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Background. Varicella causes a major health burden in many low- to middle-income countries located in tropical regions. 
Because of the lack of surveillance data, however, the epidemiology of varicella in these regions remains uncharacterized. In this 
study, based on an extensive dataset of weekly varicella incidence in children ≤10 during 2011–2014 in 25 municipalities, we 
aimed to delineate the seasonality of varicella across the diverse tropical climates of Colombia.

Methods. We used generalized additive models to estimate varicella seasonality, and we used clustering and matrix correlation 
methods to assess its correlation with climate. Furthermore, we developed a mathematical model to examine whether including the 
effect of climate on varicella transmission could reproduce the observed spatiotemporal patterns.

Results. Varicella seasonality was markedly bimodal, with latitudinal changes in the peaks’ timing and amplitude. This spatial 
gradient strongly correlated with specific humidity (Mantel statistic = 0.412, P = .001) but not temperature (Mantel statistic = 0.077, 
P = .225). The mathematical model reproduced the observed patterns not only in Colombia but also México, and it predicted a 
latitudinal gradient in Central America.

Conclusions. These results demonstrate large variability in varicella seasonality across Colombia and suggest that 
spatiotemporal humidity fluctuations can explain the calendar of varicella epidemics in Colombia, México, and potentially in 
Central America.
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The varicella-zoster virus (VZV) causes varicella (chickenpox), a 
disease that afflicts over 70 million children every year world-
wide [1]. Although the disease is typically mild and self-limiting, 
it can result in pneumonia, encephalitis, sepsis, and death (over 
14 000 estimated deaths worldwide in 2019) [1], particularly in 
immunocompromised children [2]. After primary infection 
with VZV, the virus establishes latency in sensory neurons. 
Later in life, the virus can reactivate and cause shingles, a debil-
itating painful disease particularly prevalent in the elderly (2.9– 
19.5 cases per 1000 individuals over 50 years old) [3]. Hence, the 
large burden of varicella and shingles highlights the need to bet-
ter characterize the epidemiology of varicella.

Similar to many other infectious diseases [4], the incidence 
of varicella is highly seasonal, with a latitudinal gradient in 

the peak timing observed on a global scale [5]. In temperate re-
gions, this seasonality is typically characterized by a single peak 
at the end of winter (eg, in the United States and Germany) 
[6, 7], although 2 peaks have also been described (eg, in 
Japan and China) [8, 9]. The seasonal patterns in subtropical 
regions generally mirror those in temperate regions [10]. In 
tropical regions, however, varicella seasonality appears to be 
less definite, although observations have remained scarce be-
cause of a lack of epidemiological surveillance [11]. Bridging 
this data gap in tropical regions is crucial for 2 reasons. First, 
most of the morbidity and mortality associated with varicella 
affect low- to middle-income countries, many of which have 
a tropical climate [1]. Second, the climate in tropical regions 
—with almost constant temperature but variable precipitation 
and humidity during dry and rainy seasons—offers an oppor-
tunity to evaluate how different climatic variables impact vari-
cella transmission, expanding on previous studies in temperate 
regions [8, 12]. A better understanding of varicella seasonality 
in a given setting may support public health efforts, informing 
epidemic preparedness and infection control.

In this study, we aimed to characterize the calendar of vari-
cella epidemics across the climatically diverse regions of 
Colombia, where exhaustive surveillance has been in place 
for several years. Using a combination of statistical and math-
ematical models, we find that spatiotemporal variations of 
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humidity may explain the calendar of varicella epidemic across 
Colombia and México, and we predict the existence of a spatial 
gradient of varicella seasonality in Central American countries. 
This finding may have implications for epidemic preparedness 
and evaluating the impact of vaccination programs.

METHODS

Data Sources

Varicella Data
We gathered weekly varicella data for each municipality in 
Colombia using publicly available, clinically confirmed notifi-
cations from the Colombian national surveillance system 
(SIVIGILA) (Supplementary Data). We focused on the 2011– 
2014 period; we excluded earlier data to minimize reporting 
bias caused by the gradual introduction of the SIVIGILA after 
2007 and later data because of the varicella vaccine introduc-
tion in 2015 [13]. In addition, we focused on children ≤10 years 
because most cases of varicella typically occur in this age group. 
To avoid age misreporting, we excluded cases in which the re-
ported age differed from that calculated from the birthdate.

Colombia is divided into 1122 municipalities, administrate 
divisions that are roughly equivalent to counties. Because 
many municipalities had low case counts, for definiteness, we 
selected the municipalities with a signal-to-noise ratio (mean 
to standard deviation [SD] ratio of the weekly reports) above 
1 and an average of at least 5 varicella cases per week 
(Supplementary Figure 1).

Climate Data
Weekly mean temperature (unit, °C), specific humidity (g/kg), 
and relative humidity (%) data were extracted from the 32-km 
grid North American Regional Reanalysis (NARR) [14] dataset, 
and the total weekly precipitation was extracted from the 
10-km grid Climate Hazards Group InfraRed Precipitation 
with Station (CHIRPS) [15] dataset for each municipality. In 
addition, we calculated the absolute humidity (g/m3) from 
the relative humidity (Supplementary Figure 2) considering 
the altitude of the municipalities [16]. For México and 
Central America countries (Panamá, Costa Rica, Nicaragua, 
Honduras, El Salvador, Guatemala, and Belize), we obtained 
the specific humidity from the NARR for the capital city of ev-
ery first-level subnational division (Supplementary Data).

Descriptive Model of Varicella Seasonality

To describe the spatial variability in varicella seasonality across 
Colombia, we fitted generalized additive models (GAMs) to the 
weekly incidence data. These flexible extensions of generalized 
linear models allow the modeling of complex, potentially 
nonlinear associations using smooth functions of predictor 
variables while preventing overfitting by penalizing the wiggli-
ness of the function [17]. The base model included 2 predictors: 

a cyclic spline term to model the seasonality in each municipal-
ity and a municipality-year parametric intercept to capture the 
yearly average incidence in each municipality. We used a neg-
ative binomial model (with a log link) that included the log- 
transformed population size as an offset, so that the modeled 
outcome was the incidence rate. To model the spatial variability 
in varicella seasonality, we included a tensor product smooth 
between the week number and latitude with 2 smoothing bases: 
a cyclic spline for the week number and a cubic regression 
spline for the latitude. For all models, we used maximum like-
lihood to estimate the parameters of all models [18], and we cal-
culated the Akaike information criterion (AIC) to compare 
their parsimony.

Correlation Between Varicella Seasonality and Climatic Variables

We aimed to assess the correlation between the spatial variabil-
ity of varicella seasonality and that of climates across Colombia. 
However, we did not attempt to directly regress against mete-
orological variables because seasonal forcing in transmission 
and long-term changes in population immunity can result in 
complex, nonlinear incidence dynamics that may not be cap-
tured by standard regression models [19]. Instead, we first cal-
culated the dissimilarity matrix (using the Euclidean distance 
between standardized time series) of varicella data and of 
each climate variable between municipalities across 
Colombia. We also calculated the between-municipality dis-
similarity matrix of the following sociodemographic factors: 
population density, population density of children ≤10 years 
old, migration, and urbanization.

We used the dissimilarity matrices to cluster the municipal-
ities and evaluate the correlation between the climatic variables 
and varicella. We applied the partitioning around medoids al-
gorithm for clustering, and we estimated correlation between 
dissimilarity matrices using Mantel tests.

Transmission Models of Varicella Seasonality

To further test and formalize the hypothesis that climatic var-
iables explain the seasonality of varicella in Colombia, we de-
veloped a simple compartmental transmission (SEIR) model 
(Supplementary Methods), in which the transmission rate of 
varicella infection was seasonally forced by changes in contact 
rates due to alternating school terms and school vacations (ie, 
term-time forcing) and by climate. Specifically, term-time forc-
ing was modeled by a square wave whose amplitude was fixed 
based on the empirical observation that schoolchildren make 
40% fewer contacts during school holidays than during school 
terms [20]. In sensitivity analyses, we also tested 2 additional 
scenarios: 1 with lower amplitude and 1 without term-time 
forcing. For climate forcing, we assumed an exponential rela-
tionship between the transmission rate and the standardized 
climatic variable. This relationship was scaled by an amplitude 
parameter, whose value was approximately calibrated to 
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reproduce the observed seasonality of varicella across 
Colombia. The model was represented as a set of differential 
equations describing the movement of individuals between 
the compartments. Furthermore, we used the same model to-
gether with data from climatic variables from México and 
countries in Central America to predict varicella seasonality 
in these countries.

RESULTS

Incidence of Varicella in Colombia Between 2011 and 2014

Between 2011 and 2014, a total of 421 085 varicella cases were re-
ported in Colombia. Once cases with missing or misreporting age 
were excluded (0.018% and 0.097%, respectively) (Supplementary 
Figure 3), children ≤10 years accounted for 55.5% of the total cas-
es throughout the country. After applying the municipality selec-
tion criteria, the final dataset comprised 156 976 cases in 25 
municipalities (67.4% of all the cases in children up to age 10), 
which spanned a large area and range of climates of Colombia 
(latitude, 1.2–11.0° N; longitude, 72.5–77.3° W; and 6 of the 17 
Köppen-Geiger [21, 22] climate classifications in the tropics 
(Figure 1A and Supplementary Figure 1).

Most varicella cases were reported in Bogotá (56.1% of the 
total), followed by Cali (8.30%) and Medellín (7.06%), the 3 
most populated municipalities in Colombia (Figure 1B). The 
yearly reported incidence varied substantially (range, 3291.8 
cases per 100 000 children in Facatativá in 2012 to 113.9 cases 
per 100 000 children in Cartagena in 2012). The high incidence 
in Facatativá may be explained by its proximity to Bogotá 
(Figure 1C). However, the mean age of infection was similar 
across municipalities, ranging from 4.6 to 5.5 years 
(Supplementary Figure 3).

Latitudinal Gradient Demonstrates Substantial Spatial Heterogeneity of 
Varicella Seasonality Across Colombia

The incidence of varicella was markedly seasonal across 
Colombia, with an early peak at approximately week 15 more 
pronounced in the northern municipalities and a late peak at 
approximately week 40 more pronounced in the southern mu-
nicipalities. Hence, the amplitude of both peaks changed sub-
stantially with latitude (Figure 1D). The best-fitting GAM 
confirmed the spatial variability in varicella seasonality, with 
strong statistical evidence of a latitudinal gradient (ΔAIC =  
309 compared with a model with no spatial variability) 
(Figure 2A and Supplementary Figure 4). The early peak was 
more pronounced than the late peak in northern (latitude, 
7.0–11.0° N) municipalities, for example, in Cúcuta (7.9° N lat-
itude) (Figure 2B and C). By contrast, the late peak had higher 
amplitude in southern (latitude: 1.2–7.0° N) municipalities, 
such as Bogotá (4.7° N latitude) (Figure 2B and C). The best- 
fitting model performed well at reproducing the observed 
data in every municipality (R-squared range, 71.9% in Soacha 
to 98.5% in Mosquera) (Figure 2D), with little evidence of 

residual autocorrelation (Durbin-Watson statistic = 0.35, 
P = .49). Hence, our descriptive model accurately recapitulated 
the spatiotemporal dynamics of varicella and evidenced sub-
stantial spatial heterogeneity of varicella seasonality across 
Colombia.

Spatial Variability of the Varicella Seasonality Correlates With Variability 
in Climates Across Colombia

The latitudinal gradient described above suggests that spatial 
heterogeneity of climates could explain the observed seasonal-
ity of varicella across Colombia. We formalized this hypothesis 
of a causal framework using a directed acyclic graph (DAG), in 
which latitude explained the between-municipality distance 
and variability in climate, which itself explained the variability 
in varicella seasonality (Distance←Latitude→Climate→ 
Varicella) (Supplementary Figure 5). To test this hypothesis, 
we first applied clustering methods to identify groups of munic-
ipalities with broadly similar varicella seasonality. In keeping 
with our previous observations, we found evidence for 2 clus-
ters (Hopkins statistic = 0.69): one including northern munic-
ipalities with a more pronounced early peak and the second 
including southern municipalities with a more pronounced 
late peak (Figure 3A). Next, we clustered the data for each cli-
mate variable (Figure 3B). For specific humidity, absolute hu-
midity, and precipitation, we found evidence for 2 clusters 
(Hopkins statistic = 0.75, 0.74 and 0.79) (Supplementary 
Figure 6), which broadly matched the 2 clusters of varicella sea-
sonality (fraction of matching pairs: 81.8%, 81.8%, and 95.5%). 
By contrast, the temperature and relative humidity variables 
clustered into more than 2 groups that did not match those 
of varicella seasonality (Supplementary Figure 6).

To strengthen the evidence for a link between climate and 
varicella seasonality, we ran a series of Mantel tests to assess 
the correlation between the spatial dissimilarity matrix of var-
icella seasonality and that of every climate variable (Figure 3C). 
We found evidence of strong positive correlations with all hu-
midity variables and precipitation but not with temperature 
(Table 1). We also ran additional analyses to test our assump-
tion that distance between municipalities does not directly af-
fect varicella seasonality (Supplementary Figure 5). Despite 
evidence of a positive correlation with distance from a direct 
Mantel test (Mantel statistic = 0.278, P = .017), this correlation 
became negligible after correcting for latitude or humidity in a 
partial Mantel test (Mantel statistic = 0.132 and −0.002, 
P = .131 and P = .456, respectively). Moreover, the correlation 
with humidity remained robust after controlling for latitude or 
distance (Mantel statistic = 0.316 and 0.337, P = .003 and 
P = .003, respectively). In addition, we found no evidence of 
a latitudinal gradient in the considered sociodemographic fac-
tors (Supplementary Figure 7) and, therefore, no correlation 
with the latitudinal gradient in varicella seasonality 
(Supplementary Table 1). These results suggest that spatial 
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variability in climate across municipalities, but not the spatial 
distance between municipalities, can explain the variation in 
the seasonality of varicella across Colombia.

A Mechanistic Model With Transmission Rate Seasonally Forced by 
Humidity Can Reproduce the Latitudinal Gradient of Varicella Seasonality 
in Colombia

To further examine the impact of climate on varicella season-
ality in Colombia, we formulated a simple mechanistic model 
in which the transmission rate of varicella infection was 

seasonally shaped by alternating school terms and school holi-
days (ie, term-time forcing) [23] and by variations of specific 
humidity (ie, humidity forcing). In the absence of humidity 
forcing (Figure 4A, left heatmap), the incidence of varicella 
gradually increased after the Christmas and mid-year vaca-
tions, resulting in a first peak at approximately week 24 and a 
second, more pronounced peak at approximately week 49 
throughout Colombia. As expected, however, this scenario 
failed to recreate any latitudinal gradient. By contrast, a 

A

C D

B

Figure 1. Varicella reports and incidence of varicella in Colombia, 2011–2014. (A) Map of included municipalities. (B) Mean weekly varicella reports in the municipalities of 
Colombia: lighter lines show the weekly reports every year. (C) Mean yearly varicella incidence per 100 000 children ≤10 years of age per municipality, and (D) mean weekly 
varicella incidence of varicella per municipality (rescaled so that 0 is the minimum and 1 is the maximum number of cases per municipality). From bottom to top, the 
municipalities are ordered by increasing latitude.
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latitudinal gradient was predicted by simulations with a small 
amplitude of humidity forcing (where a 1-SD increase in hu-
midity resulted in a 4% decrease in the transmission rate of var-
icella infection) (Figure 4A, middle heatmap). Increasing the 
effect of humidity (with amplitude fixed to −8%) forcing result-
ed in a more definite latitudinal gradient, which broadly repro-
duced that observed in Colombia, with a contrast between 
southern and northern municipalities (Figure 4A, right panel, 
and C and E).

When decreasing the amplitude of the school term-time 
forcing, the model underestimated the amplitude of the second 
peak in all municipalities and overestimated that of the first 
peak in the southern municipalities (Supplementary 
Figure 8). Hence, both term-time forcing and humidity forcing 
were required to reproduce the spatiotemporal variations in 
varicella across Colombia.

To complement our Colombian data, we simulated the 
dynamics of varicella in México, a subtropical country 

with variable climates but uniform subnational seasonal 
variations of humidity across 32 cities. In stark contrast 
to Colombia, the predicted seasonality of varicella did not 
vary across space, with a single peak at approximately 
week 14 in all cities, as observed previously (Figure 4B, 
D, and F and Supplementary Figure 9) [24]. To further pre-
dict the importance of subnational heterogeneity of cli-
mates, we simulated varicella dynamics in all Central 
American countries. In the northern countries of Belize, 
Guatemala, and El Salvador (located south of México), we 
predicted only small variations of varicella seasonality 
between the different cities. In the southern countries 
of Panamá, Costa Rica, Nicaragua, and Honduras, 
however, we predicted substantial subnational variability 
in varicella seasonality, echoing our findings in Colombia 
(Supplementary Figure 10). These results emphasize the 
need to pay careful attention to the subnational heterogene-
ity of climates when studying the seasonality of varicella.

A

D

CB

Figure 2. Latitudinal gradient of varicella seasonality across Colombia estimated from generalized additive models (GAMs). (A) The shape of the partial effects from the 
seasonality (relative amplitude [%] from the mean) for varicella incidence across latitudes. (B) Estimated seasonality in Cúcuta (7.9° N latitude) and in Bogotá (4.7° N latitude). 
(C) Observed (lighter lines) and predicted (darker lines and envelopes) seasonality of varicella reports in Bogotá and Cúcuta throughout the study period. The lines represent 30 
random draws from the model posterior, and the ribbons represent an approximate 95% simultaneous confidence interval for the fitted GAM. (D) Spatial variability in the 
varicella seasonality (relative amplitude) across municipalities at the beginning (week 1) and middle of the year (week 25) and at the varicella peaks (weeks 14 and 45).
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DISCUSSION

The main purpose of this study was to describe the seasonality of 
varicella and its association with climate across the tropical coun-
try of Colombia. We found evidence for a latitudinal gradient in 
the peak magnitude of the seasonality of varicella that correlated 
with spatiotemporal variations of humidity. This heterogeneity 
can be explained by the wide diversity of climates in 
Colombia, attributable to a unique combination of the 
Intertropical Convergence Zone, the Andes Mountains, and 
the South American monsoon in this country [25]. In contrast, 
we predicted that the spatially uniform humidity profiles of 
México resulted in rigidly unimodal varicella seasonality 
throughout the country’s subtropical climates. These predictions 
are confirmed by previous observations in México [24, 26]. 

Together with our predictions across Central America, these re-
sults suggest that varicella seasonality is less spatially homoge-
neous in tropical countries of this region. A practical 
consequence is that the observed epidemiological dynamics of 
varicella may be blurred in nationwide reports, which have 
been used in previous studies to characterize varicella seasonality 
worldwide and to estimate the impact of the introduction of the 
varicella vaccine (2015) in Colombia [5, 27]. These results echo 
earlier recommendations made for other pathogens, such as ro-
tavirus and severe acute respiratory syndrome coronavirus 2 
[28–30]. Therefore, our results show the need to carefully con-
sider the subnational heterogeneity of varicella for epidemiolog-
ical studies and public health policy.

Beyond tropical regions, the seasonality of varicella varies 
with latitude globally, with a peak in temperate regions during 

A

C

B

Figure 3. Correlation between spatial heterogeneity of varicella seasonality and that of climatic variables. Standardized weekly mean varicella reports (A) and specific 
humidity (B) independently clustered in 2 municipality groups. (C) Between-municipality dissimilarity (based on Euclidean distance) matrices of varicella, specific humidity, 
precipitation, and temperature (from bottom to top and left to right, the municipalities are ordered by increasing latitude).
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March–May in the northern hemisphere and during October– 
December in the southern hemisphere [5]. Although a single 
peak is observed in most temperate countries (like in many 
European countries, the United States, Australia, and South 
Africa), 2 peaks are observed in other countries at similar lati-
tudes (like the United Kingdom, Japan, and China) [8, 31, 32]. 
Previous modeling studies have attributed these patterns to sea-
sonal variations in host contacts [33–35], temperature [8, 12], 
and less frequently to precipitation [9] and humidity [24]. In 
temperate regions, the impact of humidity can be difficult to as-
sess because it is highly correlated with temperature [36]. In con-
trast, tropical climates offer a quasi-experimental setting where 
humidity, but not temperature, varies seasonally (Supplementary 
Figure 2). Hence, our findings add to the body of evidence on 
the impact of humidity on varicella transmission dynamics. 
Emphatically, our finding that spatiotemporal variations of hu-
midity best explained the variability in varicella seasonality across 
municipalities does not rule out the contribution of other seasonal 
drivers to the temporal variability of varicella within municipali-
ties. Indeed, even though the school calendar varied little across 
municipalities, we found a clear signature of term-time forcing 
in our dataset (Supplementary Figure 8). Hence, this finding aligns 
with earlier evidence of the central role of term-time forcing in the 
seasonal epidemiology of varicella [34, 35]. Similarly, our results 
do not rule out the effect of other climatic variables (like temper-
ature), but they suggest that their individual contribution may 
vary with latitude. More generally, we propose that together 
with other elements affecting transmission, like vaccination, sea-
sonal variations in host contacts and climate can jointly explain 
the global seasonality of varicella.

Our findings suggest that humidity can impact the transmis-
sion of varicella and shape part of its seasonality. Climatic var-
iables may impact pathogen transmission through multiple 
biological mechanisms that can affect the pathogen, the indi-
vidual host, or the host population [19, 30, 37]. At the pathogen 
level, experimental evidence has shown that humidity and 

temperature can impact the formation and diffusion of aerosols 
and viral stability [4]. Dry weather would facilitate the forma-
tion and dispersion of aerosols, whereas cold weather would 
prolong the stability period of the virus [38, 39]. 
Nevertheless, the humidity and temperature range optimal 
for aerosol formation and viral stability vary markedly between 
different viral species [4], highlighting the need for experimen-
tal studies on VZV. At the individual host level, changes in hu-
midity may alter the host physiology, for example, the integrity 
of the respiratory mucosa, as demonstrated for influenza A in 
mice [40]. Finally, at the host population level, variations of hu-
midity and precipitation—in particular during rainy seasons— 
might modify the frequency of social contacts [41, 42]. Hence, 
further studies will be needed to test the biological mechanisms 
described above and to elucidate how humidity might affect 
varicella transmission.

Several limitations of our study are worth noting. First, var-
icella reporting in the surveillance system of Colombia might 
lack specificity because it includes zoster cases in addition to 
varicella cases. Nevertheless, we reduced this possible misclas-
sification by focusing on children ≤10 years, in whom zoster is 
extremely rare [3]. Second, because of its observational design, 
further experimental studies are warranted to unveil potential 
causal effects. Even though we used a DAG to formalize our 
causal assumptions, we may have overlooked other explana-
tions for the seasonality of varicella. Hence, further experimen-
tal studies in animal models and epidemiological studies 
applying causal inference methods for time series [43] will be 
useful to confirm our findings. Third, in our transmission mod-
el, we assumed an exponential relationship between humidity 
and the transmission rate of varicella. This relationship has of-
ten been used because it is easily interpretable [44], but other 
relationships, such as power functions, are possible [24]. 
Future work could estimate the form of this relationship, for 
example, by using recently developed statistical inference 
methods to confront transmission models to incidence data 
[45]. Fourth, in contrast with other northern municipalities, 
the seasonality of varicella in Barranquilla and Soledad dis-
played 2 peaks with similar amplitudes. Further studies could 
aim to understand regional characteristics that explain this pat-
tern, which was not well captured by our model. Finally, be-
cause of our focus on Latin America, our results may not 
generalize to tropical regions in other parts of the world. In par-
ticular, it would be especially informative to expand our study 
to tropical regions of Africa or Asia, where varicella underlying 
transmission dynamics may be substantially different [1].

CONCLUSIONS

In conclusion, our results demonstrated substantial variability 
in varicella seasonality across the tropical climates of 
Colombia. They further suggested that seasonal variations of 

Table 1. Correlation Between the Spatial Heterogeneity of Varicella 
Seasonality and that of Climatea

Variable Tested Control Variable Mantel Statistic P Value

Specific humidity … 0.412 .001

Absolute humidity … 0.398 .001

Total precipitation … 0.319 .008

Relative humidity … 0.244 .020

Mean temperature … 0.077 .225

Specific humidity Distance 0.316 .003

Specific humidity Latitude 0.337 .003

Distance … 0.278 .017

Distance Latitude 0.132 .131

Distance Specific humidity −0.002 .456
aThe correlations were calculated using Mantel and partial Mantel tests on the dissimilarity 
matrices which were calculated using Euclidean distances between the time series of 
paired municipalities.
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humidity and host contact rates could capture most of the spatio-
temporal dynamics of varicella incidence in this country. The pre-
dictable occurrence of varicella during specific times of the year is 
important for epidemic preparedness. In addition, careful consid-
eration of seasonal heterogeneity may be crucial for unbiased es-
timation of the impact of varicella vaccination programs, which 
were recently rolled out in Colombia. More generally, these results 
may be helpful for future research on the epidemiology of varicella 
in Colombia and other tropical countries.

Data Sharing

All of the data are freely available on the web pages of the 
SIVIGILA, IDEAM, NARR, and CHIRPS. Furthermore, all of 

the aggregated data (to the level of municipality-week) and 
code are stored in Edmond, the open research data repository 
of the Max Planck Society, to ensure the reproducibility of 
the results and are available online; no end date (https://doi. 
org/10.17617/3.ZCMEKJ). R version 4.1.2 (2021-11-01) was 
used for all analyses. The climate data were obtained using 
the packages “ncdf4”, “chirsp”, “humidity”, and “kgc” [16, 22, 
46, 47]. Colombia map figures were created using the package 
“colmaps” [48]. The package “mgcv” was used for all the GAMs 
estimations [17]. The dissimilarity matrices, clusters, and man-
tel tests were obtained with the packages “TSclust” and “vegan” 
[49, 50]. The simulations were performed using the “pomp” 
package [45].

A

B

E

F

C

D

Figure 4. Transmission models predicting the impact of seasonal humidity and alternating school terms and holidays on the transmission rate can reproduce the latitudinal 
gradient of varicella seasonality in Colombia and México. Predicted varicella incidence (rescaled so that 0 is the minimum and 1 is the maximum number of cases per mu-
nicipality) for all (A) municipalities in Colombia and (B) cities in México. (C and D) Estimated seasonal components of the transmission rate and (E and F) corresponding 
seasonal varicella profiles in the municipalities of Cúcuta (7.9° N latitude) and Bogotá (4.7° N latitude) and in the cities of Mexicali (32.6° N latitude) and Ciudad de 
México (19.4° N latitude). From bottom to top, the municipalities are ordered by increasing latitude. For all municipalities and cities, the model was run for a period of 
200 years until equilibrium. The results displayed correspond to the last simulated year.
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Supplementary Data

Supplementary materials are available at The Journal of 
Infectious Diseases online. Consisting of data provided by the 
authors to benefit the reader, the posted materials are not copy-
edited and are the sole responsibility of the authors, so ques-
tions or comments should be addressed to the corresponding 
author.
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