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Abstract
Purpose  Endometriosis (EMs) is a major gynecological condition in women. Due to the absence of definitive symptoms, 
its early detection is very challenging; thus, it is crucial to find biomarkers to ease its diagnosis and therapy. Here, we aimed 
to identify potential diagnostic and therapeutic targets for EMs by constructing a regulatory network and using machine 
learning approaches.
Methods  Three Gene Expression Omnibus (GEO) datasets were merged, and differentially expressed genes (DEGS) were 
identified after preprocessing steps. Using the DEGs, a transcription factor (TF)-mRNA-miRNA regulatory network was 
constructed, and hub genes were detected based on four different algorithms in CytoHubba. The hub genes were used to build 
a GaussianNB diagnostic model and also in docking analysis that were performed using Discovery Studio and AutoDock 
Vina software.
Results  A total of 119 DEGs were identified between EMs and non-EMs samples. A regulatory network consisting of 52 
mRNAs, 249 miRNAs, and 37 TFs was then constructed. The diagnostic model was introduced using the hub genes selected 
from the network (GATA6, HMOX1, HS3ST1, NFASC, and PTGIS) that its area under the curve (AUC) was 0.98 and 0.92 
in the training and validation cohorts, respectively. Based on docking analysis, two chemical compounds, rofecoxib and 
retinoic acid, had potential therapeutic effects on EMs.
Conclusion  In conclusion, this study identified potential diagnostic and therapeutic targets for EMs which demand more 
experimental confirmations.

Keywords  Endometriosis · Gene expression · Diagnostic biomarkers · Machine learning · Docking analysis

Introduction

Endometriosis (EMs) is a common gynecological disor-
der, characterized by the development of endometrial tis-
sue outside the uterus [1, 2]. EMs affects 8% of women of 
reproductive age, with the main symptoms being pelvic pain, 
dysmenorrhea, and infertility [3]. Although many hypoth-
eses have been proposed to explain the etiology of EMs, 

including retrograde menstruation [4], coelomic metaplasia 
[5], Müllerian remnants [6], and the stem cell theory [7], 
the pathology of this disorder remains unknown [8, 9]. EMs 
reduces patients’ quality of life and burdens them socially 
and financially [10]. Due to the lack of conclusive symp-
toms and non-invasive diagnostic methods, there is a four 
to 11 years of diagnostic delay for EMs [11]; therefore, it is 
essential to discover novel biomarkers to facilitate its early 
diagnosis and individualized treatment [10].

Studies have revealed some changes in the transcriptome 
profiles of patients with EMs [12]. Microarray data analysis 
and machine learning techniques have been widely proposed 
to investigate specific changes in gene expression patterns 
and pathways in diseases [12, 13]. Gene expression can be 
regulated by various factors, such as transcription factors 
(TFs) and microRNAs (miRNAs), and studying all these 
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components together can help better understand disease 
causation [14].

The aim of this study was to identify differentially 
expressed genes (DEGs) in EMs by combining different 
Gene Expression Omnibus (GEO) microarray datasets. 
Moreover, our goal was to introduce diagnostic biomark-
ers for endometriosis by constructing a regulatory network 
and utilizing machine learning methods. Finally, based on 
molecular docking analysis, we aimed to identify possible 
therapeutic compounds for EMs as well.

Materials and methods

Data retrieval, quality control, and normalization

Four gene expression datasets including GSE7305, 
GSE7307, GSE25628, and GSE11691 were obtained from 
the NCBI GEO database (https://​www.​ncbi.​nlm.​nih.​gov/​
geo/). GSE7305 included ten ovarian endometriosis and 
ten matching normal endometrial tissues. Eight of these 
samples were in the luteal phase, and two were in the fol-
licular phase of the menstrual cycle. Surgical samples were 
collected before the use of any drugs, including hormone 
treatments. GSE7307 included 18 ovarian endometriosis 
and 23 normal endometrial tissues from women without 
endometriosis. The menstrual phase of these samples was 
unknown. GSE25628 contained seven ectopic, nine eutopic, 
and six control samples collected from participants with-
out endometriosis. All samples were collected during the 
follicular phase of the menstrual cycle. Collectively, these 
datasets (GSE7305, GSE7307, and GSE25628) had a total 
of 35 EMs tissues (eight in the luteal phase, nine in the fol-
licular phase, and 18 samples with an unknown phase) and 
48 non-EMs tissues (19 normal endometrial tissues from 
patients with endometriosis and 29 endometrial tissues from 
healthy donors, including eight luteal phase, 17 follicular 
phase, and 23 unknown phase samples). GSE11691 was only 
used as a validation cohort in machine learning steps (which 
will be explained in the following sections) that included 
nine paired samples of peritoneal endometriosis and normal 
endometrial tissues. Four and five samples were collected 
during the luteal and follicular phases, respectively. Table 1 
lists detailed information about the selected datasets.

Raw CEL files were loaded into R using affy package 
[15]. Normalized unscaled standard error (NUSE) [16] and 
relative log expression (RLE) [17] were used to evaluate the 
quality of the arrays utilizing affyPLM package [18]. Arrays 
with median NUSE scores less than 1 + 0.05 or greater than 
1 − 0.05 and median RLE scores within − 0.1 and 0.1 were 
considered to have good quality, and those that did not sat-
isfy these requirements were excluded from the analysis. 
After the preprocessing steps, the remaining raw CEL files 
were normalized using guanine cytosine robust multi-array 
analysis (GCRMA) method [19, 20].

Integration of microarray data and batch correction

The GEO datasets (GSE7305, GSE7307, and GSE25628) 
were combined into one according to their probe IDs, as 
having a larger dataset can make the statistical analysis more 
robust and, therefore, the results more reliable [21]. How-
ever, different datasets are generated by different groups 
and under various circumstances, which can result in batch 
effects [22]. Several techniques, including ComBat empiri-
cal Bayes [23] and distance weighted discrimination (DWD) 
[24] methods, can be used to eliminate batch effects between 
different datasets. In this study, batch effects were assessed 
using principal component analysis (PCA) and then adjusted 
using ComBat function of sva package [25]. After applying 
batch correction, the data were rechecked for batch effects 
using PCA, and all subsequent steps were performed using 
the batch-corrected dataset.

Differential gene expression analysis

Differential gene expression analysis was conducted between 
EMs and non-EMs tissue samples. DEGs were identified 
using limma R package [26]. Genes with |log2 fold change 
(FC)|> 3 and adjusted p-values < 0.01 were considered as 
DEGs.

Identification of TFs and miRNAs regulating 
the DEGs

miRWalk database [27] (http://​mirwa​lk.​umm.​uni-​heide​lberg.​
de/) contains information about both predicted and experi-
mentally validated miRNA-binding sites. This database was 

Table 1   Details of the GEO 
datasets

GEO Gene Expression Omnibus, PMID PubMed identifier, EMs endometriosis

Datasets Platform Submission data PMID EMs Non-EMs Menstrual cycle phase

GSE7305 GPL570 Mar. 19, 2007 17,640,886 10 10 Eight luteal, two follicular
GSE7307 GPL570 Mar. 19, 2007 – 18 23 Unknown
GSE25628 GPL571 Nov. 28, 2010 23,460,397 7 15 All follicular
GSE11691 GPL96 Jun. 05, 2008 18,688,027 9 9 Four luteal, five follicular

https://www.ncbi.nlm.nih.gov/geo/
https://www.ncbi.nlm.nih.gov/geo/
http://mirwalk.umm.uni-heidelberg.de/
http://mirwalk.umm.uni-heidelberg.de/
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utilized to identify miRNAs that bind to the 3′ untranslated 
region (3′UTR) of DEGs. Only those interactions that were 
experimentally verified by miRTarBase database [28] and 
had a binding score > 0.95 were retained. The potential TFs 

that regulate the DEGs were also predicted using transcrip-
tional regulatory relationships unraveled by sentence-based 
text mining (TRRUST) database [29] (https://​www.​grnpe​
dia.​org/​trrust/).

Fig. 1   The workflow for iden-
tification of EMs diagnostic 
and therapeutic targets. Three 
GEO datasets were merged, and 
batch correction was conducted. 
DEGs were identified and then 
used to predict potential TFs 
and miRNAs that regulate them. 
Hub genes selected from the 
TF-mRNA-miRNA regulatory 
network were used for molecu-
lar docking and machine learn-
ing analyses. EMs, endome-
triosis; GEO, Gene Expression 
Omnibus; DEG, differentially 
expressed gene; TF, transcrip-
tion factor; miRNA, microRNA; 
FC, fold change

https://www.grnpedia.org/trrust/
https://www.grnpedia.org/trrust/
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TF‑mRNA‑miRNA network construction and finding 
hub genes

After predicting mRNA-miRNA and TF-mRNA interac-
tions, a TF-mRNA-miRNA regulatory network was con-
structed and visualized using Cytoscape software (ver-
sion 3.9.1; http://​www.​cytos​cape.​org/). CytoHubba is a 
Cytoscape plugin that can identify the core genes of a pro-
tein–protein interaction (PPI) network based on 11 differ-
ent algorithms [30]. In the current study, four of these 11 
algorithms, including degree, betweenness, closeness, and 
maximal clique centrality (MCC), were used to identify the 
top 10 core mRNAs, and those which were common among 
them were defined as hub genes.

Building a diagnostic model for EMs

Hub genes were used to build a diagnostic model for EMs 
to discriminate between EMs and non-EMs samples. Using 
the combined dataset resulting from merging GSE7305, 
GSE7307, and GSE25628 datasets as the training cohort and 
GaussianNB algorithm, a diagnostic model was constructed. 
The performance of the model was evaluated on the train-
ing cohort and an external validation cohort (GSE30601) 
using fivefold cross-validation with the cross_val_score 
function in Python. In fivefold cross-validation, data is ran-
domly divided into five partitions. Each time, four partitions 
will be used for training the model and one for checking 
its performance. For cross-validation, we used Stratified 
K-Fold method (StratifiedKFold function in Python), which 
preserves the proportion of labels in each fold the same as 
the original dataset. AUC, F1-score, precision, and recall 
were the performance metrics that were calculated to assess 
the model’s performance. Python packages scikit-learn [31] 
and matplotlib [32] were used to perform machine learning 
analyses and visualizations.

Identification of drug candidates and prediction 
of drug‑like properties

DSigDB database provides a direct link between genes and 
drugs for drug development and translational studies [33] 
which is accessible through Enrichr web server (https://​

maaya​nlab.​cloud/​Enric​hr/). Hub genes were uploaded to 
Enrichr, and top five chemical compounds that targeted 
them were selected based on adjusted p-values < 0.01. Drug-
like properties of the selected compounds were evaluated 
using SwissADME database (http://​www.​swiss​adme.​ch/), 
and those that did not satisfy a defined drug-like property 
were excluded from the analysis. Based on the laws of Lipin-
ski [34], Egan [35, 36], and Veber [37], selection criteria 
were as follows: molecular weight (MW) < 500, number 
of hydrogen (H)-bond acceptors (nOHNH) ≤ 10, number 
of H-bond donors (nON) ≤ 5, water partition coefficient 
(WLOGP) ≤ 5.88, topological surface area (TPSA) < 140, 
and number of rotatable bonds (nrotb) ≤ 10. High gastroin-
testinal (GI) absorption, not being a P-glycoprotein (P-gp) 
substrate, and CYP2D6 or CYP3A4 inhibitor were also con-
sidered as other filters for selecting the compounds.

Molecular docking

To investigate the interactions between hub genes and 
selected chemical compounds, crystal structures of the tar-
get proteins were retrieved from the research collaboratory 
for structural bioinformatic protein data bank (RCSB PDB, 
http://​www.​rcsb.​org/) [38], in PDB format with selection cri-
teria of resolution < 2.5 Å. In addition, from PubChem data-
base (https://​pubch​em.​ncbi.​nlm.​nih.​gov/), the 3D structures 
of the selected chemical compounds were downloaded in 
structure data file (SDF) format and then converted to PDB 
format using Discovery Studio software [39]. The target 
proteins were prepared for docking by removing water mol-
ecules, adding polar hydrogen atoms and Kollman charges 
to their structures [40, 41]. The active sites of the target 
proteins were predicted using Discovery Studio software. 
Utilizing AutoDock Vina, the receptor and ligand structures 
were converted into PDBQT format, which is required for 
docking. Finally, docking was carried out using AutoDock 
Vina as previously mentioned [42–44], and Discovery Stu-
dio was used to visualize the docking results.

Statistical analysis

R software 4.1.3 was used to perform the calculations. 
Python 3.9.7 on Anaconda 4.10.3 was used to implement 

Table 2   Quality assessment of 
the datasets using NUSE and 
RLE plots

NUSE normalized unscaled standard error, RLE relative log expression

Datasets NUSE > 1.05 NUSE < 0.95 RLE > 0.1 RLE <  − 0.1

GSE7305 – – –
GSE7307 GSM176127, GSM176236, 

GSM176238, GSM176240
– GSM176240 –

GSE25628 GSM629719, GSM629733 – GSM629723, 
GSM629733

–

http://www.cytoscape.org/
https://maayanlab.cloud/Enrichr/
https://maayanlab.cloud/Enrichr/
http://www.swissadme.ch/
http://www.rcsb.org/
https://pubchem.ncbi.nlm.nih.gov/
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the machine learning sections. With the Benjamini/Hoch-
berg method, all p-values were corrected.

Results

Quality assessment and normalization of the data

The workflow of this study is schematically shown in Fig. 1. 
First, the quality of the datasets was evaluated using NUSE 

and RLE plots, and their value distributions were visual-
ized using boxplots (Fig. 2a–c). The NUSE and RLE values 
should be relatively close to one and zero, respectively. In 
the current study, samples with 0.95 < median NUSE < 1.05 
and − 0.1 < median RLE < 0.1 were considered to have good 
quality. Based on these cutoffs, four and three samples were 
unqualified in GSE7307 and GSE25628, respectively, and 
were removed for subsequent steps; however, all samples in 
GSE7305 dataset met the aforementioned criteria (Table 2). 
After quality assessment of the datasets and removal of 
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Fig. 2   Quality control of the gene expression datasets. The quality of 
the samples in each dataset was assessed using NUSE and RLE plots. 
Those samples retained for the analyses which had 0.95 < median 
NUSE < 1.05 and − 0.1 < median RLE < 0.1. Thus, zero, four, and 

three samples were deleted from GSE7305 (a), GSE7307 (b), and 
GSE25628 (c), respectively. NUSE, normalized unscaled standard 
error; RLE, relative log expression
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unqualified samples, each dataset was normalized using 
GCRMA method. Figure 3 shows boxplots of the unnormal-
ized and GCRMA-normalized expression values.

Batch removal and identification of DEGs

Three datasets (GSE7305, GSE7307, and GSE25628) 
were combined, and PCA was conducted to check for 
batch effects (Fig. 4a). Since the datasets were not com-
pletely continuous, in particular, GSE25628 was signifi-
cantly separated from the others, so batch effect removal 

was performed using ComBat function. PCA analysis was 
carried out again on the corrected data, and as shown in 
Fig. 4b, following the correction, there was no longer a 
separation between the three datasets. This combined data-
set was used in all subsequent analyses and as the training 
cohort in machine learning steps.

After batch correction, a differential expression anal-
ysis was performed on the data. One hundred nineteen 
genes (78 upregulated and 41 downregulated) were con-
sidered DEGs since they met the criteria of log2FC > 3 
along with adjusted p-values < 0.01 (Fig. 4c). Hierarchical 
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Fig. 3   Normalization of the gene expression datasets. GCRMA 
method was used to normalize the gene expression datasets. The left 
and right boxplots show the statues of GSE7305 (a), GSE7307 (b), 

and GSE25628 (c) datasets before and after normalization. GCRMA, 
guanine cytosine robust multi-array analysis
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clustering using these DEGs and both training and valida-
tion (GSE11691) cohorts showed that EMs and non-EMs 
samples could be separated from each other based on these 
DEGs (Fig. 4d).

Construction of a TF‑mRNA‑miRNA regulatory 
network and hub gene screening

To investigate the regulatory mechanisms in EMs, at first, 
potential miRNAs and TFs that target the DEGs were 
predicted (Online Resources 1 & 2). Here, a total of 324 
miRNA-mRNA and 109 TF-mRNA pairs were predicted 
and then combined to form a TF-mRNA-miRNA regulatory 
network (Fig. 5). A total of 394 interactions were shaped in 
this network, involving 52 mRNAs, 249 miRNAs, and 37 
TFs. The top ten mRNAs were obtained using CytoHubba 

−100

0

100

−100 0 100 200

Dim1 (38.2%)

D
im

2
 (

1
8

.7
%

) Dataset

GSE25628

GSE7305

GSE7307

PCA before batch correction

−100

−50

0

50

100

−200 −100 0 100 200

Dim1 (33.9%)

D
im

2
 (

8
.6

%
) Dataset

GSE25628

GSE7305

GSE7307

PCA after batch correction

Tissue
Tissue

Training_non_endometriosis

Validation_non_endometriosis

Training_endometriosis

Validation_endometriosis

0

5

10

15

0

5

10

15

20

−2.5 0.0 2.5

Log2(fold change)

−
L

o
g
1
0
 (

ad
j.

p
−

v
al

u
e)

Up

Not−sig

Down

a

c d

b

Fig. 4   Correcting the batch effect and identification of DEGs. The 
PCA plot of the merged GEO datasets (GSE7305 (orange, triangle), 
GSE7307 (blue, square), and GSE25628 (green, circle)), before batch 
correction. GSE25628 is separated from the others (a). The PCA plot 
of the merged GEO datasets (GSE7305 (orange, triangle), GSE7307 
(blue, square), and GSE25628 (green, circle)), after batch correc-
tion. The three datasets are no longer separated from one another (b). 
Volcano plot for DEGs. DEGs were found with the criteria of |log2 

FC|> 3 and adjusted p-values < 0.01. Red and green dots represent 
upregulated and downregulated DEGs, respectively, and the gray 
ones were not significant according to the defined criteria (c). Hier-
archical clustering of 119 DEGs in 44 EMs and 39 non-EMs samples 
from the merged datasets and 9 EMs and 9 non-EMs samples from 
GSE11691. EMs and non-EMs samples were clustered together based 
on these DEGs (d). DEG, differentially expressed gene; PCA, princi-
pal component analysis; FC, fold change; EMs, endometriosis

Table 3   Finding hub genes based on four different algorithms of 
CytoHubba

MCC maximal clique centrality

MCC Degree Closeness Betweenness Common 
mRNAs

NFASC ESR1 ESR1 ESR1
PTGIS NFASC TYMS GATA6 GATA6
HS3ST1 PTGIS HMOX1 HMOX1
HMOX1 HS3ST1 SP1 PTGIS HMOX1
GATA6 HMOX1 HS3ST1 HS3ST1
KLF2 GATA6 TP53 NFASC HS3ST1
KLHDC8A KLF2 PTGIS PRELP NFASC
PRELP KLHDC8A GATA6 RRM2
RPM2 PRELP NFASC SP1 PTGIS
VCAM1 RRM2 KLF2 TP53
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plugin, based on four different algorithms: degree, closeness, 
betweenness, and MCC. The intersecting mRNAs of these 
four algorithms were considered hub genes and used in the 
subsequent steps (Table 3).

Building a diagnostic model for EMs

For model construction, a GaussianNB diagnostic model 
was established using the merged dataset as the training 
cohort. Model performance was evaluated on the train-
ing cohort with fivefold cross-validation. Based on this 
approach, the AUC of the model was 0.98 for the training 

Fig. 5   Construction of a regula-
tory network for EMs. Regula-
tory network including mRNAs 
(green), miRNAs (purple), and 
TFs (orange). EMs, endometrio-
sis; miRNA, microRNA; TF, 
transcription factor
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Fig. 6   Model construction and evaluation. Evaluation of the Gaussi-
anNB model’s performance on training set with fivefold cross-valida-
tion. AUC of the model was 0.98 (a). Evaluation of the GaussianNB 

model’s performance on the validation cohort with fivefold cross-val-
idation. AUC of the model was 0.92 (b). AUC, area under the curve; 
ROC, receiver operating characteristic

Table 4   Performance of the diagnostic model on the training and val-
idation cohorts

AUC​ area under the curve

Metric Training cohort with fivefold 
cross-validation

GSE30601 with five-
fold cross-validation

AUC​ 0.98 0.92
F1-score 0.94 0.89
Precision 0.98 0.93
Recall 0.91 0.90
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cohort (Fig. 6a). To investigate the reproducibility of the 
results, the model’s performance was further checked 
using an external validation cohort (GSE30601) with 
fivefold cross-validation (Fig. 6b). Results of this analysis 
were consistent with those of the training cohort, showing 
that these hub genes and the constructed diagnostic model 
can discriminate between EMs and non-EMs samples. As 
shown in Table 4, to assess the efficiency of the model 
more precisely, in addition to AUC, other performance 
metrics, including F1-score, precision, and recall, were 
also calculated (Table 4).

Retrieving candidate chemical compounds

The five hub genes were uploaded to Enrichr, which pro-
vides a list of potential molecules that target genes based 
on data from DSigDB database. The top five chemical com-
pounds were selected based on adjusted p-values < 0.01. The 
selected compounds were ns-398, epoprostenol, rofecoxib, 
retinoic acid, and acrolein (Table 5).

Molecular docking analysis

First, crystal structures of the five hub genes (GATA6, 
HMOX1, HS3ST1, NFASC, and PTGIS) were retrieved 
from PDB database. The crystal structure of GATA6 was 
not available in PDB database, and for NFASC, there was no 
structure with resolution < 2.5 Å; thus, molecular docking 
was only performed for HMOX1 (6EHA), HS3ST1 (1ZRH), 
and PTGIS (3B6H). Next, the simplified molecular input 
line entry specification (SMILES) IDs of the chemical 
compounds were used as inputs to SwissADME database 
to evaluate the drug-like of the selected compounds. Based 
on the criteria mentioned in the methods, only two of these 
compounds, rofecoxib and retinoic acid, were suitable for 
docking (Online Resource 3); therefore, their SDF structures 
were downloaded from PubChem database. Molecular dock-
ing was performed to evaluate the binding affinities of the 
two selected chemical compounds to the three hub targets. 
A lower affinity score indicates a stronger binding ability, 
and in this study, a binding energy <  − 5 kJ/mol was used 
as the screening criterion. These findings indicate that the 

compounds and target proteins interact with each other with 
a binding energy of less than − 5 kJ/mol (Table 6); therefore, 
they have low conformational energy, a stable structure, and 
high binding activity. Based on these results, different inter-
actions such as hydrogen and van der Waals bonds were 
formed between the compounds and amino acid residues 
(Fig. 7).

Discussion

A total of 190 million women suffer from EMs worldwide 
[45]. It affects women’s quality of life in different aspects 
such as the chance of education or finding a stable job [46]. 
EMs has recently been linked to an increased risk of vari-
ous conditions such as cancer [47] and cardiovascular [48] 
diseases. Early diagnosis and treatment of this disease is 
very challenging because the pathology underlying its 
development is still unknown [49]. Although a wide range 
of biomarkers have been introduced for the early detection 
of EMs, there is still a significant gap in identifying sensitive 
and specific biomarkers for this condition [50]. Recently, 
the biological process of EMs was thought to be signifi-
cantly influenced by miRNAs, and TFs are also believed to 
be strongly linked to the onset of the illness, but less research 
has been done on the regulatory network of these molecules 
in EMs [51].

In the present study, expression data for EMs were 
retrieved from GEO database. Three datasets were combined 

Table 5   Identification of 
chemical compounds (top five) 
based on gene-drug interactions

Chemical compounds Adjusted p-value Combined score Common mRNAs

Ns-398 0.040163215 1644.950081 GATA6, HMOX1
Epoprostenol 0.040163215 1590.730283 PTGIS, HMOX1
Rofecoxib 0.040163215 1139.724512 NFASC, PTGIS
Retinoic acid 0.040163215 608,943.1725 NFASC, PTGIS, 

GATA6, HMOX1, 
HS3ST1

ACROLEIN 0.040163215 739.8545889 PTGIS, HMOX1

Table 6   Results of docking analysis and the binding energies between 
drug and target

Protein Chemical compounds Binding 
energy (kcal/
mol)

HMOX1 Rofecoxib  − 8.4
HMOX1 Retinoic acid  − 6.7
HS3ST1 Rofecoxib  − 10
HS3ST1 Retinoic acid  − 7.5
PTGIS Rofecoxib  − 8.1
PTGIS Retinoic acid  − 7.6
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to boost the sample size and accuracy of the results. DEGs 
between EMs and non-EMs samples were identified, and a 
TF-mRNA-miRNA regulatory network was constructed. Net-
work analysis showed that miR-200a-3p, miR-196b-5p, and 
miR-141-3p targeted GATA6. According to previous stud-
ies, EMs patients have reduced levels of mir-200a and mir-
141, which increase the epithelial to mesenchymal transition 
(EMT) process, invasion, and motility of endometrial cells 
[52]. Several TFs were predicted to be associated with the 
pathogenesis of EMs. Based on the network, STAT3, NFKB1, 
and RELA targeted HMOX1, and NANOG targeted GATA6. 
Kim et al. found STAT3 abnormal activation in the eutopic 
endometrium of EMs patients [53]. Nuclear factor-kB (NF-
kB) regulates cell proliferation and angiogenesis in a variety 
of cell types that are involved in the development of EMs 
[54]. According to Song et al., NANOG is overexpressed in 
women of reproductive age with ovarian EMs [55].

Five hub mRNAs, selected from the regulatory network 
based on different criteria, were used to build a GaussianNB 
diagnostic model for EMs. Different metrics were then cal-
culated to assess the model performance on the training and 
validation sets with fivefold cross-validation. Based on this 
approach, the AUC of the model on the training and valida-
tion datasets was 0.98 and 0.92, respectively, demonstrating 
its excellent ability to differentiate between samples with and 
without EMs.

The five hub genes were GATA6, HMOX1, HS3ST1, 
NFASC, and PTGIS. Some of these genes have previously 
been reported to be involved in the pathogenesis of EMs. 
GATA6 is one of the necessary components for converting 
endometrial stromal cells into cells that behave similarly to 
endometriotic stromal cells [56]. In a study conducted by 
Izawa et al., GATA6 was introduced as a diagnostic marker 
for EMs and its body sequence may behave as an active 
enhancer under the influence of DNA methylation [57]. 
HMOX1 has a significant impact on the etiopathogenesis of 
EMs, potentially by promoting endometriotic cell survival 
in ectopic locations [58]. NFASC has been demonstrated to 
cause neuropathic hyperalgesia, which worsens pelvic pain 
in EMs patients and may serve as a new biomarker and ther-
apeutic target for EMs [59]. According to Bae et al., PTGIS 
expression is upregulated in endometrial lesions. This gene 
is involved in signaling pathways such as TLR4/NF-kB, 
Wnt/frizzled, and estrogen receptors [60].

Molecular docking revealed that hub proteins HMOX1, 
HS3ST1, and PTGIS directly interacted with rofecoxib and 

retinoic acid. Several studies have shown that rofecoxib 
causes atrophy and regression of the endometriotic lesions 
[61, 62]. Furthermore, long-term rofecoxib therapy may 
decrease the chronic pelvic pain associated with EMs [63]. 
However, rofecoxib had to be removed from the market due 
to serious adverse effects like myocardial infarction and 
stroke [64]. Retinoic acid production within the endometrial 
tissue of the uterine is essential for normal endometrial cell 
differentiation, activity, and decidualization [65, 66]. Abnor-
mal retinoic acid metabolism can result in the development 
of EMs lesions [65]. The cell surface receptor stimulated 
by retinoic acid 6 (STRA6), which is the major receptor 
for retinol absorption, is downregulated in endometriotic 
stromal cells compared to normal endometrial cells [67]. 
These findings imply that rofecoxib and retinoic acid could 
be potential therapeutic options for EMs.

It should be noted that the current study has a num-
ber of limitations. First, the sample size was small, even 
after combining the three GEO datasets, and this limitation 
may affect the interpretability of the results. Second, these 
biomarkers were detected based on tissue samples, and in 
future studies, it will be necessary to evaluate their effec-
tiveness in blood samples to ensure that these genes can aid 
in the non-invasive identification of endometriosis. Third, 
the samples used in this study were collected at different 
phases of the menstrual cycle due to the lack of datasets 
with proper characteristics. Fourth, further in vivo and 
in vitro evaluations (with larger sample sizes) are required 
to validate the results of this study.

In summary, using bioinformatics and machine learning 
approaches, a set of five genes were identified that have the 
potential to help with the early detection of EMs. Based on 
different metrics, like AUC, these biomarkers have high sen-
sitivity and specificity. Small drug molecules associated with 
these hub genes have also been identified. Further experi-
mental evaluations and clinical validations are required to 
validate these results.
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