response to Jamestown Canyon Virus (JCV) infection via 2–

ΔΔCt method. Mosquitoes fed with mock-infected blood served as controls. Points are jittered. Smooth curves are

plotted using the loess method to indicate the change trend, the gray area indicates 95% interval. n = 16 per treatment.

https://doi.org/10.1371/journal.pntd.0011616.g003
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not reduce female mosquito longevity, leaving this aspect of vectorial capacity unaffected, and

lifetime transmission potential high. In terms of the impact of Wolbachia, we found that Wol-
bachia only had a moderate ability to inhibit JCV, reducing virus prevalence and viral loads,

largely very early during infection.

The emergence and spread of infectious diseases of zoonotic origin have become crucial

issues in global human health in recent decades [44,45]. Our study shows that JCV, now circu-

lating primarily in the upper Midwest [1,3] has the potential to become a much larger public

health threat if its distribution collides with the expanding ranges of Ae. aegypti [8] and likely,

its close relative, Ae. albopictus. Most of the current vectors of JCV are likely feeding on both

humans and animals [2], directly facilitating human spillover infections. Ae. aegypti, in con-

trast, feeds with near-perfect fidelity on humans [46]. Its presence in the region would there-

fore not facilitate spillover but could drive a direct human-human transmission cycle if the

virus were sufficiently common. Ae. albopictus, in contrast, is more flexible in its host range,

depending on availability. It can feed exclusively on humans [46] or other mammals including

deer [47] and hence could be a potential participant in both an enzootic and anthroponotic

cycle. Interestingly, Ae. albopictus naturally harbors Wolbachia infection [35]. Our work sug-

gests the symbiont may do little to limit the vector competence of wild Ae. albopictus for JCV

if the virus establishes itself in an individual mosquito. JCV loads in the body of Wolbachia-

infected Ae. aegypti were very high (averaging 107 viral copies/disseminated tissues), following

a starting total load of 106 viral copies/midgut. These values are on the higher end of what is

seen for similarly designed studies with DENV in Ae. aegypti, which is a natural vector

(reviewed in [48]). Little is known about the range of JCV titers in the blood of infected

humans or wild mammals. For the closely related LACV, titers resulting from artificial infec-

tions in deer, and other mammals ranged from 102 to 105/ml [49, 50]. Even if titers are low in

human and wild hosts, Ae. aegypti is very effective at amplifying and disseminating JCV.

Fig 4. Longevity of Wolbachia-infected and uninfected Ae. aegypti females post blood feed with either JCV or

mock. n = 130–163 per treatment.

https://doi.org/10.1371/journal.pntd.0011616.g004
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Ae. aegypti mounted a very strong immune response to JCV that peaked at 10 dpi, but with

infection prevalence and viral loads continuing to remain high. This may suggest poor efficacy

of the response, or more likely, a steady state between virus replication and anti-viral immune

action. In the case of DENV infection where kinetics has been more closely examined, viral

loads also plateau and remain high and constant [43] despite a well-described anti-DENV

response [51]. The immune response largely consisted of the RNAi and JAK/STAT pathways.

While negative-sense viruses do not make dsRNAs in sufficient quantities to trigger RNAi

[52], regardless, this pathway has been shown in Drosophila [53] and in mosquitoes [54] to

both respond to and limit negative-sense viruses. The parallel expression patterns of AGO and

Vago in response to infection are likely due to molecular crosstalk. Vago, produced by the

IMD pathway or Wolbachia infection, encodes an interferon-like factor that is also a mediator

of both the JAK/STAT [33] and RNAi pathways [55]. Last, JCV infection did not appear to

shorten mosquito lifespan, suggesting the virus is not cytotoxic in this novel host and that

there are not extreme fitness tradeoffs for mounting the strong immune response seen here

(reviewed in [56]). This is perhaps not surprising as LACV in its native vector Aedes triseriatus
[57] has no discernable effect on fitness and the virus can live for very long periods in the mos-

quito, including in the ovaries. The latter is associated with transovarial transmission and over-

wintering of the virus in northern climates.

Wolbachia-mediated blocking is known to be a multifaceted blocking trait [16], whose com-

position may vary depending on the Wolbachia strain, virus species/genotype, and vector spe-

cies/genotype. One interesting feature of our findings is that virus prevalence and load appear

to be disconnected, as if two independent traits. In contrast, for dengue virus, low prevalence

and low viral loads together are characteristic of Wolbachia-mediated blocking [58][58]. With

JCV, Wolbachia-infected mosquitoes appear better at preventing infection, rather than control-

ling it, once initiated. This may suggest early events are of most importance for Wolbachia-

mediated blocking of negative strand viruses. Previous studies have suggested that viral RNA

early in infection is the primary target for blocking [59], possibly recognized by the immune sys-

tem [17, 60], but that Wolbachia-induced changes in mosquito physiology involving lipid traf-

ficking [61][61], autophagy [61,62], and reactive oxygen species [17], etc can also play a role.

Dissecting the relative contributions of these multiple components has been challenging in a tri-

partite organismal system, with no ability to genetically modify Wolbachia and difficulties in

modifying DENV. The presence of Wolbachia-mediated blocking of JCV in both tissues and

saliva early in infection offers new comparative potential for dissecting blocking mechanisms

relative to positive-sense viruses. The innate immune pathways including RNAi [19], IMD

(including Vago), and Toll are involved with Wolbachia-mediated blocking of positive-sense

viruses [18]. Relative to JCV infection, however, Wolbachia only moderately induced immune

gene expression. Furthermore, during co-infection, Wolbachia appeared also to dampen the

immune induction by JCV at some time points (see AGO, vago, and hop, as well as MYD88 and

IMD at 3 dpi) suggesting immune activation is unlikely to be at play here. The strength of these

interpretations is, however, somewhat limited by the sample sizes for the gene expression.

We propose a hypothetical model for why Wolbachia-mediated blocking may be less able

to control JCV than positive-sense viruses. LACV is known to cause a dramatic shut-off of

host protein synthesis in BHK cells, and then subsequently, viral protein synthesis in the later

stages of infection [63]. This strategy is thought to protect viruses from attack by host antiviral

factors. Mosquito cells infected with LACV continue to divide and behave normally despite

infection and so appear unaffected. Wolbachia infection has a related effect on host protein

synthesis, reducing it by 23% in Drosophila JW18 cells [64], but not shutting it off as per

LACV. Positive-sense viruses, without an mRNA intermediate, would be dependent on host

polymerase and their replication activity would slow. Negative-sense viruses, utilize their own
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polymerase to produce mRNA copies of their genomes. Because the activity level of this poly-

merase is highest when low amounts of viral protein are present, Wolbachia induced reduc-

tions in protein synthesis should instead lead to the overproduction of JCV mRNAs. Second,

other members of the Peribunyaviridae, in mammalian cells, have been shown to remove the

5’ terminus of their genome post-transcriptionally to prevent detection by receptors that trig-

ger interferon activity [65]. There may be parallel stealth activities in the vector to avoid trig-

gering the action of the interferon-like factor Vago [66]. This is difficult to assess, however,

with many aspects of the insect antiviral pathways still undefined including key receptors, and

modes of action. When examining Wolbachia infection alone (S2 Fig), the strongest immune

activation was for Vago early during infection. The impact of Wolbachia’s activation of Vago
may be greater for DENV and other positive sense viruses where viral infection induction of

the gene is much less strong than for JCV [32]. There are alternate explanations, including

because of low JCV levels early in infection, there are insufficient PAMPs to trigger antiviral

pathways, or that JAK/STAT may be necessary, but insufficient to control viruses as has been

shown previously [67]. We finish by saying that studying the Wolbachia-mediated blocking

seen here early during infection may reveal the functional importance of more universal

aspects of blocking not specific to virus type.

In summary, we show that Ae. aegypti has the potential to be a very effective vector of JCV

in the future, with the mosquito’s range shifting northward [8], and JCV being present beyond

the Midwest. Future studies should explore the vector competence of Ae. albopictus for JCV,

which given its more temperate range, may be a more imminent threat. Additionally, charac-

terizing JCV titers in wild mammals and humans may help to provide context for the vector

competence seen here. We also show some evidence of Wolbachia-mediated blocking of a neg-

ative-sense virus inside the mosquito, whereas previous in vitro studies with other viruses

found no evidence of blocking [23,24]. Evidence of weak blocking suggests that JCV may serve

as a good comparator for teasing out both aspects of blocking that may vary by virus sense-spe-

cific biology and indeed those that are more universal. We propose two hypothetical scenarios

that may be explored experimentally in vitro and in vivo. This work should revive interest in

studying negative-sense viruses in mosquitoes as a model for Wolbachia-mediated blocking.

One specific comparative study that may be of value would be to assess the expression of

downstream genes induced by Vago in response to negative versus positive sense viruses.
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