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Abstract

Propagating waves of activity can be evoked and can occur spontaneously in vivo and in

vitro in cerebral cortex. These waves are thought to be instrumental in the propagation of

information across cortical regions and as a means to modulate the sensitivity of neurons

to subsequent stimuli. In normal tissue, the waves are sparse and tightly controlled by inhi-

bition and other negative feedback processes. However, alterations of this balance

between excitation and inhibition can lead to pathological behavior such as seizure-type

dynamics (with low inhibition) or failure to propagate (with high inhibition). We develop a

spiking one-dimensional network of neurons to explore the reliability and control of evoked

waves and compare this to a cortical slice preparation where the excitability can be

pharmacologically manipulated. We show that the waves enhance sensitivity of the corti-

cal network to stimuli in specific spatial and temporal ways. To gain further insight into the

mechanisms of propagation and transitions to pathological behavior, we derive a mean-

field model for the synaptic activity. We analyze the mean-field model and a piece-wise

constant approximation of it and study the stability of the propagating waves as spatial and

temporal properties of the inhibition are altered. We show that that the transition to sei-

zure-like activity is gradual but that the loss of propagation is abrupt and can occur via

either the loss of existence of the wave or through a loss of stability leading to complex pat-

terns of propagation.

Author summary

Stimuli and other aspects of neuronal activity are carried across areas in the brain

through the concerted activity of recurrently connected neurons. The activity is con-

trolled through negative feedback from both inhibitory neurons and intrinsic currents

in the excitatory neurons. Evoked activity often appears in the form of a traveling pulse

of activity. In this paper we study the speed, magnitude, and other properties of these

waves as various aspects of the negative feedback are altered through both computa-

tional modeling and manipulations of a slice of cortex. Inhibition enables information
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to be readily transmitted across distances without the neural activity blowing up into a

seizure-like state.

Introduction

Recordings in different cortical regions and layers during sensory stimulation show that the

response often manifests as a traveling wave [1–6] even though the stimulus is localized. In

these waves, groups of neurons fire transiently in succession and then fall into a depressed

(refractory) state before returning to rest. Evoked waves are distinct from the waves that are

seen in local field potentials of humans and animals which appear as spatio-temporal phase

gradients in ongoing activity [1, 7]. Evoked waves are more akin to traveling action poten-

tials in excitable media while the latter are more like the waves that arise from coupled oscil-

lators [8].

When waves are evoked by an external stimulus, the firing of excitatory cells is sparse (a

characteristic of so-called balanced networks of excitation and inhibition [9]), yet the wave

manages to propagate over centimeters of tissue. In contrast, when inhibition is pharmacologi-

cally blocked, particularly in slice preparations, the waves involve many excitatory neurons,

have much broader profile (when imaged with voltage sensitive dyes) and travel faster [5, 10].

These reduced-inhibition waves have been implicated in seizure propagation models [11–13].

This suggests that the sparsity and degree of participation of excitatory cells in the propagation

of evoked waves is controlled by negative feedback. (See also [14].) There are at least two

sources to this negative feedback: recurrent inhibition and activity-dependent adaptation in

the excitatory cells. Thus, our goal in this paper is to explore how these two effects work to con-

trol the macroscopic properties of evoked waves.

While direct evidence of the functional importance of these evoked waves in sensory pro-

cessing has not been found, a number of hypotheses have been suggested [1, 8]. Ferezou et al

[6] showed that in awake behaving mice, a solitary whisker flick evoked large-amplitude prop-

agating sensory activity across the barrels. Similarly, [15] found that the population response

to evoked visual stimuli in awake monkeys was a propagating wave. They suggest that these

waves can modulate the excitability of the cortex in such a way as to affect processing of future

stimuli. More recently, [16] have suggested that propagating waves in motor cortex can facili-

tate the initiation of movement and [17] have shown that spontaneous propagating waves can

affect perception in awake monkeys. Because of their possible roles in modulating cortical

excitability in a spatially and temporally precise manner, it is important to better understand

the cellular mechanisms that control these waves.

The earliest computational models for traveling waves (TWs) in neural media can be found

in the the work of Wilson and Cowan [18] and Amari [19] who looked at dynamics in neural

fields. Later models of TWs using Hodgkin-Huxley type spiking models with distance depen-

dent coupling explored waves in thalamus [20] and disinhibited cortex [21]. Ermentrout and

others [22, 23] provided some early attempts for the analysis of TWs in spiking models. Most

of the analytic work on TWs has been done for neural field or firing rate models, where the

activity of populations of neurons is modeled rather than individual cells. Pinto & Ermentrout

[11] analyzed a model which had a population of excitatory cells and a linear adaptation vari-

able using a combination of analytic methods and singular perturbation theory. There have

been many extensions of this work with comprehensive reviews found in [24, 25]. In addition

to the existence of TWs in neural field models, their stability has been an important area of

study. For piece-wise linear (PWL) models, Coombes and his collaborators have been
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instrumental in developing a toolkit for stability analysis using the so-called Evans function

formulation [26, 27].

All of the above mentioned computational papers focused on either recurrent inhibition,

spike frequency adaptation, or synaptic depression as means of preventing run away excita-

tion. Only recently have models been suggested which involve multiple types of negative feed-

back. Gonzalez et al [13] analyze a system of excitatory and inhibitory rate models where the

excitatory population includes adaptation. In their model, propagation occurs only when the

inhibition is weak and slow. In the discussion, we will examine in more detail differences

between their model and ours.

In this paper, we are interested in studying the effects of recurrent inhibition and spike fre-

quency adaptation on the properties of evoked waves. We first show stimulus evoked waves in

both in vivo and in vitro preparations form rat cortex with intact inhibition and by gradually

blocking inhibition, we look at properties such as the magnitude and speed of the waves. We

propose a spiking network of excitatory and inhibitory neurons based on the quadratic-inte-

grate-and fire model (QIF) and use this to study propagation as the inhibition is varied. We

also show how a single evoked wave can affect subsequent stimuli in a timing-dependent man-

ner. Next, we develop a simple firing rate model based on the known firing rate properties of

the QIF model that is similar to a Wilson-Cowan type model. We use numerical continuation

and simulations to study the effects of recurrent inhibition and adaptation on the velocity of

evoked TWs. We find some interesting instabilities of the waves as the footprint of the inhibi-

tion increases allowing us to connect the failure to propagate with transition to stationary spa-

tial patterns such as bump attractors and Turing patterns. Finally, we replace the smooth

nonlinearities of the neural field model with step functions which enables us to obtain analytic

results on the properties of the waves and their stability. We conclude with some comparisons

of our modeling to previous work and a brief discussion of the implications of this work on

cortical computations.

Results

Experimental results

We begin this paper with experimental demonstrations of evoked traveling waves in an anes-

thetized rat and then in a cortical slice preparation where we can better observe and manipu-

late the evoked wave. In Fig 1 we show an example of a wave evoked by a visual stimulus

(moving gradient) in the visual cortex of an anesthetized rat (adapted from Fig 6 in [28]). The

wave originates in primary visual cortex (V1M) and propagates to other visual areas (V2) (pan-

els A,B) but slows down dramatically after crossing the V1M/V2 border. This slowing down

can be eliminated by topical application of 3μM bicuculline leading to a large increase in the

velocity. In an earlier paper [29], we modeled the mechanisms of compression across the

boundaries of the two cortical regions.

To further quantify the effects of recurrent inhibition in cortical networks, we recorded

evoked activity in an acute cortical slice preparation (see Materials & methods for details).

Stimulation is delivered to the cortical tissue by a glass pipette with a 10μm tip opening. It con-

sists of a voltage pulse of 1-10V, and width of 0.05 ms. With the pipette tip resistance

of * 50KO the current flowing to the tissue is 20-200 nA. This stimulation induces a local

pulse of population activity propagating slowly though the cortex (Fig 2A, right top trace).

After removing inhibition with 20 μM of bicuculline, the same stimulation induced a large and

fast pulse of activity (Fig 2A, bottom trace). Note that removing inhibition also largely reduced

the latency of the evoked response. The latency included the time for the activity spreading

from stimulation site to the recording site, and so the reduced latency suggested a faster

PLOS COMPUTATIONAL BIOLOGY Control of traveling waves

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1010697 September 5, 2023 3 / 32

https://doi.org/10.1371/journal.pcbi.1010697


Fig 1. (A) Rat visual cortex was imaged by a voltage sensitive dye. Excitation waves are represented by a pseudo-colors map, where red (blue)

represents maximal (minimal) excitation of the cortex. The blue line marks the border between primary (V1M) and secondary(V2) areas of the visual

cortex. The voltage dye signals were detected by 464 optical detectors over the field of view (approximately 5 mm in diameter). Signals from a line of

detectors (small boxes) were selected to make the space-time plot in B. (B) The horizontal and vertical axes of the graphs represent time (msec) and

distance (mm) respectively. The top papen shows the stimulus evoked wave in normal inhibition, while in the bottom panel, inhibition has been

partially blocked. (Modified from [28]).

https://doi.org/10.1371/journal.pcbi.1010697.g001

Fig 2. Evoked cortical activity and propagation velocity in a rat cortical slice. A. Neuronal activity measured by local field

potential electrode. B. Propagating velocity measured by voltage-sensitive dye and optical recording. (Modified from [30]).

https://doi.org/10.1371/journal.pcbi.1010697.g002
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propagating speed after removal of inhibition. The propagation velocity was further examined

with multiple recording sites (Fig 2B). In this experiment we used voltage-sensitive dye to con-

vert membrane potentials to a light intensity signal. Each optical detector receives light from

thousands of cortical neurons, and the optical signal is thus an integration of membrane

potential change of all the neurons under one detector. We found that removing inhibition

increased the propagating speed of the cortical activity (> 20×). Our results have been verified

by more than 100 slices since [30] (for example, see [28, 31, 32]). This example clearly shows

several properties of the wave in normal and disinhibited slices. First, the response is substan-

tially greater in both magnitude and duration when inhibition is removed. Further the wave

shape is more reliable during the propagation event and far less noisy. Lastly, the propagation

velocity increased as the inhibition was decreased.

Spiking model

To begin our computational analysis of the inhibitory control of TWs, we developed a spik-

ing model that consisted of 400 excitatory and 80 inhibitory theta-neurons distributed on a

one-dimensional line 0 < x< 1 with random distance-dependent connections (see Methods

for details). The position of the jth excitatory cell is x = j/400 and of the jth inhibitory cell is

x = j/80. Fig 3 shows plots of se(j), for a particular network of 400 excitatory cells. At

t = 5msec, a brief pulse of current is applied to the first 20 excitatory cells and evokes a wave.

When the inhibition is high, only a small fraction of the excitatory cells participate in the

wave, where as nearly all the inhibitory cells do. The wave takes about 20 msec to traverse the

domain. As the recurrent inhibition (gei) decreases, the number of excitatory cells participat-

ing in the wave increases dramatically, with nearly 100% participation once gei falls below

about 0.25. There is a small increase in velocity, but it is not as dramatic as shown in Fig 2B.

Increasing gei beyond 2 does little to affect the speed or participation. In addition to the raster

plots, we also show the summed synaptic activity of the excitatory and inhibitory cells in the

middle of the network. There is more than an order of magnitude increase in the excitatory

amplitude as gei decreases.

Fig 4A shows the subthreshold activity of a subset of the excitatory cells in the network for

gei = 1. Recalling that the network is comprised of theta neurons where spiking occurse when,

θj(t) = π, we see that only 3 of the 100 cells ever spike although a much larger fraction of them

are depolarized (warmer colors). The lower panel shows the time-traces of three excitatory

cells (e110,e111,e112) as well as an inhibitory cell (i19) that is nearby. (The position of the

excitatory cells is x� 0.27 and of the inhibitory cell is x = 0.23.). Panel B in the figure shows an

expanded view of e112 and i19 as well as the synaptic activity of e20,e24, and i19 in order to

illustrate how the inhibition renders the excitatory participation sparse. Synapse se20 causes

both cells e112 and i19 to begin to fire. A subsequent excitatory input into i19 (se24) acceler-

ates the firing of i19 which then suppresses e112 so that it does not fire. In Panel C, we see how

this sparsity is controlled by the inhibitory to excitatory strength. Because of the large number

of excitatory to inhibitory synapses in our model, the inhibitory cells have a high probability of

firing and thus keep the fraction of excitatory cells that participate to a low number as sug-

gested in [14, 33]. Thus, the main ability to control excitation comes from the feedback inhibi-

tion which is determined by gei. Once the strength of this falls below about 0.2 almost all

excitatory cells beacome involved in the wave and it is equivalent to seizure-like activity where

a given excitatory cell will fire a burst of activity. This activity is suppressed only by the spike-

frequency adaptation.

As should be clear from Fig 4, some cells are depolarized due to the evoked wave, but not

sufficiently to evoke a reponse. However, this depolarization can prime those cells or nearby
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cells to an appropriately timed stimulus. Davis et al [17] have shown that traveling waves can

gate the perception of later stimuli. Here, we illustrate this effect in the spiking model by first

evoking a wave and then providing a brief spatially localized stimulus at differing times and

locations to cells that did not spike. Fig 5 shows stimuli to three different cells at different

times after a wave is evoked (cell 100). In panel A, an appropriately timed stimulus to cell 300

evokes an action potential (black dot) about 7 msec after the stimulus onset. In the second

panel, the same stimulus is applied to cell 350, but fails to evoke a spike namely because the

wave did not cause any depolarization of this particular cell. In panel C, cell 250 (upstream

from cell 300) is stimulated at t = 25 but because the simulus is late, it does not cause cell 250

to spike. Panel D shows that a slightly earlier stimulus evokes a spike in cell 250. The wave sets

a spatial and temporal bias allowing for a direction sensitive sensitivity of stimuli that occur

subsequently to the first stimulus. Ferezou et al [6] speculate that evoked waves in the whisker

Fig 3. Traveling waves generated in the spiking models are controlled through the strength of feedback inhibition to the excitatory cells, gei. Plots

of the synaptic activity of each of the 400 excitatory cells are plotted in the top of each panel; below are the summed synaptic activity of a cluster of 40

excitatory (black) and 10 inhibitory cells (red) in the middle of the medium (excitatory cells 180-220; inhibitory cells 45-55). Inhibitory output has been

scaled down for clarity.

https://doi.org/10.1371/journal.pcbi.1010697.g003
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barrels of awake mice can facilitate multi-whisker integration. Here we have demonstrated

such a synergestic effect in a spiking model.

In preparation for our mean field analysis, we look at the time series for the synaptic activa-

tion of excitatory neurons (Fig 6) as well as a phase-plane projection of the excitatory and

inhibitory synaptic dynamics (Fig 7) as we vary gei. We run a simulation of the spiking model

40 times, each time regenerating a new connectivity matrix with the same statistics as the fixed

network presented in Fig 3. We plot

se ¼
1

40

X220

j¼180

se;j

ze ¼
1

40

X220

j¼180

ze;j

si ¼
1

10

X45

j¼35

si;j;

averaged over 40 trials. As expected, both the mean se and si increase a great deal as gei

Fig 4. (A) Subthreshold dynamics (θj(t)) for gei = 1 for the simulation shown in Fig 3. Cells that reached π (and fired) are indicated by the white arrows

in the top panel. In the lower panel, time series of excitatory cells #110,#111,#112 and inhibitory cell #i19. (B) Expanded view showing how inhibition

from cell #i19 blocks the ability of excitatory cell # e112 to generate a spike. The synapse from excitatory cell # 20 initiates both cells # i19 and # e112 but

a second input to # i19 (s24) accelerates the spiking of # i19 allowing it to block # e112. (C) Fraction of excitatory cells participating in the wave as a

function of gei.

https://doi.org/10.1371/journal.pcbi.1010697.g004
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decreases. Since the adaptation, zj matters only when there is very low gei, we also show a

phase-plane projection of (se, ze) in the final panel of Fig 7. The magnitude is not as large as si
but, because the decay of adaptation is quite slow compared to the inhibition, ze persists long

after the excitation is gone.

Mean field reduction

The spiking model has the advantage that it can directly connect the behavior of individual

neurons in sparsely connected random networks to the dynamics of the travelling waves.

However, due to the stochasticity both in the coupling matrices and the applied background

random noise, it is difficult to study the properties of the waves as multiple sets of parameters

are varied. Furthermore, questions about how the existence of the waves is lost and whether

they are stable cannot be addressed with the spiking model. For this reason, we will instead

study a simplified mean fieldmodel that is based on a quasi-steady state approximation (see

Fig 5. Waves can prime the network to selectively respond to subthreshold stimuli. Stimulus is a square pulse lasting 5 msec occuring at time t and width of 10 cells

centered at position x. Images show cell #100 spiking which initiates the wave. Labels next to each curve are the transformed potentials of the corresponding excitatory

cell. (A) stimulus at t = 25, x = 300 evokes spike in cell 300, but not in 250,350; (B) when the stimulus is shifted to x = 350, cell 350 is depolarized but fails to fire as it

received no extra depolarization from the wave; (C) stimulus at x = 250 comes at the wrong time for cell 250; (D) stimulus time is shifted to t = 20 and causes cell 250 to

spike.

https://doi.org/10.1371/journal.pcbi.1010697.g005
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e.g., [34]). Consider a single spiking neuron with noise:

Cm
dV
dt
¼ gL

ðV � ELÞðV � ETÞ
ET � EL

þ I þ ẑXðtÞ ð1Þ

where I represents all the inputs to the neuron including the synaptic inputs, adaptation (for

the excitatory cells), as well as the stimulus and any applied currents, and X(t) is Gaussian

white noise with magnitude ẑ. In our simulations of the spiking model, we converted this qua-

dratic differential equation to the theta model, but, here, we keep it here in the unconverted

Fig 6. Behavior of the summed excitatory synaptic output over cells 180-220 for different values of gei. In each plot, we regenerate a new

connectivity matrix with all parameters the same and average over 40 such trials. Means are colored and the standard error is outlined in black.

https://doi.org/10.1371/journal.pcbi.1010697.g006
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form as the calculations are easier. We emphasize that the two formulations (QIF/theta model)

are equivalent. The time to spike is the time it takes for V to go from −1 to +1 (equivalent to

θ going from −π to +π). We suppose that the noise, ẑ is zero. Then for I> I * = gL(ET − EL)/4,

we can compute the time it takes (the period) for V(t) to go from −1 to +1 by integrating

Eq (1). Inverting this, we get an expression for the frequency

oðIÞ ¼
1

p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
gL½I � I∗�þ
c2
mðET � ELÞ

� �s

�
1

p

ffiffiffi
m
p

where [I]+ is the positive part of I. With noise, there can be firing when μ< 0, so we approxi-

mate the effects of noise by replacing the deterministic rate, ω with our nonlinear gain function:

FðI; zÞ ¼
1

p

�
1

2
ðmðIÞ þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

mðIÞ2 þ z2

q

Þ

�1=2

ð2Þ

Fig 7. Projection of the excitatory activity from Fig 6 and the summed activity of inhibitory cells 35-45 over 40 repetitions of the simulation. Color

code as in previous figure. In the lower right panel, we also plot the projection of the averaged value of the adaptation variable.

https://doi.org/10.1371/journal.pcbi.1010697.g007
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where

mðIÞ ¼
gLðI � I∗Þ
c2
mðET � ELÞ

; I∗ ¼ gLðET � ELÞ=4:

When z = 0, we recover the deterministic rate. Note that F is defined and nonzero for I< I *.
This approximation is not arbitrary and arises in the rigorous reduction of the QIF when there

is heterogeneity (see Eq. 5 in [35]). With the firing rate in hand, we can now write down a sim-

ple Wilson-Cowan like mean field model. The synapses in our spiking model obey:

ds
dt
¼ � s=ts þ SðtÞ

where S(t) = ∑j δ(t − tj) and tj are the times that presynaptic neuron fires. The average S(t) is just

the instantaneous firing rate, Eq (2) so that we obtain the mean field equation for se,i:

dse;i
dt
¼ � se;i=te;s þ FðI

tot
i;e ; zi;eÞ ð3Þ

where Itoti;e is the total current input into the inhibitory (i) or excitatory (e) populations. Similar

to the synapses, that adaptation can be approximated by

dz
dt
¼ � z=tz þ FðI

tot
e ; zeÞ: ð4Þ

Before introducing the spatial model, we turn to the local dynamics of the EIZ network.

Local kinetics. The spiking simulations suggest a pulse of activity propagates across the

medium. The hallmark of pulse waves is an underlying excitable medium. Thus, we focus on

the excitability of the local (se, si, z) system. With two exceptions, we will use the same parame-

ters for the mean field model as we used in the spiking model. In the spiking model, we chose

gee = 0.15, but for the mean field models we increase this to gee = 1. We also reduce gad = 1 to

gad = 0.25, although we will vary this parameter later in the paper. From equations Eqs (3) and

(4) we have:

dse
dt
¼ � se=te þ Fðgeegese � geigisi � gadgzz; deÞ

dsi
dt
¼ � si=ti þ Fðgiegese � giigisi; diÞ

dz
dt
¼ � z=tz þ Fðgeegise � geigisi � gadgzz; deÞ;

ð5Þ

where γe = Esyn − (ET + EL)/2, γi = (ET + EL)/2 − Isyn, and γz = (ET + EL)/2 − EK. (Note that

we have defined the γj is such a way so that they are all positive so that in the signs of the

currents reflect whether they contribute positive or negative effects to the firing rates.)

Fig 8A depicts the behavior for this three-dimensional system when se is perturbed away

from the rest state. The recurrent excitation causes an initial amplification of se(t) before

the inhibition and adaptation suppress it. We can better explore the nature of the excitabil-

ity by setting either of gei or gad to zero leading to a planar system. In panel B (gad = 0), we

see that the nullclines intersect in three places. There is a single stable equilibrium near (se,
si) = (0, 0), a saddle point near (0, 0.005) and an unstable node (blue circle). We superim-

pose a trajectory starting at (0, 0.01) which decays back to the rest state after an excursion

in the plane. Thus, the (se, si) subsystem is characterized by Class I excitability [36]. In panel

C, we allow the adaptation (gad = 0.25) but set gei = 0 and depict a typical trajectory starting
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at z = 0 and se = 0.01. Here there is only one equilibrium point and it is stable. The (se, z)
subsystem is thus characterized by Class II excitability. As can be seen by comparing A to

(B,C), the combined adaptation and inhibition has a strong effect on the amplitude of se
The plots in panels B,C are qualitatively similar to the plots of the averaged spiking model

shown in Fig 7. We note that if gee is too small then the cubic nature of the se-nullcline dis-

appears and there is no excitability. We additionally note that with gad � 0, then when gei
falls below a critical value, there will be an additional stable fixed point with se > 0.1 so that

the local dynamics will not be excitable, but instead, it will be bistable.

In sum, the mean field local kinetics show the hallmarks of an excitable system so that we

expect that there can be robust travelling pulse waves in the spatially connected system.

Smooth spatial system

We turn our attention to the full mean-field spatial model:

@seðx; tÞ
@t

¼ � seðx; tÞ=te þ FðgeegeSeðx; tÞ � geigiSiðx; tÞ � gadgzzðx; tÞ; deÞ

@siðx; tÞ
@t

¼ � siðx; tÞ=ti þ FðgiegeSeðx; tÞ � giigiSiðx; tÞ; diÞ

@zðx; tÞ
@t

¼ � zðx; tÞ=te þ FðgeegeSeðx; tÞ � geigiSiðx; tÞ � gadgzzðx; tÞ; deÞ;

ð6Þ

where

Seðx; tÞ ¼
1

se

Z

D
Wððx � yÞ=seÞseðy; tÞ dy

Siðx; tÞ ¼
1

si

Z

D
Wððx � yÞ=siÞsiðy; tÞ dy

and W(x) is either the exponential, WE(x) = exp(−|x|)/2 or the Gaussian, WGðxÞ ¼
expð� x2Þ=

ffiffiffi
p
p

kernel. For purposes of analysis, D, the integration domain will be the real line,

but for simulations, it will be a discretized finite domain. In what follows, we will fix all

Fig 8. Excitability of the local equations (6). (A) Trajectory in (se, si, z) for gei = 2, gad = 0.25 with initial data (0.015, 0, 0). (B) (se, si)−plane when gad = 0, gei = 2 showing

the excitatory (red) and inhibitory (green) nullclines (B) (se, z)−plane when gad = 0.25, gei = 0 showing the excitatory (red) and adaptation (green) nullclines.

https://doi.org/10.1371/journal.pcbi.1010697.g008
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parameters except those that deal with the negative feedback, gei, gad and the spread of inhibi-

tion, σi which has some very interesting effects on the stability of the waves.

To get a sense of the behavior of Eq (6), we numerically solve the equations on a domain

[0, 80] with a spatial discretization of dx = 0.2 and σe = 1. We evoke a wave by setting se(x, 0)

= 0.2 for x 2 [0, 4]. Fig 9 shows the results of these simulations for the exponential (top row)

and Gaussian (middle row) kernels. The figure also shows plots at x = 40 for se, si, z and

se(60, t) in the bottom row for the exponential kernel. The wave is faster for the exponential

kernel since the spread of excitation decays slower than for the Gaussian. The left most col-

umn is the default set of parameters, gei = 2, gad = 0.25, σi = 0.5, so that the spread of inhibi-

tion is half that of the excitation. With either of gei, gad removed, the excitation increases in

magnitude and persists for a longer time. This can be seen clearer in the bottom plots. The

velocity of the wave also increases as can be seen from the smaller slope. Increasing the spa-

tial extent of inhibition to match that of the excitation (σi = 1) has the effect of slowing the

wave down. In addition, one can see a small oscillation near the onset of the wave in the

exponential kernel case. We will spend some time exploring this oscillatory instability later

in the paper.

Continuation and reduction to a BVP. We would like to more systematically study the

behavior of traveling wave solutions to Eq (6) as we vary parameters. Thus, we convert to

Fig 9. Plots of se(x, t) for various parameters. Top row is the exponential kernel and second row is the Gaussian kernel. The default parameters are

gei = 2, gad = 0.25, σi = 0.5. The color scale has a maximum of 0.05 for the outer two plots and 0.2 for middle two plots. Bottom row shows se(40, t),

si(40, t), z(40, t) and se(60, t) of the corresponding parameters for the exponential kernel. Note the different vertical scales.

https://doi.org/10.1371/journal.pcbi.1010697.g009
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traveling wave coordinates, ξ = x + ct, so that Eq (6) can be written as:

c
dseðxÞ
dx

¼ � se=te þ FðgeegeSeðxÞ � geigiSiðxÞ � gadgzzðxÞ; deÞ

c
dsiðxÞ
dx

¼ � si=ti þ FðgiegeSeðxÞ � giigiSiðxÞ; diÞ

c
dzðxÞ
dx

¼ � z=te þ FðgeegeSeðxÞ � geigiSiðxÞ � gadgzzðxÞ; deÞ

ð7Þ

Let ð�se ; �si ; �zÞ be the equilibrium value of the medium at rest. The solutions, (se(ξ), si(ξ), z(ξ))
must approach this equilibrium as ξ! ±1. Unfortunately, this is an integro-differential equa-

tion and while there are some recent numerical tools for solving this type of equation [37],

they are not yet well-developed and generally applicable. However, if we choose the exponen-

tial kernel, then we can readily invert the convolution to obtain a second order ODE and thus

reduce Eq (7) to an ODE. Specifically, if

UðxÞ ¼
1

2s

Z 1

� 1

e� jx� yj=suðyÞ dy

then

s2Uxx ¼ UðxÞ � uðxÞ:

Thus we can write Se(ξ), Si(ξ) as a pair of ODEs and Eq (7) becomes:

c
dseðxÞ
dx

¼ � se=te þ FðgeegeSeðxÞ � geigiSiðxÞ � gadgzzðxÞ; deÞ

c
dsiðxÞ
dx

¼ � si=ti þ FðgiegeSeðxÞ � giigiSiðxÞ; diÞ

c
dzðxÞ
dx

¼ � z=te þ FðgeegeSeðxÞ � geigiSiðxÞ � gadgzzðxÞ; deÞ

s2
e
d2Se
dx2

¼ Se � se

s2
i
d2Si
dx2

¼ Si � si:

ð8Þ

This is a 7-dimensional ODE for which we wish to find a homoclinic orbit that corresponds to

the traveling pulse solution. Writing the Se, Si second order equations as a first order system,

the equilibrium for P ¼ ðse; si; z; Se; _Se; Si; _SiÞ is �P ¼ ð�se;�si; �z;�se; 0;�si; 0Þ. Linearizing around �P,

we find that there is a two-dimensional unstable manifold and a five-dimensional stable mani-

fold. We use XPPAUT and AUTO to find the homoclinic orbit. More details on how we obtain

a starting guess for AUTO are described in the methods.

We start by verifying that solutions to Eq (8) are identical to the traveling waves obtained

by simulation Eq (6). Fig 10 shows three examples with different values of (gei, gad, σi). The

plots essentially overlap so that we can be confident that the ODE approach provides the same

results as integrating the full system of equations. Importantly, the ODE methods provide a

tool that can determine the existence of these waves but it does not let us assess stability. We

will explore the stability issue by solving Eq (6) forward in time starting at a known wave

solution.

Dependence of the wave on parameters. In the next three figures, we hold two of the

three parameters, (gei, gad, σi) at fixed values and examine how the velocity varies as a function
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of the third parameter. We will also look at projections of solutions in the (se, si)− and (se, z)
− phaseplanes. Later when we study the piece-wise constant version of the model (with smooth

nonlinearities replaced by step functions), we will also compute the width and velocity of the

pulses and their stability.

Fig 11A shows the behavior of the traveling pulse as gei changes with σi = 0.5 and three val-

ues of gad. At the gad = 0.25, the wave exists only if gei is smaller than about gei = gSN� 5 where

there appears to be a saddle-node bifurcation. For gei< gSN, there are two branches with a fast

speed and a slow speed. Based on simulations of Eq (6), we believe the fast waves are stable and

the slow waves are unstable. (se, si) projections of solutions are shown panels (B,C). The ampli-

tudes of both se, si increase as gei decreases while the speed of the wave increases. For gad = 0.1,

we do not find the saddle-node point, at least for the range of gei that we varied. For gad = 0, the

wave seems to stop at about gei = 2.0. As we mentioned in the section about local kinetics, at

low values of gad, gei, the space-clamped system becomes bistable. We will explore this parame-

ter region in the next section.

Fig 12 shows a similar plot where we fix gei, σi and vary gad, the adaptation. The main differ-

ence is that adaptation has a much stronger effect, namely because of the fact that it decays

much slower. A small increment in the firing rate is amplified by the adaptation. This can be

seen by comparing the vertical axes in panels B,C; inhibition is considerably smaller than adap-

tation. Additionally, since EK< Isyn, the driving force of adaptation is also larger than that of

inhibition. Because of the approximation we made for the adaptation, it is treated just like slow

inhibition in the mean-field model. For all values of gei, there are values of gad such that there is

a saddle node bifurcation and the wave ceases to exist. Based on the simulations of Eq (6), we

believe that the upper (“fast”) branch of solutions is the stable branch of solutions.

In both Figs 11 and 12, we see that when both gei and gad are small, the pulse ceases to exist

(small filled black squares). Unlike the saddle-node bifurcations which mark the termination

of any waves, here the pulse wave becomes a front wave. In the case of fronts, the local behavior

Fig 10. Comparison between solving Eq (6) (thin lines) and the homoclinic computation of Eq (8) (filled circles).

Numbers in parentheses correspond to the values of (gei, gad, σi).

https://doi.org/10.1371/journal.pcbi.1010697.g010
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(c.f. Fig 8) is bistable. That is there is a stable low firing state and a stable high firing state. The

wave connects the low state to the high state so that eventually the entire network is firing at a

high rate. The transition from pulses to waves can be complex and has been well-studied in the

reaction-diffusion literature [38].

Fig 13 shows the wave behavior as a function of the spatial spread of inhibitions for three

different pairs of (gei, gad). As would be intuitively expected, in all cases, the velocity decreases

with the spread of inhibition. The wave appears to exist for σi even three times greater than σe.
The shape of the wave in the (se, si)− phaseplane shows just a small effect of the inhibitory

spread. However, we find that σi induces some interesting effects on the stability of the travel-

ing pulse. In the next part of the paper, we will simulate the waves via Eq (6) to assess the

Fig 11. Behavior of Eq (8) as gei varies. (A) Velocity of the wave as a function of the strength of the inhibition onto the excitatory cells, gei for three different levels of

adaptation. Here σi = 0.5 is fixed throughout. Colored circles correspond to the parameter values used in the projections onto the (se, si)−phaseplanes in panels B,C. Small

filled black square shows termination of the pulse to a front (see text).

https://doi.org/10.1371/journal.pcbi.1010697.g011

PLOS COMPUTATIONAL BIOLOGY Control of traveling waves

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1010697 September 5, 2023 16 / 32

https://doi.org/10.1371/journal.pcbi.1010697.g011
https://doi.org/10.1371/journal.pcbi.1010697


stability of the solutions shown in this part of the paper. We find that for gei large enough, the

traveling wave loses stability as σi increases, leading to an apparent Hopf bifurcation. The criti-

cal values of σi are depicted by the filled black squares in panel A.

Instabilities of the wave. We have used the solutions obtained by our shooting methods

as initial data in Eq (6) and then solved the resulting equations forward in time to test stability.

In the cases where gei or gad vary, but σi = 0.5 is fixed, we have found that the solutions on the

upper velocity curve appear to be stable. For example, when gad = 0.1, we have increased gei to

8 and find that the wave persists. However, this does not seem to be the case when we increase

σi, the spread of inhibition. Fig 13 shows that the wave exists up to at least σi = 3. On the other

hand, Fig 14 (top) shows the result of starting near the exact traveling wave for three values of

Fig 12. Behavior of Eq (8) as gad varies. (A) Velocity of the wave as a function of the adaptation, gad for three different values of gei. Here σi = 0.5 is fixed throughout.

Colored circles correspond to the parameter values used in the projections onto the (se, si)− and (se, z)− phaseplanes in panels B,C. Small filled black squares as in Fig 11.

https://doi.org/10.1371/journal.pcbi.1010697.g012
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σi. For σi = 1.2 (recall that σe = 1) one can start to see a bit of oscillation in the wave propaga-

tion, but it damps out and all eventually becomes the regular wave. When σi = 1.48 the wave

propagates but there is a spatiotemporal modulation of the wave. It appears that there is a

Hopf bifurcation to an oscillatory modulated wave as the spread of inhibition increases. Desta-

bilization of traveling pulses has also been reported in other work [23, 39] and appears to be

Fig 13. Behavior of Eq (8) as σi varies. (A) Velocity of the wave as a function of the spatial decay of inhibition, σi for

three different pairs (gei, gad). Filled circles correspond to the parameter values used in the projections onto the (se, si)
− phaseplane in panel B. Squares mark apparent Hopf bifurcations of the waves.

https://doi.org/10.1371/journal.pcbi.1010697.g013
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through a similar mechanism. The modulated wave finally seems to break down once σi gets

too large (here, around σi� 1.54). This behavior is not confined to the exponential kernel, nor

does it require a smooth firing rate function as can be seen in the middle and lower rows

respectively.

Low adaptation. Additional bifurcations and pattern formation as well as multistability

can be found in Eq (6) when the adaptation is small or turned off. Fig 15 shows some examples

of the dynamics of the solitary traveling wave when gad = 0 and σi increases. (We remark that

the same transitions are seen for gad nonzero but sufficiently small.) In Panel A, the waves

appears to “bounce” off the boundaries forming repeated zigzag waves. As σi increases these

waves develop periodic modulations (panel B) such that further increases in σi break up into

regular stripes (panel C). These stripes persist for larger σi. They are large amplitude and, since

the rest state remains asymptotically stable, they do not directly emerge as Turing patterns.

These stripes coexist with the zigzag waves and the solitary traveling waves for a range of σi. In

panel D, we start at the striped initial conditions but lower σi to 1.51 and observe the stripes

break up into a series of traveling pulses.

Fig 14. Simulations of the traveling pulse for Eq (6) with (gei, gad) = (2.0, 0.1) for different values of σi. Top row: smooth firing rate function (2) and

exponential kernel; middle row: smooth firing rate, Gaussian kernel; last row: Heaviside firing rate function, exponential kernel.

https://doi.org/10.1371/journal.pcbi.1010697.g014
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Heaviside approximation. In order to get some more insight into the behavior of Eq (6)

as well as explore the instabilities, we will approximate the nonlinearity (2) by a step function

and then rescale to put it into a simpler form that is suitable for analysis. The first step is to

choose parameters, a1, a2, so that if we replace the smooth F(G, d) with a1H(G − a2), then,

quantities such as the wavespeed and amplitudes are similar at some nominal parameter value.

We pick (gei, gad, σi) = (2, 0.1, 1), we choose a1 = 0.04, a2 = 0.12 so that the velocity of the waves

matches that of the exponential kernel with smooth nonlinearity. Fig 16 shows the comparison

of the times series for se(40, t) and phaseplane projections for the smooth and Heaviside func-

tion nonlinearities as and exponential and Gaussian kernels. Panels A,B show that while the

heights do not match well (the step function saturates), the widths are roughly the same as is

the velocity. For the Gaussion kernel, with our choice of parameters, the step function wave is

Fig 15. Complex dynamics without adaptation, gad = 0. (A) σi = 1.6; (B) σi = 1.636; (C) σi = 1.64; (D) σi = 1.51.

https://doi.org/10.1371/journal.pcbi.1010697.g015
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much faster than the smooth wave. In panel B, we remove all the inhibition and increase gad to

0.25. Here both the velocity and width still match and the results for the Gaussian kernel are

more similar. In panels (C,D), the projections into the phaseplanes are shown. The plots are all

qualitatively similar.

Analysis of the Heaviside model. As a first step, we replace se, si, z by a1teŝe, a1ti ŝi, and

a1tzẑ respectively and then drop the hats over the variables to obtain a “normalized” step func-

tion model:

te
@seðx; tÞ
@t

¼ � seðx; tÞ þHðgeekeSeðx; tÞ � geikiSiðx; tÞ � gadkzSzðx; tÞ � a2Þ

ti
@siðx; tÞ
@t

¼ � siðx; tÞ þHðgiekeSeðx; tÞ � giikiSiðx; tÞ � a2Þ

tz
@zðx; tÞ
@t

¼ � zðx; tÞ þHðgeekeSeðx; tÞ � geikiSiðx; tÞ � gadkzSzðx; tÞ � a2Þ

Fig 16. Comparison between the smooth model (s) and the Heaviside (h) models for the exponential (e) and Gaussian (g) kernels. In (A, C),(gei,
gad, σi) = (2, 0.1, 1); in (B,D) gei = 0, gad = 0.25 Time series plots show se(40, t) and phaseplanes show si(40, t) and z(40, t) on the y-axes.

https://doi.org/10.1371/journal.pcbi.1010697.g016
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where κβ = a1τβγβ. We replace z(x, t) in the adaptation by

Szðx; tÞ ¼ ð1=szÞ
Z

R
Wððx � yÞ=szÞzðy; tÞ;

where we let σz be very small. As we will see below, the reason for this is to avoid some techni-

cal difficulties when analyzing the stability. Now se, si, z all take values between 0 and 1. For

our parameter choices κe = 0.92, κi = 0.37333, and κz = 7.333333.

To study the existence and stability of traveling waves, we replace x by the moving variable,

ξ = ct + x. Traveling waves are then just solutions independent of t. In this coordinate system,

we obtain

te
@seðx; tÞ
@t

þ cte
@seðx; tÞ
@x

¼ � seðx; tÞ þ HðgeekeSeðx; tÞ � geikiSiðx; tÞ � gadkzSzðx; tÞ � a2Þ

ti
@siðx; tÞ
@t

þ cti
@siðx; tÞ
@x

¼ � siðx; tÞ þHðgiekeSeðx; tÞ � giikiSiðx; tÞ � a2Þ

tz
@zðx; tÞ
@t

þ ctz
@zðx; tÞ
@x

¼ � zðx; tÞ þHðgeekeSeðx; tÞ � geikiSiðx; tÞ � gadkzSzðx; tÞ � a2Þ:

ð9Þ

Steady states can be written as se(ξ, t) = ue(ξ) etc where each uβ(ξ) must vanish as ξ! ±1. Let

IbðxÞ ¼ gbekeReðxÞ � gbikiRiðxÞ � gadkzRzðxÞ � a2

for β 2 {e, i} and Re,i,z(ξ) are the convolutions of ue,i,z(ξ) with their respective kernels. (Note

that there is no adaptation for the inhibitory cells.) The step function is 0 (1) if Iβ(ξ) is negative

(resp., positive). Let Ie(ξ) be positive for 0< ξ< a, and Ii(ξ) be positive for b< ξ< d. Our first

goal is the solve for (c, a, b, d) whose values characterize the wave. (Note that since the waves

are translation invariant, we can shift ξ so that ue(ξ) “turns on” at ξ = 0.) By continuity, we

must have Ie(0) = Ie(a) = 0 and Ii(b) = Ii(d) = 0 along with the requirement that the derivatives

of Ie,i(ξ) with respect to ξ be nonzero at these crossings. Given (c, a, b, d) we can solve for ue,i,
z(ξ) as they solve

ctb
dub
dx
¼ � ubðxÞ þHðIbðxÞÞ

(where Iz(ξ) = Ie(ξ)). For example:

uiðxÞ ¼
0 x < b
1 � expð� ðx � bÞ=ðctiÞÞ b < x < d
ð1 � expð� ðd � bÞ=ðctiÞÞÞ expð� ðx � dÞ=ðctiÞÞ d < x

;

8
<

:

with similar expressions for ue(ξ) and uz(ξ). Given these functions, we can then evaluate the

convolutions, Re,i,z(ξ) and thus obtain Ie(ξ), Ii(ξ) in terms of (ξ, c, a, b, d). Setting them to zero

at the appropriate values of ξ gives us four equations in four unknowns:

Ieð0Þ � F1ðc; a; b; dÞ ¼ 0

IeðaÞ � F2ðc; a; b; dÞ ¼ 0

IiðbÞ � F3ðc; a; b; dÞ ¼ 0

IiðdÞ � F4ðc; a; b; dÞ ¼ 0:

We get good guesses for (c, a, b, d) using the simulation of Eq (6) (with the step function non-

linearity) and then using a root finder. The functions Fj are complicated but easily obtained

from the integrals using a symbolic algebra package.
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Fig 17 shows how various parameters related to the shape of the pulse vary as the three

main parameters, gei, gad, σi vary around their nominal values. In particular, the speed, c can be

compared to the behavior of the smooth nonlinearity, Figs 11–13. The speed decreases with

any increases in these three parameters. Recall that a is the value of ξ where the input into the

excitatory population falls back below threshold so that a is a surrogate for the width of the

excitatory pulse. In fact, it is the distance from to time that excitation starts to the point that it

reaches its peak. As intuitively expected, the width increases with reduced inhibition and adap-

tation. but has a nonmonotonic behavior with respect to σi. For ξ 2 (b, d), the input to the inhi-

bition is above threshold; as with excitation, b marks the onset of firing for the inhibitory

population and dmarks its peak.

Stability of the wave. The big advantage of the Heaviside function approach is that it is

possible to determine the stability of the waves. In order to do this, we need to formally linear-

ize Eq (9) about the traveling wave solutions, (ue(ξ), ui(ξ), uz(ξ)). Let se(ξ, t) = ue(ξ) + exp(λt)
ve(ξ) with similar expressions for si(ξ, t), z(ξ, t) where λ and vβ(ξ) are to be obtained. The wave

will be unstable if <λ> 0. Plugging this into Eq (9) and retaining the linear terms, we obtain

the following equations:

lteveðxÞ þ cte
dve
dx

¼ � veðxÞ þ dðIeðxÞÞGeðxÞ

ltiviðxÞ þ cti
dvi
dx

¼ � viðxÞ þ dðIiðxÞÞGiðxÞ

ltzvzðxÞ þ ctz
dvz
dx

¼ � vzðxÞ þ dðIeðxÞÞGeðxÞ

GeðxÞ ¼ ½geekeQeðxÞ � geikiQiðxÞ � gadkzQzðxÞ�

GiðxÞ ¼ ½giekeQeðxÞ � giikiQiðxÞ�

ð10Þ

where Qβ(ξ) are the convolutions of the variables, vβ(ξ) with their respective kernels and the

delta function is interpreted as:

dðIðxÞÞ ¼
dðx � x1Þ

jI0ðx1Þj
þ
dðx � x2Þ

jI0ðx2Þj

where ξ1.2 are the values of ξ where I(ξ) crosses 0. For excitation and adaptation, ξ1 = 0, ξ2 = a
and for inhibition, ξ1 = b, ξ2 = d. Note that our “transversility” requirement implies that the

derivatives of Iβ(ξ) at these points are nonzero. Before turning to the analysis of this equation,

we first explain why we have convolved the adaptation with a sharp kernel. In each equation in

the system (10) the delta functions are multiplied by Γβ(ξ). Consider the equation for vz(ξ). At

ξ = 0 vz(ξ) must jump (since its derivative is a delta function). However, if we replaced Qz(ξ)
with vz(ξ), then Γe(ξ) would have a discontinuity at ξ = 0, so it is not clear how to evaluate the

jump in vz(ξ) at ξ = 0. For this reason, we convolve vz(ξ) with a narrow kernel to assure that

Γe(ξ) is continuous at ξ = 0 (and ξ = a) and avoid this technical difficulty.

Consider ve(ξ) first. (The other two follow similarly.) We can write:

dve
dx
¼ � ve=zþ A0dðxÞ þ Aadðx � aÞ

where A0,a are the jumps for ve(ξ) and ze = cτe/(λτe + 1). The solution to this equation is:

veðxÞ ¼ A0 expð� x=zeÞHðxÞ þ Aa expð� ðx � aÞ=zeÞHðx � aÞ:
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Fig 17. Properties of the traveling wave for the Heaviside firing rate function and the exponential kernel as parameters vary. The baseline

values are (gei, gad, σi) = (2, 0.25, 0.5). Here c is the wave speed, a is the width of the suprathreshold input to the excitatory population, b is the onset of

the inhibition, and d is the offset. b − d is the width of the suprathreshold input to the inhibitory population.

https://doi.org/10.1371/journal.pcbi.1010697.g017
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We similarly obtain:

vzðxÞ ¼ A0 expð� x=zzÞHðxÞ þ Aa expð� ðx � aÞ=zzÞHðx � aÞ

viðxÞ ¼ Ab expð� ðx � bÞ=ziÞHðx � bÞ þ Ad expð� ðx � dÞ=ziÞHðx � dÞ;

where zz,i are defined similarly to ze. The size of the jumps, A0,a,b,d is found by plugging 0, a, b
of d into Γβ(ξ) after dividing by the slopes jI0

b
ðxÞj and cτβ. Let ~A be the column vector (A0, Aa,

Ab, Ad)T. Then we obtain

~A ¼ MðlÞ~A

where M(λ) is a 4 × 4 matrix obtained from evaluating Γβ. For example, Γe(0) depends on con-

volutions of ve,i,z evaluated at ξ = 0 and these depend linearly on A0,a,b,d. The coefficients multi-

plying the A0,a,b,d are then the entries of M(λ). We emphasize that each entry in M depends on

the unknown eigenvalue, λ. The equation for ~A has a nontrivial solution if and only if

EðlÞ � detðM � IÞ ¼ 0:

The complex function, E(λ) is called the Evans function [24, 26, 27]. The zeros of this function

are the eigenvalues for the linearized system. We set σz = 0.001 in all the subsequent calcula-

tions; thus, Qz(ξ) is quite close to vz(ξ) but is continuous in ξ. We grid an area in the complex

plane around λ = 0, and use MATLAB to compute E(λ). We then plot the zero contours of the

real and imaginary parts of E(λ). Intersections of these contours are the eigenvalues. For each

choice of parameters, we need to determine c, a, b, d and then compute the relevant integrals

at the values of ξ 2 {0, a, b, d}.

Recall Fig 14 suggests that as σi increases, the waves lose stability via a Hopf bifurcation.

Thus, we consider the stability of the wave as we vary σi. We fix gei = 2, gad = 0.25. Fig 18 shows

the results of this stability calculation. The top panel shows the contours of the real and imagi-

nary parts of E(λ) as λ is varied in the region [−1, 0.2] + i[−1, 1]. The blue (red) curves show

the real (imaginary) zero contours. They always intersect at λ = 0 corresponding to the transla-

tion invariance of the wave. For σi = 1.5, there is a complex eigenvalue with a negative real part

that is close to 0 (indicated by the filled circle). When σi = 2.0, this intersection has moved over

to the right half plane indicating that the wave is unstable. In Panel B, we follow this eigenvalue

as we vary σi and see that at σi� 1.8, the real part of the eigenvalue changes from negative to

positive. At this point, the imaginary part is approximately, 0.45, indicating the possibility of a

Hopf bifurcation. The numerical simulations we did above indicate that it is supercritical and

a periodically modulated wave emerges for a narrow range of values of σi. In Panels C and D,

we find the critical value of σi where <λ = 0 as we covary σi and either gei or gad. In both cases,

the dependence of σi is nonmonotone. We were not able to make gei (or gad) too small before

the calculation failed. In sum, our stability calculations indicate that as the spatial spread of

inhibition increases, the traveling pulse loses stability through a complex eigenvalue. For a lim-

ited range of σi beyond this critical value, there are periodically modulated waves. These waves

eventually break up and the pulse can no longer propagate.

Discussion

In this paper, we have explored the role of inhibition and adaptation on the control and propa-

gation of traveling pulses in cortical networks. Starting with a spiking model, we showed that

at high levels of recurrent inhibition, only about 10% of the excitatory neurons fire during a

pulse and this is consistent with the small amplitude and somewhat irregular LFP seen in the

experiment Fig 2. Lowering the amount of inhibition led to both faster waves and much
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greater participation of the excitatory neurons. While there remain many questions about the

computational role for waves [1], one possibility is that a wave of activity can depolarize neu-

rons sufficiently to prime them for a later stimulus [17]. We demonstrated such an effect in Fig

5 in the spiking network.

To gain better insight into how parameters change the properties of the waves, we derived a

mean-field approximation for the spiking model. Using simulation and numerical shooting,

we were able to study how the velocity and magnitude of the waves changed as parameters

relating to negative feedback were changed. In particular, we found that without enough adap-

tation, as inhibition is reduced, the pulse wave is lost to a front. Conversely, as the strength or

spread of inhibition increases, the pulse wave is lost through two mechanisms. First, it can be

lost through a saddle-node bifurcation; as the inhibition increases, no wave exists. This loss of

existence occurs at a finite value of velocity, c (c.f. Figs 11 and 12). For this reason, we have not

been able to get the same dynamic range of velocity as is seen in the experiments, (e.g. Fig 2).

The biggest dynamic range that we find is about 5-fold. The recent model by Gonzalez-

Ramirez [13] has a similar range in velocities as we do. One possible explanation for the wide

range in velocities seen in slice is that there are other sources of inhibition that are not directly

dependent on the excitation. This “background inhibition” could act to increase the threshold

to firing of the excitatory neurons which could lower the minimal velocity of the traveling

waves. The second mechanism through which constant speed traveling waves are lost is

through an apparent Hopf bifurcation. This instability leads to periodically modulated waves

as seen in Fig 14. In this case, we changed the “footprint” (spatial spread) of the inhibition, and

eventually, the wave fails to propagate. In the Heaviside approximation, we show that changing

Fig 18. Stability of the traveling pulse. (A) The contours of the real and imaginary parts of the Evans function E(λ) whose intersections are the

eigenvalues. gei = 2.0, gad = 0.25 and σi is indicated in the figure. (B) Real part of the maximal nonzero eigenvalue as σi varies. Zero crossing is a Hopf

bifurcation. (C,D) Value of σi where there is a Hopf bifurcation as gei or gad vary.

https://doi.org/10.1371/journal.pcbi.1010697.g018

PLOS COMPUTATIONAL BIOLOGY Control of traveling waves

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1010697 September 5, 2023 26 / 32

https://doi.org/10.1371/journal.pcbi.1010697.g018
https://doi.org/10.1371/journal.pcbi.1010697


either the strength of adaptation or inhibition can have a similar destabilizing effect, c.f. Fig 18.

Other interesting effects that we found in the smooth case are waves that reflect off the bound-

aries and transition to pattern formation (Fig 15); the exact bifurcations which underly this are

not completely resolved.

Our present work is similar to the paper by Gonzalez-Ramirez et al [13] in that both models

study waves in networks with excitatory and inhibitory neurons in addition to a slow adapta-

tion that serves to suppress run-away excitation. Their adaptation is linear whereas ours is

nonlinear; both forms of adaptation have an large effect at damping the strong excitation. One

main difference between our work and theirs is in the effects of inhibition. In their paper, the

main source of control of activity is the adaptation while in ours it is the inhibition. Because

adaptation is slow, it cannot control the magnitude of the excitation so that the waves that

occur in adaptation-dominated networks are much broader and involve almost all of the excit-

atory neurons. This can be seen in or spiking simulations in Fig 3 (gei = 0) and in Fig 4C. In

our work the inhibition has a considerable effect on controlling the width of the wave in con-

trast to [13] (c.f. Fig 7 in their paper). In their model, inhibition increased the wave speed

while in ours and in the experimental results in Fig 2, velocity decreased. They found that the

inhibition had to be 10 fold slower than the excitation in order to attain propagation; in our

model the time scales of excitation and inhibition were similar. One explanation for these dif-

ferent results is that they were primarily interested in seizure-type waves while our focus as

been on sensory evoked waves. The underlying assumptions of the two different models are

likely to be different. Their approach to varying parameters is also quite different from ours as

throughout the paper they seek analytic expressions for the wave. As a consequence, they treat

width and velocity as parameters in order to obtain parametric expressions for other parame-

ters such as the strength of inhibition. We numerically compute velocity and width directly by

continuation so we can compare the wave shape and velocity to the parameters relevant to

inhibition. Finally, we found a number of bifurcations to more complex wave forms (e.g. peri-

odically modulated waves) as we varied the spatial spread and strength of inhibition which

provided us with information on how the waves cease to propagate.

In earlier experimental work [10, 40], these authors show that the ability of waves to initiate

and propagate depends on the feedback between layers 2/3 and 5 in the cortex. The dense

recurrent excitation in layer 5 coupled with the longer range excitatory interactions underly

the initiation and propagation of traveling waves in normal and disinhibited cortex. Thus, a

natural extension of the present work is to create a two-layer network and explore how strong

recurrent connections in one layer (5) interact with weaker but longer-range connections in

the other (2/3) to produce propagation.

In conclusion, in this paper we have tried to explore how inhibitory feedback and intrinsic

adaptation work together to control the propagation of waves through space. Sensory evoked

waves are one possible mechanism for transmitting information in one cortical area or region

to another. Recurrent excitation is required to maintain the transmission in a robust manner.

However, this strong excitation must be controlled. Our analysis and simulations suggest ways

in which inhibition can keep the activity at reasonable levels while at the same time allowing

for long distance propagation.

Materials and methods

Experimental methods

Ethics statement. Sprague-Dawley rats (P14-P35) and C57BL6 mice (P21-P60) of both

sexes were used in accordance with protocols (#05-057, #08-055 and #10-014) approved by

Georgetown University Animal Care and Use Committee.
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Cortical slice preparation. Following deep isoflurane anesthesia, animals were rapidly

decapitated. The whole brain was subsequently removed and chilled in cold (0˚C) sucrose-

based cutting artificial cerebrospinal fluid (sACSF) containing (in mM) 252 sucrose; 3 KCl; 2

CaCl2; 2 MgSO4; 1.25 NaH2PO4; 26 NaHCO3; 10 dextrose and bubbled by 95% O2, 5% CO2.

Cortical slices (300 um thick) were cut in coronal sections from dorsal to ventral brain with a

vibratome (Leica, VT1000S). Slices are incubated in ACSF contained (in mM) NaCl, 132; KCl,

3; CaCl2, 2; MgSO4, 2; NaH2PO4, 1.25; NaHCO3, 26; dextrose 10; and saturated with 95% O2,

5% CO2 at 26-27˚C. The incubation chamber is equipped with a small pump to circulate oxy-

genated ACSF for 2-5 hours [41]. In well circulated conditions the slices can recover well from

the injury of slicing. Fully recovered slices can remain viable for up to 24 hours [41, 42]. Bicu-

culline was added through the perfusion system for about 5 minutes. The effects persist until it

is removed from the bath.

Field potential recording (LFP) in slice. Low resistance glass microelectrodes (50-150KO

tip resistance) were used for LFP recordings. The electrodes were pulled with a Sutter P87

puller (Sutter Instruments) with 6 controlled pulls. Electrodes were filled with ACSF. The

recordings were done in a submerged chamber, and slices were perfused on both sides at a

high flow rate (10-30 ml/min). The LFP data are amplified 1000x by a custom-made amplifier

(0.01-1000Hz) and digitized at 3000 Hz by a 12-bit USB Analog-to-digital converter (National

instruments). From each brain slice we can usually record continuously for 3—8 hours.

Voltage-sensitive dye recording. The imaging apparatus and methods are described in

detail in [43, 44]. Briefly, the slices were stained with ACSF containing 0.005 to 0.02 mg/ml of

an oxonol dye, NK3630 [45] for 30 to 60 minutes. A 124-element photodiode array system was

used for the imaging. The preparation was trans-illuminated by 705 ± 20 nm light for the

imaging. An objective of 5× (0.12 NA, Zeiss) was used to form the image on the diode array.

Each photodetector received light from an area of 330 × 330 μmm2 of the cortical tissue. With

trans-illumination, neurons through the entire thickness of the slice(450 μm) contributed

equally to the signal. The resting light intensity was about 109 photons/msec per detector and

the VSD signal of the oscillation was about 0.01% (peak-to-peak) the resting light intensity.

The signal was AC coupled at 0.1 Hz, amplified 200 times, low-pass filtered at 333 Hz, and

then digitized at 1,000 frames /sec with a 12 bit accuracy.

Spiking model

The spiking model consists of a network of Ne = 400 excitatory (E) and Ni = 80 inhibitory (I)

quadratic integrate-and-fire neurons which we transform to a network of theta neurons for

ease in integration. For simplicity of later reduction, we use “current” synapses rather than

conductance-based synapses. Each excitatory neuron, j = 0, . . ., Ne − 1 is positioned at a spatial

location x 2 [0, 1) where x = j/400 and each inhibitory neurons, j = 0, . . ., Ni − 1 is positioned

at x = j/80. Connections between neurons are made probabilistically and fixed:

WE!Eðx; yÞ ¼ 0:35 expð� 10jx � yjÞ < rand

WE!Iðx; yÞ ¼ expð� 10jx � yjÞ < rand

WI!Eðx; yÞ ¼ expð� 20jx � yjÞ < rand

WI!Iðx; yÞ ¼ expð� 20jx � yjÞ < rand

where rand is a uniform random number in (0, 1). This produces a fairly sparse distance-

dependent network. Each E cell receives about 27 excitatory and 8 inhibitory inputs; each I cell

receives about 80 excitatory and 8 inhibitory inputs. All inputs have weight 1. The voltage of
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each neuron evolves as:

Cm
dV
dt

¼ gL
ðV � ELÞðV � ETÞ

ET � EL
� gbeSbeð�V � EsynÞ � gbiSbið�V � IsynÞ

� gadzð�V � EKÞ þ IbðtÞ þ zbXðtÞ

� gL
ðV � ELÞðV � ETÞ

ET � EL
þ ItotalðtÞ

ð11Þ

where β 2 {e, i} and �V ¼ ðEL þ ETÞ=2. Sβe, Sβi are the weighted synaptic inputs. For example

See ¼WE!Ese. z is spike frequency adaptation and is only applied to the excitatory cells, with

conductance, gad. A neuron spikes at time tsp if lim t ! t�spVðtÞ ¼ þ1 whence it is immedi-

ately reset to −1. The synaptic variables, se, si and the adaptation, z satisfy first order kinetics:

dw
dt
¼ � w=tþ dðt � tspÞ

where w 2 {se, si, z}. X(t) is Gaussian noise. Standard parameters are Cm = 1μF/cm2, gL =

0.1mS/cm2, gee = 0.2mS/cm2, gei = 1mS/cm2, gie = 0.2mS/cm2, gii = 0.1mS/cm2, EL = −65mV, ET
= −50mV, gad = 1ms/cm2, EK = −85mV, Esyn = 0mV, Isyn = −75mV, ze ¼

ffiffiffiffiffiffiffiffiffi
0:05
p

,

zi ¼ 0:5
ffiffiffiffiffiffiffiffiffi
0:05
p

, τe = 3msec, τi = 4msec, and τz = 50msec. In order to simulate this model exactly,

we transform it to the theta model:

V ¼ �V þ ðET � ELÞ=2 tanðy=2Þ

so that θ evolves as

Cm
dy
dt
¼ � gL cos yþ ð1þ cos yÞGtotalðtÞ; ð12Þ

where Gtotal(t) = 2Itotal(t)/(ET − EL) is the input conductance. Spiking occurs when θ crosses π
from below; θ is then reset to −π and the corresponding synaptic and adaptation variables are

incremented by 1. We integrate the system of equations with Euler-Maruyama method using

dt ¼ 0:05msec.

Traveling waves

Traveling waves satisfy, s(x, t) = S(x + ct) = S(ξ) where c is the velocity of the wave, ξ = x + ct is

the traveling coordinate, and s 2 {se, si, z}. If the convolution kernels, We,i(ξ) are exponential,

then they can be inverted to become second order ODEs in ξ. This means that the system

Eq (7) can be written as a 7-dimensional ODE (see Results for details) with a 2-dimensional

unstable and 5-dimensional stable manifold. We use XPPAUT [46] to compute the homoclinic

orbits for this system via continuation with AUTO (specifically HOMCONT, the homoclinic

continuation package in AUTO). That is, we seek a traveling pulse solution to Eq (7), UðxÞ ¼
ðseðxÞ; siðxÞ; szðxÞ; SeðxÞ; SiðxÞ; S0eðxÞ; S

0
iðxÞÞ such that U(ξ) tends to the equilibrium value, �U as

|ξ|!1. In order to use HOMCONT, we need a good starting approximation for the pulse.

Since the stable manifold is two-dimensional, this is quite difficult numerically as two numbers

must be simultaneously found. Instead, to get a starting approximation, we first consider the

case where σi = 0 so that we have a 5-dimensional system. The equilibrium has a 1-dimensional

unstable manifold which we approximate from the eigenvector of the positive eigenvalue.

Given a guess for c, the wave velocity, we can compute the eigenvector, V+ corresponding to

this unstable eigenvalue. We solve the five-dimensional system with Uð0Þ ¼ �U � �Vþ where �

is a small number (typically dt, the stepsize of our numerical integrator). We vary c until the
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trajectory returns close to �U giving us a crude approximation to the homoclinic orbit. Next,

we create a 7-dimensional system by appending the dynamics for Si onto the 5-dimensional

system. Using our crude approximation for the 5-dimensional system, we can vary Sið0Þ; S0ið0Þ
to get an approximation for the homoclinic in the 7-dimensional system. We refine this

approximation in HOMCONT and then continue the homoclinic orbit in the parameters, σi,
gei, and gad.

Step function approximation

We approximate the smooth nonlinearity F with a scaled Heaviside step function and use this

to derive a series of nonlinear equations for the properties of the waves such as the velocity,

onset of inhibition and the width of the excitatory and inhibitory pulses. (see Results) We use

XPPAUT to study how these change with parameters since they are just roots of a set of non-

linear equations. We formally linearize about the traveling waves and compute the so-called

Evans Function [26] (see results for details). We then use MATLAB to find the roots of the

Evans Function in order to assess the stability of the waves. We use the fsolve function in

MATLAB to find the curves of Hopf bifurcations.
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