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Abstract
The intestinal mucosa represents the most extensive human barrier having a defense function against microbial and food 
antigens. This barrier is represented externally by a mucus layer, consisting mainly of mucins, antimicrobial peptides, and 
secretory immunoglobulin A (sIgA), which serves as the first interaction with the intestinal microbiota. Below is placed 
the epithelial monolayer, comprising enterocytes and specialized cells, such as goblet cells, Paneth cells, enterochromaffin 
cells, and others, each with a specific protective, endocrine, or immune function. This layer interacts with both the luminal 
environment and the underlying lamina propria, where mucosal immunity processes primarily take place. Specifically, the 
interaction between the microbiota and an intact mucosal barrier results in the activation of tolerogenic processes, mainly 
mediated by  FOXP3+ regulatory T cells, underlying intestinal homeostasis. Conversely, the impairment of the mucosal barrier 
function, the alteration of the normal luminal microbiota composition (dysbiosis), or the imbalance between pro- and anti-
inflammatory mucosal factors may result in inflammation and disease. Another crucial component of the intestinal barrier is 
the gut–vascular barrier, formed by endothelial cells, pericytes, and glial cells, which regulates the passage of molecules into 
the bloodstream. The aim of this review is to examine the various components of the intestinal barrier, assessing their interac-
tion with the mucosal immune system, and focus on the immunological processes underlying homeostasis or inflammation.
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Introduction

The gastrointestinal (GI) tract has a wide surface which is 
constantly in contact with luminal antigenic stimuli; there-
fore, the GI tract acts as a complex barrier that mainly 
consists of four layers, namely the epithelial, immunologi-
cal, and vascular barrier, and the gut microbiota that can 
functionally be considered as another independent “layer”. 
These structures also mediate tolerance toward both self- 
and non-self-antigens and a disruption of the barrier can lead 
to immune-mediated disorders [1].

The gut mucosal surface is a semi-permeable structure, 
where tight junctions (TJs) and zonulin mediate the perme-
ability [2]. Interestingly, zonulin is also thought to influence 
the gut–epithelial barrier’s tolerance and immunity to self- 
and non-self-antigens, as its altered regulation may be found 
both in regional and non-regional disorders [3–8].

The epithelial layer of the barrier is composed of a single 
lining of cells that mediate selective permeability via two 
main mechanisms, transepithelial/transcellular and paracel-
lular pathways. The first path is enhanced by selective trans-
porters for amino acids, short-chain fatty acids, electrolytes, 
and sugars, whereas paracellular transport is mediated via 
tight junctions, adherens junctions, and desmosomes [9–11].

The intestinal mucosal immunity system relies on the 
action of both cells, such as Paneth cells, epithelial cells, 
innate lymphoid cells, intraepithelial lymphocytes, and more 
complex systems such as Peyer’s patches that are responsible 
for the production of secretory (s)IgA. Interestingly, both 
actors can be influenced by microbiota–host interactions [12, 
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13], and the intestinal innate immune system regulates the 
adaptive immune reactions to the microbiota itself [14].

Another pivotal component of the aforementioned layers 
is the gut–vascular barrier, which is located on the gut vessel 
endothelium. Its structure, sharing some similarities with the 
blood–brain barrier, includes pericytes and enteric glial cells 
which, with the help of junctional complexes, limit the para-
cellular passage of molecules in the bloodstream [15–18].

Lastly, intestinal microbiota, namely the symbiotic bac-
terial populations in the intestinal lumen, can be consid-
ered a functional barrier as it modulates immune responses 
[12–14]. Furthermore, some evidence suggests that the dis-
ruption of this delicate homeostatic balance may trigger the 
development of autoimmune or immune-mediated disorders 
[19–22].

Starting from these premises, we herein describe the 
mechanisms and factors implicated in maintenance of the 
whole gastrointestinal barrier, including epithelial, immuno-
logical, vascular, and microbiota-related interactions.

Methods

In October 2022, we searched Medline (PubMed) using the 
medical subject heading terms “gut”, “small bowel”, “epi-
thelial barrier”, “vascular barrier”, “microbiome/micro-
biota”, and “mucosal immunity” for all articles published 
since database inception. Thousands of papers were found 
with this search strategy, the majority of which were unre-
lated to the subject of this review and were not considered. 
We therefore selected only studies (both non-human and 
human) exploring gut–vascular alterations, mucosal immu-
nity, intestinal permeability impairment, and microbiota, 
prioritizing randomized controlled trials, meta-analysis and 
systematic reviews when available. We also searched the ref-
erence lists of key reviews on the topic for additional papers 
we considered to be relevant.

Epithelial barrier

The mucous membranes represent one of the main inter-
faces with the external environment, especially the intesti-
nal mucosa, which consists of a large surface area exposed 
to continuous contact with numerous dietary and microbial 
antigens. The intestinal mucosal barrier represents the first 
line of defense for the body and plays a critical role in modu-
lating the immune tolerance [23, 24]. This barrier consists 
of an extracellular component, the mucus barrier, the epithe-
lial monolayer (i.e., a layer of enterocytes interspersed with 
specialized cells), and the underlying lamina propria. The 
physiologic components of the intestinal barrier are sche-
matically represented in Fig. 1.

Mucus layer

Above the intestinal epithelium, is placed a mucus layer 
which plays a predominantly antibacterial role, preventing 
microbial adhesion to the mucosa and subsequent trans-epi-
thelial invasion. This mucus layer has a different composi-
tion and properties depending on the intestinal tract under 
consideration [25, 26]. Notably, the colon, which gets in 
contact with billions of microorganisms, consists of a pro-
tective double-layer system, while the small intestine, which 
witnesses less contact with bacteria, has a single layer.

In the small intestine, mucus is typically non-attached 
to epithelial cells and typically covers the villi tips. This 
single layer consists mainly of the highly glycosylated gel-
forming mucin MUC2, produced by goblet cells, mixed 
with antimicrobial peptides and proteins secreted by both 
Paneth cells and enterocytes. A proper mucin secretion in 
the small intestine has been related to the correct function 
of cellular ion channels. Indeed, in patients with cystic 
fibrosis, the absence of a functional cystic fibrosis trans-
membrane regulator (CFTR) and the consequent reduced 
secretion of bicarbonate, has been related to an adherent, 
denser, and less penetrable mucus, accounting for the 
intestinal manifestations of the disease [27].

As mentioned, the large intestine has a double-layer 
mucus organization system. The outer layer (stirred mucus 
layer) consists of mucins, predominantly MUC2, sIgA, syn-
thesized at the level of the lamina propria [28], and antimi-
crobial peptides, including defensins that play a role in the 
setup of the adaptive immune response [29]. The inner and 
denser layer (non-stirred mucus layer) is strongly attached 
to the epithelial monolayer and is impermeable to micro-
organisms. These features are explained by the peculiar 
organization at this level of MUC2, which forms large net-
like structures by N-terminal trimerization and C-terminal 
dimerization that subsequently assemble into impermeable 
lamellar networks [30, 31]. The role of MUC2 in defense 
against microbes has been confirmed in several experimen-
tal models in which MUC2 deficiency was correlated with 
reduced inner mucus layer, resulting in increased intestinal 
permeability and susceptibility to inflammation and intesti-
nal tumors [32–34]. The inner layer also includes the entero-
cyte surface glycocalyx, composed by the transmembrane 
mucins (i.e., MUC3, MUC12, and MUC17) consisting of a 
cytoplasmic tail, a transmembrane single pass domain and 
an enormous extracellular mucin domain densely decorated 
with glycans [35]. The glycocalyx has a protective and struc-
tural role, and in addition, its transmembrane mucins would 
appear to be involved in the process of apical cell surface 
sensing and signaling [25, 36].

Thus, the intestinal tolerogenic ability, which 
allows the intestine to be exposed to a large number of 
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microorganisms and foreign food antigens without mount-
ing an inflammatory response, has the mucus barrier as the 
primary actor involved. This complex layer acts primarily 
as a physical barrier, but most recent evidence showed 
a functional mucus modulation of the immune system 
through tolerogenic signals. In particular, it was shown 
that MUC2 and its associated glycans can actively modu-
late, especially via goblet cells, CD103+ dendritic cells 
(DCs) of the lamina propria, conferring a tolerogenic 
profile [37, 38].

Epithelial layer

The intestinal epithelial monolayer is composed of absorp-
tive enterocytes interspersed with specialized cells, such as 
goblet cells, which regulate mucus production [39], Paneth 

cells, which are dedicated to the secretion of anti-microbial 
peptides [40], enterochromaffin cells, the most abundant 
neuroendocrine cells in the gut [41], and intestinal stem 
cells, that reside deep within intestinal crypts and generate 
cells that migrate to the upper villi where final differentiation 
takes place [42].

The epithelial cells that form the monolayer are intercon-
nected and connected to the basement membrane by protein 
complexes that ensure the structural and functional integrity 
of the epithelium [23, 43]. The principal types of junctions 
found in the intestinal epithelium are TJs, adherens junctions 
(AJs), and desmosomes.

TJs are the intercellular junctions arranged in the most 
apical region of cell–cell contacts and are the main determi-
nants of epithelial polarity and permeability, regulating the 
paracellular transport pathway [44]. Such junctions limit the 

Fig. 1  Representation of the main components of the intestinal bar-
rier: epithelial barrier, mucus barrier and lamina propria. The intes-
tinal epithelial monolayer is composed of absorptive enterocytes 
interspersed with specialized cells: goblet cells, which regulate mucus 
production; Paneth cells, dedicated to the secretion of anti-microbial 
peptides; enterochromaffin cells, that are neuroendocrine cells; intes-
tinal stem cells, resident deep within intestinal crypts; dendritic cells, 
intercalated between epithelial cells for luminal antigens uptake and 
immune response activation; M cells, underlying Peyer’s plaques 
facilitating antigens presentation to immune cells. Above the intes-

tinal epithelium, the mucus barrier, composed by mucin, secretory 
immunoglobulin (sIg)A dimers, and antibacterial peptide (especially 
defensins), play an antibacterial role, preventing microbial adhesion 
and invasion. The subepithelial region consists of the lamina propria, 
composed by (innate and adaptive) immune cells, including lymphoid 
structures such as Peyer’s patches; network of neurons and glial cells 
forming the enteric nervous system; connective tissue produced by 
fibroblasts. Created with “BioRender.com”. sIgA secretory immuno-
globulin A
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free diffusion of molecules from the cell apex to the base-
ment membrane. The main constituents of TJs are the family 
of integral membrane proteins called claudins, which link 
with actin cytoskeleton through the zonula occludens (ZO) 
family of scaffolding proteins, namely ZO-1 and ZO-2 [45]. 
Besides claudins, other molecules appear to be determinants 
of the molecular composition of TJs, including occludin, 
tricellulin, and junctional adhesion molecules. Although 
the constituents of these junctions are largely known, how 
these molecules interact with each other and with the lipid 
membrane to regulate the intestinal permeability is still a 
matter of debate. Some cytokines can regulate the function 
of the TJs barrier through different mechanisms, such as the 
cytoskeletal modulation. The effects of tumor necrosis factor 
(TNF), a cytokine with a central pathogenic role in several 
gastrointestinal diseases, on barrier integrity are the most 
thoroughly investigated. In particular, TNF has been shown 
to activate myosin light chain kinase, leading to increase in 
TJs permeability and subsequent epithelial and endothelial 
barrier dysregulation [46, 47].

The AJs and desmosomes, placed deeper in the intercel-
lular space, participate in cellular interactions and transepi-
thelial transport regulation. AJs are composed of a family 
of trans-membrane proteins, called cadherins, which interact 
with molecules from adjacent cells which link the cytoskel-
eton. In particular, the direct interaction between E-cadherin, 
ɑ-catenin, and β-catenin allows the formation of AJs [48]. 
Desmosomes, made of desmoglein, desmocollin, and des-
moplakin, are adhesive junctions that link intermediate fila-
ments [49]. These junctions provide strong adhesive bonds 
between the cell and cytoskeleton, and their loss results in 
the disruption of intercellular and cell–matrix contacts, with 
associated premature Fas–Fas ligand-mediated apoptosis 
[50].

Evidence accumulated over the years has shown how 
mucosal barrier is regulated in response to physiological 
and immunological stimuli and its dysfunction can be asso-
ciated with the pathogenesis of several intestinal diseases. 
For example, up-regulation of claudin-2, down-regulation 
of occludin, and activation of epithelial myosin light chain 
kinase have been found in the intestinal mucosa of both 
Crohn's disease and ulcerative colitis patients [51–53]. Simi-
larly, in Clostridium difficile-induced colitis, a loss of ZO-1 
and ZO-2 was detected [54]. Lastly, absence of phosphoryl-
ated ZO-1 and extensive phosphorylation of β-catenin, that 
would be responsible for disassembly of TJs, were observed 
in the duodenal mucosa of patients with untreated coeliac 
disease [55].

Within the epithelium, immune cells may be found. Some 
of these do not have access to the intestinal lumen, such as 
intraepithelial lymphocytes, especially those expressing the 
γδ T receptor, which produce antimicrobial peptides and 
limit the entrance of commensal bacterial after epithelial 

injury, thus preserving the host-microbial homeostasis [56, 
57]. Others have direct contact with intestinal lumen, such 
as DCs or neutrophils during infection [58]. DCs, espe-
cially those expressing the CXCR1+ chemokine receptor 
1 (CXC3CR1), can intercalate between epithelial cells for 
direct uptake of luminal antigens [59]. These immune cells 
can behave like macrophages and are implicated in the 
maintenance of mucosal tolerance through the production 
of interleukin (IL)-10 [60].

Lamina propria

The sub-epithelial region consists of the lamina propria, 
composed of immune cells, enteric nervous system (ENS), 
and connective tissue.

The intestinal lamina propria is colonized by effectors 
of the immune response, specifically the early mentioned 
CD8+ intraepithelial lymphocytes, lamina propria lympho-
cytes (both B and T cells), eosinophils, DCs, mast cells, and 
macrophages [39]. Furthermore, gut immune cells are organ-
ized to form the so-called gut-associated lymphoid tissue 
(GALT), which includes lymphoid structures, such as lym-
phatic follicles, Peyer’s patches, and mesenteric lymph nodes 
[59]. Of interest is the function of M cells, that constitute the 
specialized epithelium underlying Peyer’s plaques and with 
the ability to monitor the intestinal lumen and facilitate the 
uptake and presentation of luminal antigens to the underly-
ing immune cells [62].

The extracellular matrix of the lamina propria is sup-
ported by connective tissue produced by fibroblasts. Fibro-
blasts, in addition to their structural role, actively participate 
in the epithelial barrier function. Previous studies showed 
a regulation of epithelial proliferation in response to liver 
cell growth factor [63], and more recent studies have identi-
fied a heterogeneity of fibroblasts with different functions 
in maintaining homeostasis in the intestine and in respond-
ing to tissue damage through secretion of soluble mediators 
[64]. Specifically, three distinct fibroblast subsets have been 
recognized. CD81+ fibroblasts maintain the identity and pro-
liferation of intestinal stem cells through the production of 
WNT ligands, R-spondins, and Gremlin 1. PDGFRαhi fibro-
blasts mainly regulate the differentiation of cellular epithe-
lium through the production of bone morphogenic proteins 
and WNT5A. Lastly, PDGFRα(low) fibroblasts secrete basal 
membrane proteins and contribute to extracellular matrix 
production and remodeling [65].

Finally, the ENS residing in the lamina propria, consists 
of a network of neurons and glial cells that are organized 
to form two plexuses, namely the myenteric (Auerbach’s) 
plexus and the submucosal (Meissner’s) plexus. The ENS 
represents the effector of the bidirectional interaction 
between central nervous system and intestine. It is increas-
ingly recognized as a regulator of epithelial barrier integrity 
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and as a potential immunomodulator. Dramatic alterations 
in the ENS have been demonstrated under conditions of 
chronic inflammation, such as inflammatory bowel dis-
ease, and hence the hypothesis of its pathogenic role in 
some intestinal diseases [66]. Furthermore, the interaction 
between enteric microbiota, mucosal immune system, and 
ENS has been supposed to be involved in the pathophysiol-
ogy of neurodegenerative disorders, which are often associ-
ated with functional gastrointestinal disorders. However, it is 
still a matter of debate whether changes in the dynamics of 
this interplay are a consequence of central nervous disorders 
or may represent the primum movens of the neurodegenera-
tive process [67].

Mucosal immune system

The epithelial barrier, along with mucus and the other pro-
tective systems described, is the first barrier to pathogens 
arising from the intestinal lumen, acting by a nonspecific 

mechanism. However, the intervention of the immune sys-
tem is required to mount more specific processes such as the 
acquisition of tolerance toward non-harmful antigens or the 
activation of a physiological inflammatory response toward 
harmful agents. The impairment in the intestinal immune 
system and in its interaction with gut antigens represents a 
critical determinant in the development of gut inflammation 
and allergy (Fig. 2) [68].

The first line of defense is the innate immunity, consisting 
at the intestinal level of epithelial cells, DCs, macrophages, 
and natural killer cells. These cells act like sentinels by rec-
ognizing pathogens and their pathogen-associated molecular 
patterns through specific PRRs, such as toll-like receptors 
(TLRs) and nucleotide-binding oligomerization domain 
receptors [69].

The activation of PRRs (and particularly TLR-9) on the 
apical membrane of intraepithelial cells by commensal bac-
teria results in inhibition of nuclear factor (NF)-kB sign-
aling, activating a process of microbial tolerance [70, 71]. 
Contact with commensal bacteria via PRRs promotes the 

Fig. 2  Intestinal homeostasis and inflammation. Mucosal layer and 
intestinal epithelium act as first barrier against microorganisms and 
luminal antigens. The intervention of immune system, composed by 
cells of innate immunity (epithelial cells, dendritic cells (DCs), mac-
rophages and natural killers) and adaptive immunity (B and T cells), 
is required to mount a specific response. The interaction of epithelial 
cells (interconnected by junctions) with commensal bacteria, through 
Toll-Like Receptors, activates a process of tolerance and homeosta-
sis (left of the figure). Specifically, the epithelium produces thymic 
stromal lymphopoietin, transforming growth factor β, and retinoic 
acid that stimulate CD103+ DCs to modulate a differentiation toward 
regulatory T cells (FOXP3+). Also, activated DCs induce maturation 
of B cells into IgA-secreting plasma cells. CXC3R1 DCs, interca-

lated between epithelial cells, take up luminal antigens and maintain 
mucosal tolerance, through the production of IL-10. The impairment 
of mucus layer and epithelial barrier, associated with dysbiosis, may 
account for an inflammatory response, leading to disease develop-
ment (right of the figure). DCs and macrophages, after the interaction 
with pathogens, direct a differentiation of Th1, Th2, and Th17 cells 
(also through tumor necrosis factor α, interleukine-12 and -23), and 
determine the activation of innate immune cells (neutrophils, eosino-
phils etc.), leading to inflammation. Created with “BioRender.com”. 
IL interleukin, NK natural killer, RA retinoic acid, sIgA secretory 
immunoglobulin A, TGF β transforming growth factor β, TLR tool 
like receptor, TNF α tumor necrosis factor, Treg regulatory T cell, 
TSLP thymic stromal lymphopoietin
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production of cytokines, such as thymic stromal lymphopoi-
etin (TSLP), transforming growth factor-β, and retinoic acid, 
which condition DCs and macrophages toward a tolerogenic 
phenotype [72, 73]. The CD103+ DCs act as migratory anti-
gen presenting protein by regulating the adaptive immune 
system, including both T and B lymphocytes. They promote 
the differentiation of naïve CD4+ T cells into regulatory T 
cells (FOXP3+) [74, 75]. Furthermore, activated DCs deter-
mine, particularly at the level of Peyer’s plaques, the matura-
tion of B cells into IgA-secreting plasma cells [76]. Their 
induction is also stimulated by additional factors produced 
by intraepithelial cells, such as the proliferation-inducing 
ligand (APRIL) and B cell-activating factor (BAFF) [77, 
78].

Conversely, the activation of intraepithelial cells PRRs 
on the basolateral membrane, occurring in case of dysbiosis, 
intestinal infections, or any damage of the epithelial barrier, 
promotes the activation of the NF-kB signaling, causing a 
strong immune response and inflammation [26]. Addition-
ally, DCs can trigger the differentiation of Th1, Th2, and 
Th17 cells, promoting the development of inflammatory dis-
eases. The intestinal epithelial cells themselves also induce 
a Th2 response toward helminths and allergens through the 
production of TSLP and IL-25, eliciting the expansion and 
differentiation of basophil progenitors and multipotent pro-
genitor cells [79, 80].

Focusing on sIgA, these are localized on the external sur-
face of epithelial cells, and they play multiple roles, such as 
the protection of the mucosa, the regulation of the micro-
biota and the modulation of the immune system, preventing 
bacterium-driven inflammatory, autoimmune, and neoplastic 
diseases. The spleen plays a major role in the gut immune 
response through the IgM memory B cells which migrate 
in the intestinal lamina propria and differentiate, through 
the mechanisms described above, into IgA+ plasma cells. 
Conditions, such as asplenia and common variable immune 
deficiency, which are associated with a depletion of circulat-
ing IgM memory B cells, are also associated with a defect of 
sIgA, increasing the risk of gastrointestinal infections [81, 
82].

Hence, the alteration of the epithelial barrier, of the 
immune system and of their intimate interconnection, in 
association with gut dysbiosis, represents a putative patho-
genic mechanism underlying many intestinal and extra-intes-
tinal pathological conditions and a deeper knowledge of this 
mechanism could provide new therapeutic strategies [83].

Gut–vascular barrier

The gut–vascular barrier (GVB) is an anatomical structure 
placed beneath the intestinal epithelium and forms the inner-
most layer of the intestine wall defense system, hampering, 

under steady-state conditions, the systemic dissemination 
of microbes and their toxins through the bloodstream. Yet, 
it allows the diffusion of nutrients and luminal content (up 
to a molecular weight of 4 kDa), due to its semipermeable 
nature, as opposed to less-permissive vascular barriers, such 
as the brain–blood barrier. Moreover, The GVB enables the 
migration of immune cells, most importantly  CD103+ DCs, 
to mesenteric lymph nodes to mediate tolerogenic responses 
[84, 85].

The GVB, schematically represented in Fig. 3, displays 
some structural similarities with other vascular barriers, 
being made up by a monolayer of endothelial cells, which 
are sealed together by adherent and TJs and surrounded by 
other specialized accessory cell types, i.e., pericytes and 
enteric glial cells. The semipermeable nature of the GVB is 
linked to the fact that the endothelial lining is fenestrated, 
and the fenestrae are encircled by plasmalemmal vesicle 
protein 1 (PV-1), a structural element being also present in 
diaphragms and caveolae [86].

At the molecular level, the integrity of GVB is main-
tained by the Wnt/beta catenin signaling pathway, whereas 
PV-1 has a role in basal permeability and can be exploited as 
a marker of GVB “leakiness” since its increased expression 
correlates with enhanced vascular permeability [84, 85].

The complex network of cellular components made by 
endothelial cells, glial cells, and pericytes forms the so-
called vascular unit. The contribution of glial cells and 
pericytes in the formation and maintenance of the GVB is 
still to be clarified, but these cells are thought to exert rel-
evant supportive functions. More precisely, enteric glial cells 
contribute to the integrity of the GVB, as attested by the 
disturbance of its architecture and function, leading to bac-
terial translocation, which is observed in transgenic murine 
models deficient of this cell population [87].

Interestingly, it has been recently appreciated that the 
microbiota, through yet unknown ligands, regulates the 
dynamics of the GVB targeting the enteric glial cells, and 
vascular cells, thus having a role on gut angiogenesis and 
vascular remodeling [84]. Additionally, GVB alterations 
may lead to the dissemination of dietary antigens, patho-
gens, and the microbiota and its metabolites to the liver, 
through the portal vein [85, 88]. More precisely, a mouse 
model of Salmonella enterica gut infection has clarified how 
the GVB disruption, as assessed by the decreased expression 
of β-catenin in endothelial cells, paralleled by an increased 
PV-1 expression, leads to hepatic and splenic dissemination 
of the infection [89]. Moreover, the GVB has been shown 
to be dismantled in mouse and humans also in non-infective 
conditions, i.e., in metabolic diseases, such as alcoholic 
and non-alcoholic steatohepatitis leading to cirrhosis, in 
immune-mediated conditions, such as coeliac disease and 
ankylosing spondylitis, and in cancers, such as the cholan-
giocarcinoma and colorectal one [89–91].



1641Internal and Emergency Medicine (2023) 18:1635–1646 

1 3

Interestingly, a bile acid analog, obeticholic acid, simi-
larly to the maintained activation of β-catenin in endothelial 
cells, was found to stabilize the function of the GVB and to 
reduce bacterial translocation and intestinal inflammation in 
a mouse model of cirrhosis [92]. Parallelly, treatment with 
obeticholic acid has been found to ameliorate the histologic 
grade of non-alcoholic steatohepatitis in a double-blind, 
placebo-controlled randomized clinical trial in humans [93].

Taken together, this translational evidence supports the 
notion that a pivotal pathogenic step in the aforementioned 
disorders is the architectural and functional alteration of the 
GVB by the gut microbiota fed with high-fat regimens and 
by gut inflammation and cancer. Therefore, enhancing the 
GVB integrity may be promising strategy in the treatment 
of these disorders.

Intestinal microbiota

Although the gut microbiota is not a physical barrier, 
it can still be considered as a functional barrier of the 
GI tract, constantly interacting with the mucus layer, 

the epithelium, and the immune system. The term “gut 
microbiota” refers to the complex and dynamic population 
of microbes which colonize the entire gut mucosa, and it 
comprises bacteria, viruses, fungi, and parasites that play 
a major role in health and homeostasis, having a symbiotic 
relationship with the host [94, 95].

The gut microbiota is key for maintaining the integrity 
of the whole intestinal barrier, as shown in several mouse 
models, even if the mechanisms are not clearly understood. 
Germ-free mice were found to have immature GI immune 
responses, as well as smaller abdominal lymph nodes, 
spleen atrophy, or absence of, decreased IgA-producing 
plasma cells, and decreased T lymphocytes [96, 97]. This 
aseptic environment prevents the development of the toler-
ance toward the symbiotic microbiota and food antigens, 
the crosstalk with DCs and the epithelium, and the stimu-
lus to the development of TJs. Consequently, the absence 
of a healthy immune system thus translates into a “leaky 
gut” syndrome, due to the inefficient GI barrier, leading 
to weak responses against pathogens, increased bacterial 
translocation, and death [98].

Fig. 3  Gut–vascular barrier. The gut–vascular barrier (GVB), placed 
beneath the intestinal epithelium, forms the inner layer of intestinal 
defense against microbes dissemination. It is made up of a monolayer 
of endothelial cells, sealed by adherent and tight junctions, sur-

rounded by pericytes and enteric glial cells. Its semi-permeability is 
regulated by plasmalemma vesicle protein 1. Created with “BioRen-
der.com”
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Similarly, in humans, the gut microbiota is able to 
shape all immune responses occurring in the gut since 
birth, throughout life, until death [96]. In fact, since the 
very first few hours after birth, the microbiota colonizes 
all GI mucosae, stimulating the tolerance toward “good” 
bacteria and both self- and certain non-self-antigens, espe-
cially those coming with the diet. The bacterial inocu-
lum may happen in different ways depending on the mode 
of delivery. Physiologically, in the vaginal delivery, the 
most represented species are Lactobacillus, Prevotella, 
or Sneathia spp., while in the C-section, Staphylococcus, 
Corynebacterium, and Propionibacterium spp. predomi-
nate [96]. This will constitute the very first microbiota 
“signature” throughout life. Although the mechanisms 
are unknown, the microbiota signature occurring in the 
non-vaginal delivery translates into a greater susceptibil-
ity to develop infections early in life [99], and to autoim-
mune, allergic, and GI diseases in the adulthood [100]. 
The predisposition to the development of these adverse 
outcomes has been attributed to an aberrant modulation 
of the intestinal barriers, especially affecting the mucous 
production and the permeability, causing a pro-inflamma-
tory environment through the migration of the microbiota 
and its products to the peripheral circulation. The constant 
interaction between a healthy microbiota and the mucous 
is crucial for preventing the disruption of the GI barrier. 
For example, microbiota-dependent degradation of mucin 
glycans and the production of shortened glycans may lead 
to increased susceptibility to bacterial infections and to the 
development of ulcerative colitis, respectively [101, 102].

Indeed, the microbiota homeostatic balance is influ-
enced by other numerous external and internal factors, 
spacing from dietary habits (e.g., animal protein consump-
tion induces an increase in Bacteroides and Ruminococcus 
and a reduction in Bifidobacteria [19]), physical exercise 
[103], use of antibiotics [104], and many others. Particu-
larly, a low-fiber, high in saturated fat, diet can lead to the 
disruption of both the mucous layer (which is reduced) 
and the TJs (which are also reduced), along with a shift 
to a pro-inflammatory microbiota, producing higher lev-
els of TNF-alfa, IL-6, and IL-1 [105]. Microbiota-driven 
gut leakiness has also been implicated in the development 
of non-GI disorders, namely Parkinson’s disease, Alzhei-
mer’s disease, and frailty [106, 107]. An antioxidant diet 
may counteract these detrimental effects, being able to 
increase fiber-fermenting and butyrate-producing bacte-
ria, such as the family Ruminococcaceae and the members 
of the genus Faecalibacterium, determining a decrease 
of zonulin expression, and thus a tighter intestinal bar-
rier [108, 109]. Consistently, the manipulation of the gut 
microbiota through Bifidobacterium adolescentis and Bifi-
dobacterium lactis was found to reduce intestinal perme-
ability in humans [110, 111].

Finally, some insights regarding the interaction between 
the microbiota and the other intestinal barriers derive from 
studies conducted in immune-mediated GI diseases, such as 
coeliac disease and inflammatory bowel disease. Regarding 
coeliac disease, there is a large amount of literature, which 
is often heterogeneous and contradictory. To summarize, an 
increase in the amounts of Gram-negative genera, includ-
ing Bacteroides, Prevotella, and Escherichia, and reduced 
amounts of the anti-inflammatory genera Bifidobacteria and 
Lactobacilli have been found, although their significance in 
determining the disease is uncertain [112, 113]. Similarly 
to what happens in mice [96], it has been hypothesized that 
spleen hypofunction in coeliac disease may be due to a dis-
ruption of the intestinal barrier, also including an altered 
gut microbiota, but no form evidence is available [82]. In 
inflammatory bowel disease, a perturbation of the micro-
biota clearly emerges from the current literature, but whether 
this is primary or secondary to the inflammation is unknown. 
Patients with active inflammatory bowel disease have a 
lower abundance of Clostridium coccoides, Clostridium 
leptum, Faecalibacterium prausnitzii, and Bifidobacterium 
compared to remission, and patients with active CD have 
fewer C. leptum, F. prausnitzii, and Bifidobacterium, but not 
C. coccoides [114]. Moreover, levels of Bacteroides tend 
to be lower in patients with IBD compared to the general 
population [115]. Because of the aforementioned literature, 
interventional studies both on microbiota transplantation 
and probiotics supplementation are emerging [116, 117]; 
however, studies looking at intestinal barrier as a target of 
microbiota manipulation are completely lacking.

Conclusion: a unifying view of the intestinal 
barriers

We have herein described in a narrative fashion the different 
components of the intestinal barriers, by dissecting the state-
of-art about the physiology and regulation of each compo-
nent, namely the epithelial barrier, the mucosal immune 
system, the gut–vascular barrier, and the gut microbiota. 
However, this is a clear reductionist view of the matter, as 
in vivo a clear anatomical and functional distinction cannot 
be made, and all these structures are mutually influenced by 
each other. To summarize, the first immunological imprint-
ing to the human intestinal barrier is provided by the inter-
action of the microbiota and the mucosal immune system. 
Although the fine mechanisms are unknown, this process 
is thought to be the key to promoting the basilar immune 
tolerance and the development of the local and systemic 
immunity. The interaction between microbe surface proteins 
and the DCs promote the production of IL-10, a tolerogenic 
cytokine. The epithelial cells, under this physiological 
stimulus, are responsible for the production of AJs and TJs, 
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which regulate the optimal permeability and hence may filter 
or amplify local and systemic immune responses. A fur-
ther “gate” that regulates this function is the GVB, which 
is called into question for a more precise and fine response 
to local and systemic inflammation. Indeed, this tentative 
unifying view is just speculative and derives from the cur-
rent available knowledge, which needs to be confirmed by 
ad hoc studies. Some derivative knowledge comes from GI 
disease models, although uncertainty still exists around the 
primary “hit” that determines the disruption of the barrier, 
or whether the barrier alteration is the primum movens trig-
gering the disease.

Outlook

Significant progress has been made about the knowledge of 
the gut barrier composition and the anatomical and immu-
nological mechanisms underlying the interaction between 
this barrier and the microbiota. Since the interaction among 
all the discussed components seems to play a key role in the 
pathogenesis of inflammatory diseases, both GI and non-GI, 
their regulation represents a challenge. In the future, the use 
of molecules capable of maintaining or restoring the func-
tion of the intestinal barrier and its physiological interactions 
with the microbiota could represent a chance in the pre-
vention and treatment of these diseases, also by promoting 
healthy aging. Before reaching this ambitious goal, studies 
looking at the intestinal barrier as a whole in humans are 
eagerly awaited.
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