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SUMMARY

Photoreception requires amplification by mammalian rhodopsin through G protein activation,
which requires a visual cycle. To achieve this in retinal gene therapy, we incorporated human
rhodopsin cytoplasmic loops into Gloeobacter rhodopsin, thereby generating Gloeobacter and hu-
man chimeric rhodopsin (GHCR). In a murine model of inherited retinal degeneration, we induced
retinal GHCR expression by intravitreal injection of a recombinant adeno-associated virus vector.
Retinal explant and visual thalamus electrophysiological recordings, behavioral tests, and histolog-
ical analysis showed that GHCR restored dim-environment vision and prevented the progression
of retinal degeneration. Thus, GHCR may be a potent clinical tool for the treatment of retinal dis-
orders.

INTRODUCTION

Inherited retinal degeneration (IRD) is a major cause of vision loss. More than 2 million people worldwide are blind due to IRD,1

and few effective treatments exist. For retinitis pigmentosa (RP), one of the most common forms of IRD, previous studies have re-

ported vision restoration in animal models using various molecules as optogenetic actuators.2–9 In addition, clinical trials are under

way to investigate the effects of introducing channelrhodopsin 2 (RST-001, ClinicalTrials.gov Identifier: NCT01648452) and Chrim-

sonR (GS-030, ClinicalTrials.gov Identifier: NCT03326336) into retinal ganglion cells (RGCs) via gene transduction achieved by intra-

vitreal injection of recombinant adeno-associated virus (rAAV). The first clinical case report on optogenetic therapy was recently

reported.10 However, microbial opsins, such as channelrhodopsin 2, require high light intensity, such as outdoor light intensity

levels, to function.11–13 They cannot restore vision in dimly lit environments, such as indoors or at night, and strong light irradiation

can promote retinal degeneration.14,15 Physiological photoreception mediated by mammalian rhodopsin, however, relies on ampli-

fication through G protein activation. Although the introduction of vertebrate opsin improved photosensitivity in mice,9,16 it is un-

clear how the chromophore retinal is metabolized in the retina where the visual cycle is broken. Animal rhodopsin also causes

toxicity if all-trans retinal is not properly metabolized,17,18 and is, thus, hampered by safety and stability concerns in terms of clinical

application.

Because of the previous limitations of animal visual opsins, one attempt to circumvent them is the chimeric rhodopsin of melanopsin andG

protein-coupled receptor (GPCR).8,19 Melanopsin is a non-visual opsin, and despite being an animal opsin, it is not easily photobleached.

However, it has a ‘‘bistable’’ photo-cycle and requires different wavelengths of light for conformational change, which may result in unnatural

appearance.20,21

Therefore, a chimeric rhodopsin of microbial opsin and GPCR,22–24 is not photo-bleached and is a monostable pigment like visual opsin,

but may be able to achieve highly sensitive visual restoration via G protein stimulation.

In this study, to achieve light sensitivity, stability, and safety, we attempted to restore vision inmice usingGloeobacter and human chimeric

rhodopsin (GHCR).23,24
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Figure 1. Ectopic GHCR expression restores light responses in the rd1 mouse retina

(A) DNA expression cassette schematic. The GHCR coding sequence is driven by the CAGGS promoter, flanked by inverted terminal repeats (ITR), and stabilized

by a polyadenylation signal sequence (pA) and a woodchuck hepatitis posttranscriptional regulatory element (WPRE).

(B, C, and E) Raster plots and peri-stimulus time histograms for light stimulation of control (AAV-DJ-CAGGS-EGFP) (B), GHCR-treated (AAV-DJ-CAGGS-GHCR)

(C), and coGHCR-treated (AAV-DJ-CAGGS-coGHCR) mice (E). Responses to exposure to a white LED with varying light intensity for 1.0 s. Gray shading around

the averaged traces represents the standard error of the mean (SEM).

(D) Confocal image of a transverse rd1 mouse retina section 2 months after AAV-DJ-CAGGS-coGHCR intravitreal injection. Green, FLAG tag antibody signal

(vector); red, PKCa signal (bipolar cells); blue, 40 ,6-diamidino-2-phenylindolenuclear (DAPI) counterstaining. Scale bar, 50 mm.

(F) Quantitation of the firing rates of RGCs transduced with GHCR or coGHCR at the indicated light intensity.

(G) Histogram showing the number of RGCs that responded to light per unit area (2.6 mm2) of the retinas of GHCR- or coGHCR-treated mice (n = 3 each).

(H) Changes in cAMP consumption in response toGi/o-coupledG-protein-coupled receptor activation in HEK293T cells transfected withGHCR and coGHCR (n =

3 each).
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RESULTS

Design of GHCR

Although there is no sequence identity between microbial and animal opsin, both possess similar chromophore (retinal) and protein (seven-

transmembrane helix) structures. As we previously reported,24 to generate GHCR, we replaced the second and third intracellular loops of

Gloeobacter rhodopsin with human sequences and introduced the E132Qmutation (Figure S1). Previous work has shown that GHCR induces

G protein activation in vitro.24

Restoring light-evoked activity in the retina with GHCR

We injected a viral vector (rAAV-DJ or rAAV-2) containing the GHCR coding sequence under the control of the hybrid promoter comprising

the CMV immediate-early enhancer, CBA promoter, and CBA intron 1/exon 1, known as the CAGGS promoter, (CAGGS-GHCR; Figure 1A)

into the vitreous humor of 10-week-old rd1 mice. We adopted the rAAV-DJ vector to achieve more efficient, widespread gene transfer,25,26

and used rAAV-2 as a benchmark, as it has already been used in the clinic.27 The retinas were harvested 2–4 months later. Enhanced green

fluorescent protein (EGFP) reporter gene expression was observed in both the ganglion cell layer and the inner nuclear layer (Figures S2A and

S2B). To evaluate the function of ectopically expressed GHCR in the mouse retina, we performed multi-electrode array (MEA) recording to

record the extracellular potential of RGCs. As a result of photoreceptor degeneration, the untreated control retina showed no RGC response

as detected byMEA (Figure 1B). In contrast, the treated retinas showedobvious light-induced responses down to 1014 photons/cm2/s of white

light-emitting diode (LED) irradiation (Figure 1C).

Next, to create a stable vector for human gene therapy, we designed a codon-optimized version of GHCR (coGHCR) and fused the ER2

endoplasmic reticulum (ER) export signal to its C-terminus to increase gene expression levels. Immunolabeling revealed expression across

the whole retina, including in the bipolar cells, of treated rd1mice (Figure 1D). As a result, the firing rate increased significantly, and a photo-

response was confirmed down to 1013 photons/cm2/s, which had not observed before optimization (Figures 1E, 1F, and S2C). The retinas of

WTmice were highly responsive to all light stimulus levels under dark-adapted conditions, but under light-adapted conditions, the firing rate

was also modulated in response to light stimulus intensity, and coGHCR response was similar to the light-adapted conditions in WT mice

(Figure S2D). No photoresponse to any light stimulus level was obtained from control untreated mice. Moreover, the number of firing cells

per unit area also increased significantly (Figure 1G). Since rhodopsin shows selectivity for Gi/o class G proteins upon heterologous expres-

sion,28–31 we measured Gi/o activation with a homogeneous time-resolved fluorescence (HTRF) cyclic adenosine monophosphate (cAMP)

assay. We observed a 5-fold increase in activation in coGHCR-treated compared with GHCR-treatedmice (Figure 1H). Themaximum spectral

sensitivity of retinas treated with coGHCR was around 500 nm, and a photoresponse was obtained even upon stimulation with light with a

wavelength > 600 nm (Figure 1I).

Restoration of visual cortex responses by GHCR

To investigate whether retinal light responses were transmitted to the visual cortex, we then examined visual evoked potentials (VEPs) gener-

ated by the visual cortex (Figure 2A). The output from the RGCs is sent through their axons (optic nerve) to the lateral geniculate nucleus (LGN)

of the thalamus, which is a region of the diencephalon, then from the LGN to the primary visual cortex in the occipital lobe of the cerebral

cortex. For these experiments, we used rd1 mice in which both eyes had been treated with the AAV-DJ-CAGGS-GHCR, AAV-DJ-CAGGS-

coGHCR, or control EGFP (AAV-DJ-CAGGS-EGFP) vectors. Significant VEPs were not detected in the control or GHCR-treated mice. In

contrast, VEPs were observed in coGHCR-treated mice (Figure 2B). In response to 3 cd s/m2 light stimulation, the average VEP amplitude

in coGHCR-treated mice was significantly higher (56.4 mV; n = 6) than those in GHCR-treated mice (22.1 mV; n = 8) and control mice

(17.9 mV; n = 6) (Figure 2C). Based on this result, all subsequent experiments were performed using coGHCR.

Characterization of the in vivo responses restored by GHCR transduction

Next, light-dark transition (LDT) testing was performed to investigate whether ectopic expression of coGHCR in degenerating retinas led to

behavioral changes due to vision restoration (Figure 3A). Rodents with intact vision tend to stay in dark places as they are nocturnal and feel

uneasy in bright environments, whereas blind rodents spend roughly half of their time in bright places. The coGHCR-treated mice spent

significantly less time in the bright area compared with the untreated rd1 mutant mice (Figure 3B), thereby confirming vision restoration

via behavioral analysis. And the visual restoration effect was still maintained after two years (Figure 3C). Furthermore, in order to directly

compare the effects of coGHCRwith genes in clinical trials, we treated rd1mice with chimeric rhodopsin (AAV-6-CAGGS-coGHCR), microbial

opsin (AAV-6-CAGGS-ChrimsonR32), animal rhodopsin (AAV-6-CAGGS-human rhodopsin), or the control EGFP (AAV-6-CAGGS-EGFP) vec-

tor. At an illuminance of 3,000 lux, a significant reduction in the time spent in the bright half of the observation area was noted for coGHCR-

treated mice (0.32; n = 6) compared with control mice (0.50; n = 8) (Figure 3D). A similar tendency was observed in ChrimsonR-treated mice

Figure 1. Continued

(I) Spectral sensitivity induced by coGHCR (n = 23 cells each). Error bars represent the SEM. Data were analyzed with Student’s two-tailed t-test in (F and G) and

one-way analysis of variance (ANOVA) and Tukey’s multiple comparison test in (H); * represents p% 0.05, ** represents p% 0.01, and *** represents p% 0.001.

GHCR, Gloeobacter and human chimeric rhodopsin; coGHCR, codon-optimized Gloeobacter and human chimeric rhodopsin; GCL, ganglion cell layer; INL,

inner nuclear layer.
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(0.36; n = 6). However, no obvious change was observed in human rhodopsin-treatedmice (0.48; n = 6). When the experiment was carried out

at an illumination of 10 lux, human rhodopsin-treated mice showed a significant change in the time spent in the bright area (0.40; n = 6),

whereasChrimsonR-treatedmice did not show anobvious change (0.55; n = 6) (Figure 3E). The coGHCR-treatedmice again spent significantly

less time in the bright area illuminated at 10 lux (0.40; n = 6).

Restored object recognition function upon GHCR gene therapy

LDT testing measures only light and dark discrimination. Visual recognition testing (VRT) was performed to evaluate whether the mice could

recognize an object with the restored level of vision. Mice use vision for their cognitive functions, and are attracted to fighting videos.33–35We

examined mice in a place preference apparatus with a tablet showing a fighting video (Figure 3F). The ratio of the time spent in the area with

the fighting compared with the time spent in the control area (showing a video of an empty cage with the same illuminance) over 15 min was

measured. The coGHCR-treated (AAV-DJ-CAGGS-coGHCR) mice spent significantly more time in the fighting video half of the apparatus

(0.55, n = 33) than the untreated rd1 mice (0.50, n = 30). On the other hand, microbial opsin-treated (AAV-DJ-CAGGS-C1V136) mice spent

roughly equivalent time in each half (0.49, n = 20) (Figure 3G).

GHCR protective effects against retinal degeneration

We employed another mouse model of retinal degeneration using RhoP23H/+ mice with the P23H RHOmutation, referred to as P23H mice.37

P23Hmicewere selected to evaluate the protective effect because they have slower retinal degeneration than rd1mice.We subretinally deliv-

ered AAVDJ-CAGGS-coGHCR and the control (AAV DJ-CAGGS-EGFP) vector into postnatal day (PND) 0–1 RhoP23H/+ mouse retinas, target-

ing the outer retina, and quantified the protective effects of the vector via morphological and electrophysiological examination. Subretinal

injection of AAV-DJ efficiently induced gene expression in themurine outer retina (Figure 4A). Optical coherence tomography (OCT) showed

that the outer retinal thickness (ORT), which is the thickness from the outer nuclear layer (ONL) to the rod outer segment (ROS), of coGHCR-

treated mice (50.0 mm; n = 13) was significantly greater than that of the control mice (42.7 mm; n = 10) at PND 30 (Figures 4B and 4C). The ORT

of the treated mice remained significantly greater than that of control mice until PND 50 (Figure S3).

Electroretinography (ERG) revealed that the treated mice had larger rod, mixed, and cone response amplitudes (141.2 mV, 271.4 mV, and

159.0 mV, respectively; n = 9) than the control mice (70.4 mV, 158.7 mV, and 99.1 mV, respectively; n = 14) at PND 30 (Figures 4D and 4E). All

amplitudes in the control mice gradually decreased, whereas all amplitudes in the coGHCR-treated mice continued to increase until PND

42 (Figures S4A–S4C). Thereafter, the amplitudes in the treated mice also gradually decreased, although they remained significantly higher

than those in the control mice until PND 66.

We also performed terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) to detect apoptosis in the retinas. The number

of TUNEL-positive cells in the coGHCR-treatedmouseONL (67.3 cells; n = 3) was significantly lower than that in the control mouseONL (289.7

cells; n = 3) at PND 31 (Figures 5A–5C).

To expand these observations, we obtained transmission electron microscopy (TEM) images of transverse sections from PND 31 mice.

Consistent with theOCT results, theONL (Figure 5D) and ROS (Figure 5E) of coGHCR-treatedmicewere relatively intact comparedwith those

of controls, and the ROS structure was less disorganized (Figure 5F). In addition, coGHCR-treatedmice had less swelling of their ER, a feature

that is indicative of ER stress (Figure 5G).

Figure 2. coGHCR restored vision in rd1 mice through the primary visual cortex

(A) Schematic view of the VEP recording strategy.

(B) Representative VEP traces from GHCR-treated, coGHCR-treated, and control mice.

(C) The average amplitude of the VEPs in the control (AAV-DJ-CAGGS-EGFP, n = 6), GHCR-treated (AAV-DJ-CAGGS-GHCR, n = 8), and coGHCR-treated (AAV-

DJ-CAGGS-coGHCR, n = 6) mice. The stimulus was a white LED flash (3 cd s/m2). Signals were low-pass filtered at 300 Hz and averaged over 60 trials. Error bars

represent the SEM. Data were analyzed with one-way ANOVA and Tukey’s multiple comparison test; * represents p % 0.05. V1, visual cortex; LGN, lateral

geniculate nucleus; GHCR, Gloeobacter and human chimeric rhodopsin; coGHCR, codon-optimized Gloeobacter and human chimeric rhodopsin.
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Figure 3. coGHCR-treated mouse behavior indicated vision restoration

(A) LDT testing schematic. Mice were tested in a 30 3 45 3 30-cm box with equally sized bright and dark chambers connected by a 5 3 5-cm opening, across

which the mice could move freely.

(B and C) Percentage of time spent in the bright area (total, 10 min) by wild type (n = 4), and control (AAV-DJ-CAGGS-EGFP) (n = 7 in (B) and n = 4 in (C)) and

coGHCR-treated (AAV-DJ-CAGGS-coGHCR) rd1 mice (n = 6). LDT test at 3 months (B) and 2 years (C) after treatment, 10 lux illumination.
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Since retinoid levels are known to affect ER stress and retinal degeneration, retinoid analysis of the treated eyes was performed. The

amount of retinal was measured by HPLC using the retinal oxime method after 10 min of exposure to 1000 lux, a fluorescent lighting level

assuming a normal indoor environment. The results showed that 11-cis retinal oximes was significantly elevated in the treated eyes

(54.1G 18.2 pmol/2 retinas; n = 9) versus controls (39.5G 6.5 pmol/2 retinas; n = 9) (Figures 5H and 5I). The amount of all-trans-retinal oxime

was also elevated in treated eyes; however, this elevation did not attain statistical significance (p = 0.22) (Figure 5J).

DISCUSSION

Because the phenotype of retinal degeneration is common across cases of RP, regardless of genotype, the strategy of optogenetic therapy

has great potential as a universal therapeutic approach. It aims to target non-photoreceptive surviving neurons in the retina, such as RGCs and

bipolar cells, and convert them to photoreceptive.

In this study, wedemonstrated that ectopic expression of coGHCR is an effectivemethodof optogenetic vision restoration inmicewith retinal

degeneration. MEA revealed that photoresponses were maintained for retinal irradiance levels as low as 1013 photons/cm2/s. This is consistent

with the response of the treated mice to 10 lux illumination in the behavioral test, and represents a significant improvement in sensitivity

compared with that observed in previous studies of vision restoration with microbial opsins (threshold: 1014 to 1017 photons/cm2/s),2–7 LiGluR/

MAG photoswitches (threshold: 1015–1016 photons/cm2/s),38,39 or photoactivated ligands (AAQ threshold: 1015 photons/cm2/s40 and DENAQ

threshold: 43 1013 photons/cm2/s41). Although some vectors restored greater sensitivity, such as human rhodopsin,9 cone opsin,16 and Opto-

mgluR6 (1012 photons/cm2/s),8 our LDT results at 3,000 lux (similar to a cloudy outdoor environment) suggest that photobleaching of rhodopsin

like these does not work in bright environments. coGHCR is adaptable to a light environment ranging from at least 10 lux (similar to a night light

levels with streetlights) to 3,000 lux, and is, thus, a suitable single-opsin vision restoration tool.

Furthermore, the typical channelrhodopsins have a spectrum limited to blue light,42 which limits their use as a visual restoration tool. On

the other hand, GHCR has a spectrum peak around 500 nm and facilitates responses to red light. Irradiation of high-energy light such as blue

light can cause phototoxicity and cell death due to generation of free radicals.43 Therefore, there are concerns about phototoxicity in opto-

genetic tools that operate under blue light, such as channelrhodopsin, and long wavelength-shifted opsins have been developed.44 In this

regard, theGHCR has the advantage of being highly sensitive and having a peak at intermediate (green) wavelengths, making it responsive to

short and long wavelengths and less likely to exceed safe limits of light intensity.45 In addition, behavioral tests showed that coGHCR enabled

responses to both sustained and transient stimulation lasting 10 ms. These findings suggested that coGHCR gene therapy can restore sensi-

tivity to multiple light environments encountered in daily life.

The ERG amplitudes in coGHCR-treated mice continued to increase until PND 42, likely because the coGHCR-mediated signal was

additive with the innate amplitude. This is consistent with the fact that gene expression of the AAV-DJ vector peaks at approximately

1.5 months after administration.25 We observed no apparent changes in the shapes of the ERG waveforms in the coGHCR-treated

mice. The visual restoration effect was also maintained for two years, which shows promise for long-term pharmacological effects and

safety.

coGHCR has Gt activity derived from rhodopsin.24 Gt is also known to be cross-linked with Gi/o,46 and this was confirmed (Figure 1H).

Although this study used a ubiquitous promoter, which cannot be fully confirmed, Gi/o is generally expressed specifically in ON-type bipolar

cells,47,48 where the light-responsive signal is likely to have been generated. When coGHCR is expressed ectopically in ON bipolar cells, it is

expected to inhibit responses. However, the restored responses observed by MEA were all ON responses. In addition, the electrophysiolog-

ical and behavioral results were similar to physiological responses, and no reversal reaction observed. In rd1mice, photoreceptors are mostly

lost by 4 weeks after birth and no optical response is obtained after 7 weeks at the latest.49,50 Therefore, responses from residual photore-

ceptors are unlikely in this study. A similar phenomenon has been confirmed in previous studies; the excitatory response is hypothesized to

result from disinhibition of inhibitory amacrine cells.6,8,9

The safety of ectopic expression of opsins, such as channelrhodopsin 2, has been previously reported.3,51,52 To our knowledge, this is

the first report of their protective effects against retinal degeneration. In vitro studies have shown that the P23H opsin is misfolded and

retained in the ER.53 ER retention of P23H opsin can induce the unfolded protein response, leading to apoptosis.54–57 Our results suggest

that expression of coGHCR in the retinal outer layer suppressed photoreceptor apoptosis, which led to protection against degeneration.

The lack of 11-cis-retinal induces cytotoxicity during the development of ROS in P23H mice.58 In fact, the amount of cis-retinal in the retina

was significantly elevated after coGHCR treatment. Since coGHCR uses all-trans retinal as a chromophore, like microbial opsin, it does not

consume cis-retinal and is free from photobleaching. Therefore, the expressed coGHCR may suppress cis-retinal consumption via photo-

receptor substitution. If this hypothesis is correct, the protection effect of coGHCR may not be applicable to patients with all IRD

Figure 3. Continued

(D and E) The percentage of time spent in the bright area (total, 10 min) by wild type (n = 6), and control (AAV-6-CAGGS-EGFP) (n = 8), coGHCR-treated (AAV-6-

CAGGS-coGHCR) (n = 6), ChrimsonR-treated (AAV-6-CAGGS-ChrimsonR) (n = 6), and human rhodopsin-treated (AAV-6-CAGGS-human-rhodopsin) rd1 mice

(n = 6). LDT test with 3,000 lux (D) and 10 lux (E) illumination.

(F) VRT setup. Time spent in areas showing a video of mice fighting (object half, blue) or an empty cage (control half, red) was measured.

(G) Distribution of time spent in the object half by wild type (n = 14), and control (no treatment) (n = 23), AAV-2-coGHCR-treated (AAV-2-CAGGS-coGHCR) (n =

30), AAV-DJ-coGHCR-treated (AAV-DJ-CAGGS- coGHCR) (n = 33), and AAV-DJ-C1V1-treated (AAV-DJ-CAGGS-C1V1) rd1 mice (n = 20). LDT test with 10 lux

(D) and 3,000 lux (E) illumination. Black line, average value. Error bars represent the SEM. Data were analyzed with one-way ANOVA and Tukey’s multiple

comparison test; * represents p % 0.05. coGHCR, codon-optimized Gloeobacter and human chimeric rhodopsin.
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genotypes. However, there are more than 140 known RP-linked rhodopsin mutations, and those that result in protein misfolding and reten-

tion in the ER are the most prevalent.59,60

In summary, the coGHCR vector has the advantages of both animal and microbial opsin as a vision regeneration tool. It restores sensi-

tivity and an action spectrum that enables vision in lighting ranging from levels found outdoors to those in dimly lit indoor environments via

G protein stimulation without the risk of bleaching; it can also be expected to protect against the progression of retinal degeneration in

the majority of IRD patients. These results suggest that coGHCR is worthy of consideration for clinical application as a gene therapy

for IRD.

Figure 4. Ectopic coGHCR expression protects against photoreceptor degeneration

(A) Confocal image of a transverse section through the P23H retina 2 months after AAV-DJ-CAGGS-coGHCR subretinal injection. Green, FLAG tag fused to the

C-terminus of coGHCR; blue, DAPI nuclear counterstaining. Scale bar, 100 mm.

(B) OCT retinal image sections from coGHCR-treated and control (AAV-DJ-CAGGS-EGFP subretinally injected) mice at PND 30. The white arrow indicates the

measured ORT (from ONL to cone outer segment). Scale bar, 20 mm.

(C) Histogram of the measured ORT of the coGHCR-treated (n = 13) and control mice (n = 10) at PND 30.

(D and E) Representative ERGwaveforms (rod response, mixed response, and cone response) of coGHCR-treated (n = 14) and control mice (n = 9) (D). Histograms

of the average ERG amplitudes from panel d at PND 30 (E). Error bars represent SEM. Data were analyzed with the unpaired t-test; *** represents p% 0.001. GCL,

ganglion cell layer; INL, inner nuclear layer; ONL, outer nuclear layer; GHCR, coGHCR, codon-optimizedGloeobacter and human chimeric rhodopsin; ORT, outer

retinal thickness.
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Figure 5. coGHCR treatment suppressed retinal apoptosis and ER stress

(A and B) TUNEL-stained transverse sections (A) and enlarged images of the white squares (B) of coGHCR-treated and control (AAV-DJ-CAGGS-EGFP

subretinally injected) mouse retinas at PND 31. Red, TUNEL-positive cells; blue, DAPI nuclear counterstaining. Scale bar, 1,000 mm in (a) and 100 mm in (B).

(C) Histogram of the number of TUNEL-positive cells in the ONLs of coGHCR-treated (n = 3) and control mice (n = 3) at PND 31.

(D–G) (D) TEM images of transverse sections from coGHCR-treated and control mice at PND 31, showing the outer retinal layer (D), the outer segment at low

magnification (E) and high magnification (F), and the inner segment (G). The arrowhead indicates swollen ER. Scale bar, 20 mm in (D), 5 mm in (E), 1 mm in (F),

and 500 nm in (G).
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Limitations of the study

In this study, a protective effect on IRD was observed, suggesting that ER stress and changes in retinal composition are involved. On the other

hand, this was the result in RhoP23H/+ mice, and it is not clear whether this is applicable to other genotypes of IRD, and further studies are

needed to determine the exact mechanism.
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Figure 5. Continued

(H) Chromatograms of retinal in mouse retina analyzed by HPLC. 15 h dark adapted mice were exposed to light of 1000 lux for 10 min and each retina was

processed and retinal oximes extracted under dim red light. Peak identification was determined using retinal standard reagents as follows: 1, syn-11-cis-retinal

oxime; 2, syn-all-trans-retinal oxime; 3, anti-11-cis-retinal oxime; 4, anti-all-trans-retinal oxime.

(I and J) Histogram quantifying the amount of retinal oximes from coGHCR-treated (n = 9) and control mice (n = 9) obtained fromHPLC. Error bars represent SEM.

Data were analyzed with the unpaired t-test; * represents p % 0.05, ** represents p % 0.01. coGHCR, codon-optimized Gloeobacter and human chimeric

rhodopsin; RPE, retinal pigment epithelium; ONL, outer nuclear layer.
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STAR+METHODS

KEY RESOURCES TABLE

REAGENT or RESOURCE SOURCE IDENTIFIER

Antibodies

anti-FLAG Merck MAB3118; RRID: AB_94705

anti-PKCa Abcam ab32376; RRID: AB_777294

anti-rabbit Alexa TM488 Abcam ab150077; RRID: AB_2630356

anti-rabbit Alexa TM 594 Abcam ab150080; RRID: AB_2650602

Bacterial and virus strains

AAV-2-CAGGS-EGFP Section of Viral Vector Development, Center for Genetic

Analysis of Behavior, National Institute for Physiological Sciences

N/A

AAV-2-CAGGS-coGHCR Section of Viral Vector Development, Center for Genetic

Analysis of Behavior, National Institute for Physiological Sciences

N/A

AAV-DJ-CAGGS-GHCR Section of Viral Vector Development, Center for Genetic

Analysis of Behavior, National Institute for Physiological Sciences

N/A

AAV-DJ-CAGGS-EGFP Section of Viral Vector Development, Center for Genetic Analysis

of Behavior, National Institute for Physiological Sciences

N/A

AAV-DJ-CAGGS-C1V1 Section of Viral Vector Development, Center for Genetic Analysis

of Behavior, National Institute for Physiological Sciences

N/A

AAV-DJ-CAGGS-coGHCR Section of Viral Vector Development, Center for Genetic Analysis

of Behavior, National Institute for Physiological Sciences

N/A

AAV-6-CAGGS-EGFP Section of Viral Vector Development, Center for Genetic Analysis

of Behavior, National Institute for Physiological Sciences

N/A

AAV-6-CAGGS-human rhodopsin Section of Viral Vector Development, Center for Genetic Analysis

of Behavior, National Institute for Physiological Sciences

N/A

AAV-6-CAGGS-ChrimsonR Section of Viral Vector Development, Center for Genetic Analysis

of Behavior, National Institute for Physiological Sciences

N/A

AAV-6-CAGGS-coGHCR Section of Viral Vector Development, Center for Genetic Analysis

of Behavior, National Institute for Physiological Sciences

N/A

Chemicals, peptides, and recombinant proteins

Ames’ medium Merck A1420

Mydrin-P (0.5% tropicamide

and 0.5% phenylephrine)

Santen N/A

Protease inhibitor cocktail Merck 539131

Nitrocellulose membranes Pierce Biotechnology, Inc. 24580

5% skim milk Bio-Rad Laboratories, Inc. 190-12865

WB Stripping Solution Nacalai Tesque 05364-55

4% paraformaldehyde (PFA) Nacalai Tesque 11850-14

DAPI Fluoromount-G SouthernBiotech 0100-20

All trans-retinal Sigma-Aldrich Cat#R2500

11-cis retinal Toronto research chemicals Cat#R239860

Critical commercial assays

cAMP Gi kit Cisbio Cat #62AM9PEB

Situ Apoptosis Detection Kits Chemicon International Cat #S7165

Experimental models: Cell lines

HEK 293T cells ATCC CRL-3216; RRID: CVCL_0063

(Continued on next page)
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RESOURCE AVAILABILITY

Lead contact

Further information and requests for resources and reagents should be directed to and will be fulfilled by the lead contact, Toshihide Kur-

ihara(kurihara@z8.keio.jp).

Materials availability

This study did not generate new unique reagents. All materials in this study will be made available on request to the lead contact. A material

transfer agreement will be required prior to sharing of materials.

Data and code availability

The data that support the findings of this study are available from the lead contact upon request.

EXPERIMENTAL MODEL AND STUDY PARTICIPANT DETAILS

Study approval

All of the animal experiments were conducted in accordance with protocols approved by Institutional Animal Care and Use Committee of

Keio University School of Medicine (#2808).

Mice homozygous for the retinal degeneration alleles Pde6brdl (C3H/HeJJcl, rd1) andWT C57BL/6J were obtained from CLEA Japan, Inc.

Mice heterozygous for the retinal degeneration allelesRhoP23H/+ (B6.129S6(Cg)-Rhotm1.1Kpal/J, P23H) were obtained from Jackson Laboratory.

Animals were maintained under 12-h light:12-h-dark conditions. For animals bred in house, littermates of the same sex (male) were

Continued

REAGENT or RESOURCE SOURCE IDENTIFIER

Experimental models: Organisms/strains

Mouse: Pde6brdl (C3H/HeJJcl, rd1) CLEA Japan RRID: IMSR_JCL:MIN-0001

Mouse: C57BL/6JJcl CLEA Japan RRID: MGI:3055581

Mouse: RhoP23H/+ (B6.129S6(Cg)-

Rhotm1.1Kpal/J, P23H)

Jackson Laboratory 017628; RRID: IMSR_JAX:017628

Software and algorithms

MC Rack software (V 4.6.2) Multi Channel Systems N/A

Off-line Sorter software (version 4.4.0) Plexon N/A

NeuroExplorer 5 software (version 5.115) Nex Technologies N/A

ANY-maze tracking software Stoelting N/A

Move-tr/2D tracking software Library N/A

IBM SPSS Statistics 26 IBM N/A

Other

Active contact lens electrodes Mayo N/A

PuREC acquisition system Mayo N/A

Hemisphere LS-100 Stimulator Mayo N/A

HD Pro Webcam C920 Logitech, N/A

B1-760HD Acer Inc N/A

Infinite M1000PRO Tecan N/A

JEM-1400Plus JEOL N/A

PVDF membrane Merck HVLP01300

LSM710 Carl Zeiss N/A

DMEM Nakarai 09891-25

Envisu R4310 Leica N/A

Shimadzu LC20A Shimadzu N/A

Silica column (Ultrasphere 5um, SI 250 x 4.6mm Avantor Cat#235341
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randomized to experimental groups. All of the animal experiments were conducted in accordance with protocols approved by Institutional

Animal Care and Use Committee of Keio University School of Medicine.

METHOD DETAILS

Immunohistochemistry

The protocol for immunohistochemistry was previously described.25 The retinas were incubated in PBS with 1% Triton X-100 and 0.5% Tween

20 for 1 h at room temperature and in 4% BSA for 1 h at room temperature and then incubated overnight at 4�Cwith primary antibodies: anti-

FLAG (1:500, Merck, Darmstadt, Germany) and anti-PKCa (1:100, Abcam, Cambridge, UK) in blocking buffer. Secondary anti-rabbit, conju-

gated with Alexa TM488 or 594 (1:1000; Abcam), were applied for 1 h at room temperature.

Vector production and purification

GHCR construct were designed as previously reported24. GHCR, coGHCR, ChrimsonR, C1V1 amd human rhodopsin genes were cloned to

pAAV-CAGGS-MCS. Type 2, 6, DJ serotypes of rAAV vectors were prepared using the AAV Helper Free Packaging System (Cell Biolabs, San

Diego, CA, USA). The serotypes were produced in HEK 293T cells using a helper virus-free system and were purified using two CsCl2 density

gradients and titrated by quantitative polymerase chain reaction. Final preparations were dialyzed against phosphate-buffered saline (PBS)

and stored at -80�C.

Virus injection

Themice were anesthetized with a combination of midazolam, medetomidine and butorphanol tartrate at doses of 4 mg/kg, 0.75 mg/kg and

5mg/kg of body weight and placed on a heating pad that maintained their body temperatures at 35�C–36�C throughout the experiments. An

aperture wasmade next to the limbus through the sclera with a 30-gauge disposable needle, and a 33-gauge unbeveled blunt-tip needle on a

Hamilton syringe was introduced through the scleral opening into the vitreous space for intravitreal injections and introduced through the

scleral opening along the scleral interior wall into the subretinal space for subretinal injections. Each eye received 1 ml in intravitreal or

0.4 ml in subretinal injection of vehicle (PBS) or vector at a titer of 1.0 3 1012 vg/ml (AAV-2 and AAV-DJ) or 1.0 3 1011 vg/ml (AAV-6).

Multielectrode array recordings

All of the procedures were performed under dim red light. The mice were anesthetized and euthanized by quick cervical dislocation.

Following enucleation, the retina was dissected at room temperature in Ames’ medium bubbled with 95% O2/5% CO2 (A 1420; Merck).

The separated retina was placed on a cellulose membrane, and RGC was directed to the electrode and was gently contacted against

MEA (MEA2100-Systems; Multi Channel Systems, Reutlingen, Germany) under suction pressure. During the experiment, the retinas were

continuously perfusedwith Ames’mediumbubbling at 34�C. at a rate of 1-2ml/min. Recorded signals were collected, amplified, and digitized

usingMCRack software (Multi Channel Systems). Retinas were perfused for 30min in darkness before recording responses. 400, 470, 525, 570,

610, 630 and 660 LED was used in spectral sensitivity examination and white LED was used in the other experiment.

Uniform full-field light stimulation was presented for 1 seconds at 60-second intervals. Signals were filteredbetween 200Hz (low cutoff) and

20 kHz (high cutoff). A threshold of 40 mV was used to detect action potentials, and action potentials from individual neurons were determined

via a standard expectation–maximization algorithm using Off-line Sorter software (Plexon, Dallas, TX, USA). The results were plotted using

NeuroExplorer software (Nex Technologies Colorado Springs, CO, USA).

ERG analyses

ERGswere recorded according to a previous report.25 Animals were dark-adapted for 12 h and prepared under dim red illumination. Themice

were anesthetized with a combination of midazolam, medetomidine and butorphanol tartrate at doses of 4 mg/kg, 0.75 mg/kg and 5 mg/kg

of body weight, respectively and were placed on a heating pad that maintained their body temperature at 35�C–36�C throughout the exper-

iments. The pupils were dilated with a mixed solution of 0.5% tropicamide and 0.5% phenylephrine (Mydrin-P; Santen, Osaka, Japan). The

ground electrodewas a subcutaneous needle in the tail, and the reference electrodewas placed subcutaneously between the eyes. The active

contact lens electrodes (Mayo, Inazawa, Japan) were placed on the corneas. Recordings were performed with a PuREC acquisition system

(Mayo). Responses were filtered through a bandpass filter ranging from 0.3 to 500 Hz to yield a- and b-waves. White LED light stimulations

of 10.0 log cd-s/m2 were delivered via a Hemisphere LS-100 Stimulator (Mayo). The amplitudes weremeasured and analyzed based on ISCEV

(International Society for Clinical Electrophysiology of Vision) standard. More specifically, rod response was obtained by a program with a

dark-adapted 0.01 ERG (0.01 cds/m2), mixed response by a dark-adapted 3.0 ERG (3.0 cds/m2), and cone response by a light-adapted 3.0

ERG (3.0 cds/m2 flash with 30 cd/m2 for background).

VEP analyses

The measuring electrodes were placed more than one week before the measurement. The mice were anesthetized with a combination of

midazolam, medetomidine and butorphanol tartrate at doses of 4 mg/kg, 0.75 mg/kg and 5mg/kg of body weight, respectively. The animals

were placed in a stereotaxic holder. A stainless-steel screw (M1.036.0 mm) inserted through the skull into the both visual cortex (1.5 mm later-

ally to the midline, 1.5 mm anterior to the lambda), penetrating the cortex to approximately 1 mm, served as a measuring electrode. Animals
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were dark-adapted for 12 h and prepared under dim red illumination. At the time of themeasurement, the mice were anesthetized again with

the same doses. Visual stimuli were generated by a white LED flashes (3 cds/m2). Signals were acquired and analyzedwith a PuREC acquisition

system (Mayo). Signals were low-pass filtered at 300 Hz and averaged over the 60 trials.

LDT recording

Micewere tested in a 303 453 30-cmbox, containing equally sized light and dark chambers connectedby a 53 5-cmopening via whichmice

could move freely. The bright half of the box was illuminated from above by a white LED. The illumination intensity of measured at the floor

level. The animals were placed in the bright half and movement recorded (HD Pro Webcam C920, Logitech, Lausanne, Switzerland). A trial

lasted 10 min, and then the testing apparatus was dismantled and cleaned with 70% ethanol. Videos were analyzed using ANY-maze tracking

software and were validated by comparison with manual analysis. Time spent in the bright half was recorded.

VRT recording

Mice were tested in a 2163 1483 220-mm box, containing equally sized light and dark chambers connected by a 1203 60-mm opening via

which mice could move freely. The size of the tablet was 1073 9.93 193-mm (B1-760HD, Acer Inc, New Taipei, Taiwan). The resolution of the

display was 1280 3 720 pixels, and the resolution of the videos was 640 3 480 pixels. The luminance of all videos was 20 G 3 lux. All videos

were presented without sound. The box was illuminated from above by a white LED with 10 lux. The illumination intensity of measured at the

floor level. The animals were placed in the bright half and movement recorded (HD Pro Webcam C920, Logitech, Lausanne, Switzerland). A

trial lasted 15 min, and then the testing apparatus was dismantled and cleaned with 70% ethanol. Videos were analyzed using Move-tr/2D

tracking software (Library, Tokyo, Japan) and were validated by comparison with manual analysis. Time spent in the bright half was recorded.

Gi/o coupled GPCR activation assay

HTRF-based cAMPdetections were conductedwith cAMPGi kit (Cisbio #62AM9PEB, Bedford,MA) according to themanufacturer’s instruc-

tions. HEK293T cells were kept in DMEM (12-well plate) supplementedwith 10% (v/v) fetal bovine serum in a humidified incubator at 37�C5%

CO2. HEK293T cells were seeded on a 12-well plate at 1x105 cells/well, and on the day 2, 1x106 vg/well/500 ml of AAV vector (AAV-DJ-

GAGGS, AAV-DJ-CAGGS-GHCR, AAV-DJ-CAGGS-coGHCR) was added and transfected. Transfected cells were kept in the dark for

2 days. On the day 4, after seeding in a 384-well plate at 6,500 cells/well/5 ul and incubating for 4 hours in the dark. Photo-stimulation

(525 nm LED 1016 photons/cm2/s 1 minute) was performed. The signal was detected using plate reader Infinite M1000PRO (Tecan, Männe-

dorf, Switzerland).

TEM

Eye cups were fixed with aldehyde/DMSO at 37�C for 2–4 h and then eye cups were cut in half on their dorsal-ventral axis and fixed again for

several minutes. Ultrathin sections were cut with a diamond knife. Specimens were examined using a transmission electron microscope

(JEM-1400Plus).

Preparation of cryosections of retinas

Enucleated eyes were fixed for 20 min in 4% paraformaldehyde (PFA) in PBS and then dissected as previously described.61 The obtained tis-

sues were post-fixed overnight in 4% PFA in PBS and stored inmethanol at –20�C. Cryosections of retinas (12 mm) were prepared as previously

described,62 after the eyeballs were immersed overnight in 4% PFA. The retinal sections were observed using a confocalmicroscope (LSM710;

Carl Zeiss, Jena, Germany).

TUNEL assay

After the cryosection mentioned above, cell apoptosis was detected by TUNEL using ApopTag In Situ Apoptosis Detection Kits (Chemicon

International, Darmstadt, Germany; cat. #S7165) according to the manufacturer’s instructions. Nuclei were counterstained with DAPI. The

retinal sections were observed using a confocal microscope (LSM710; Carl Zeiss, Jena, Germany).

OCT imaging

The thickness of the retina was analyzed by an SD-OCT system (Envisu R4310; Leica, Wetzlar, Germany) tuned for mice. The imaging protocol

entailed a 3 mm33 mm perimeter square scan sequence producing a single en-face image of the retina through a 50-degrees field of view

from themouse lens, followingmydriasis. The en-face image consisted of 100 B-scan tomogramswith each B-scan consisting of 1000 A-scans.

The retinal thickness of 150 mm from the optic disc of each quadrant was measured.

HPLC analysis of retinal

After 15 hours of dark adaptation, mice were exposed to light adaptation at 1000 lux for 10 minutes. The mice were subsequently sacrificed,

and the removedmouse retinas were homogenized. Hydroxylamine was added to the homogenized retinas for oximation. The retinal-oximes
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was dissolved in hexane to make a sample for HPLC analysis. All of these processes were performed under dim red lights. Two retinas were

used per assay.

Retinal oximes were analyzed by HPLC (Shimadzu LC20A series, Japan) with a silica column (Ultrasphere 5um, SI 250 x 4.6mm, Avantor,

USA). The mobile phase consisted 96.0%(v/v) hexane, 4.0%(v/v) ethyl acetate and the flow rate was 1.0mL/min. The column temperature

was 35�C. Absorbance at 360 nm was monitored for retinal oximes. Each retinal isomer was quantified from the area of the corresponding

peak based on a calibration retinal standard reagent. All trans-retinal (Sigma-Aldrich) and 11-cis retinal (Toronto research chemicals) were

used as standard reagents.

Data and software availability

Raw MEA spike data were sorted offline to identify single units using Offline Sorter software (version 4.4.0) (Plexon). Spike-sorted data were

analyzed with NeuroExplorer 5 software (version 5.115) (Nex Technologies). The data that support the findings of this study are available from

the corresponding author on request.

QUANTIFICATION AND STATISTICAL ANALYSIS

All of the results are expressed as the mean G SEM. The averaged variables were compared using the unpaired t-test and the one-way

ANOVA test. Tukey’s test was used for multiple comparisons. P-values of less than 0.05 were considered statistically significant. All experi-

ments were randomized. SPSS 26 (IBM Corporation, Armonk, NY) was used for statistical analysis.
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