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Performance of tumour microenvironment
deconvolution methods in breast cancer
using single-cell simulated bulk mixtures

Khoa A. Tran 1,2, Venkateswar Addala 1, Rebecca L. Johnston 1,
David Lovell3,4, Andrew Bradley 5, Lambros T. Koufariotis1, Scott Wood 1,
Sunny Z. Wu 6,7, Daniel Roden 6,7, Ghamdan Al-Eryani 6,7,
Alexander Swarbrick 6,7, Elizabeth D. Williams 2,8, John V. Pearson1,
Olga Kondrashova 1,9 & Nicola Waddell 1,2,9

Cells within the tumour microenvironment (TME) can impact tumour devel-
opment and influence treatment response. Computational approaches have
been developed to deconvolve the TME from bulk RNA-seq. Using scRNA-seq
profiling from breast tumours we simulate thousands of bulk mixtures,
representing tumour purities and cell lineages, to compare the performanceof
nine TME deconvolution methods (BayesPrism, Scaden, CIBERSORTx, MuSiC,
DWLS, hspe, CPM, Bisque, and EPIC). Some methods are more robust in
deconvolving mixtures with high tumour purity levels. Most methods tend to
mis-predict normal epithelial for cancer epithelial as tumourpurity increases, a
finding that is validated in two independent datasets. The breast cancer
molecular subtype influences this mis-prediction. BayesPrism and DWLS have
the lowest combined numbers of false positives and false negatives, and have
the best performance when deconvolving granular immune lineages. Our
findings highlight the need for more single-cell characterisation of rarer cell
types, and suggest that tumour cell compositions should be considered when
deconvolving the TME.

The tumour microenvironment (TME) is complex and includes
immune cells, blood vessels and stroma1. It plays a key role in cancer
development, progression and metastasis2, and the presence of
tumour-infiltrating immune cells have been linked to treatment
responses and patient outcomes in a variety of cancers3–5. For breast
cancer, which is a heterogeneous disease comprised of multiple
molecular subtypes6,7, the composition of the TME has varied treat-
ment and outcome implications depending on the molecular subtype.

For example, tumour-infiltrating lymphocytes are predictive of
neoadjuvant treatment responses and improved overall survival in
triple negative breast cancer (TNBC) and HER2-positive breast cancer,
but are associated with an adverse survival in luminal HER2-negative
breast cancer8–11. Other TME components including tumour-associated
macrophages and fibroblasts have also been implicated in influencing
breast cancer prognosis and therapy responses12–14, albeit their con-
tributions are yet to be fully defined.
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The introduction of single-cell RNA sequencing (scRNA-seq) has
led to a much greater characterisation and understanding of the TME
compared to what could be achieved with bulk RNA-seq, across mul-
tiple cancers13,15,16. Yet, bulk RNA-seq profiling remains a common
approach to study the TME, since scRNA-seq is more expensive and
requires extensive sample processing not always suitable for analysis
of clinical samples or large sample sizes. Several computational
methods are available to estimate cell types within the TME by
deconvolving bulk RNA-seq data17–25. Previous studies that have
benchmarked the performance of the TME deconvolution methods
have focused either on the technical aspects that could influence
deconvolution (e.g. RNA-seq data transformation and normalisation or
gene marker selection)26 or on the overall deconvolution
performance27, and not comprehensively investigating the impact of
biological and sample heterogeneity that could influence the TME
deconvolution26–28. Furthermore, several recently developed methods
that utilise scRNA-seq as gene expression reference profiles or as
training data are yet to be benchmarked17,19,24,29.

Different immune and stromal cell subtypes have distinct roles in
tumour biology, and can be predictive of treatment responses and
outcomes13,30–34, so accurately discerning these subtypes is critical.
Gene expression similarities between cell types of related cell lineages
have been shown to affect the performance of transcriptomic-based
deconvolution27. The high TME deconvolution granularity can in the-
ory be achieved with greater availability of well-annotated scRNA-seq
datasets and the recently developed scRNA-seq-based deconvolution
methods23,29, yet the performance of such granular deconvolution still
needs to be benchmarked. Additionally, factors such as tumour purity
(i.e. proportion of tumour cells), which can vary greatly between
samples, may influence TME deconvolution performance18.

In this study, we comprehensively benchmark the impact of
variable tumour purity, absent cell types and lineages of epithelial and
immune cell types on the performance of computational TME
deconvolution. We evaluate the performance of three distinct groups
of recently developed deconvolutionmethods: seven single-cell-based
methods (CIBERSORTx19, MuSiC20, Bisque22, DWLS23, CPM24,
BayesPrism29, hspe35), one signature-genes-basedmethod (EPIC25), and
one deep-learning-based method (Scaden17). We use a scRNA-seq
breast cancer atlas to simulate artificial bulk RNAmixtures with known
purity levels and granular compositions of tumour and normal epi-
thelial cells, B-cells, T-cells and myeloid subtypes to determine the
impact of sample heterogeneity on the performance of each decon-
volution method.

Results
Simulation of artificial bulk mixtures to assess performance of
TME deconvolution methods
To test the performance of nine TME deconvolution methods, we
simulated artificial bulk RNA-seq mixtures using published scRNA-
seq breast cancer data15. The scRNA-seq data was derived from 26
breast cancer patients representing three molecular subtypes: ER+
(n = 11 patients), HER2+ (n = 5 patients) and triple-negative breast
cancer (TNBC; n = 10 patients). In total, 100,064 cells were anno-
tated into nine major cell types, 29 minor cell types and 49 subsets
(Fig. 1a and Supplementary Data 1). Each patient sample had dif-
ferences in cell abundance per cell type, with some cell types
absent from specific patients and present cell types ranging from
one cell (most rare cell types) to 4596 cells (most abundant cell
type; Supplementary Data 1). To ensure an even representation of
cell types within each patient and enable a diverse range of simu-
lated mixtures, an oversampling method called Synthetic Minority
Oversampling Technique (SMOTE)36, was used to synthesise
between 25 and 4575 cells per cell type for each patient sample. Of
note, we discarded cell types with less than 10 cells to ensure
SMOTE has a reasonable pool of original cells. The synthesised

data resulted in the number of cells in each cell type that was
present in a sample, matching the number of cells in the most
abundant cell type for that sample (Supplementary Fig. 1 and
Supplementary Data 2). The gene expression profiles of synthe-
sised cells were consistent with those of the original cells (Sup-
plementary Fig. 2).

To generate the bulk mixtures from the single cell data, we split
the data into training (18 patient samples) and test (8 patient samples)
data sets, ensuring that all three breast cancer subtypes (ER+, HER2+
and TNBC) andmajor cell types were represented in both sets (Fig. 1b,
Supplementary Data 1). We used a sparse simulation process to create
the bulk cell mixtures. This approach randomised the number of cell
types and enabled a much more diverse proportion range across all
cell types compared to previously used resampling17 (Supplementary
Fig. 3 and Methods), to simulate bulk RNA-seq data with varying
tumour purity and immune cell lineages to assess performance of the
nine deconvolution methods (Fig. 1b, c).

Performance of TME deconvolution methods across tumour
purity levels
To assess the impact of variable tumour purity levels (proportion of
tumour cells) on the performance of the TME deconvolution
methods, we simulated 38,000 test cell mixtures comprised of
2000 simulations (250 per patient) for each of the 19 purity levels,
ranging from 5% to 95% tumour cells (Fig. 1b). Bray-Curtis dissim-
ilarity between predicted and true proportions across all cell types
suggested that BayesPrism, Scaden, andMuSiC outperformed other
methods across all purity levels, evidenced by the lowest dissim-
ilarity scores across (Fig. 2a and Supplementary Fig. 4a). Among
them, Scaden achieved the lowest Bray-Curtis dissimilarity scores
for tumour purity levels below 15% (≤ 0.13) and at 95% (0.08), and
BayesPrism achieved the lowest dissimilarity scores for all other
tumour purity levels. Moreover, BayesPrism, MuSiC, and hspe
generally performed better in samples with higher tumour content,
evidenced by decreasing Bray-Curtis dissimilarity, while DWLS,
CBX, Bisque, EPIC, and CPM performed worse with higher tumour
purity levels, evidenced by increasing Bray-Curtis dissimilarity.
BayesPrism, Scaden andMuSiC also had themost stable and highest
median Pearson’s r values (≥0.86 for BayesPrism, ≥0.87 for Scaden,
and ≥0.79 for MuSiC) across all tumour purity levels (Supplemen-
tary Fig. 4b). The poorest overall performance was observed for
Bisque, EPIC and CPM. CPMwas the worst performing method, with
the highest Bray-Curtis dissimilarity (0.43–0.83) and lowest Pear-
son’s r (≤0.3) for all tumour purity levels.

To investigate whether prediction of specific cell types was
impacted by tumour purity, we analysed the median RMSE values for
the nine major cell types. In terms of the performance of eachmethod
to predict the three major immune cell types (T-cells, B-cells and
myeloid cells), BayesPrism, Scaden, MuSiC, CBX, and DWLS were the
onlymethods that achieved RMSE values < 10 for all three immune cell
types for mixtures across all tumour purity levels (Fig. 2b and Sup-
plementary Fig. 4c). BayesPrism and DWLS were superior to Scaden,
MuSiC, and CBX in deconvolving T-cells and B-cells, evidenced by
lower RMSE values at all purity levels. Notably, DWLS achieved the
lowest RMSE values for B-cells across all purity levels. In contrast,
Bisque, hspe, EPIC and CPM obtained RMSE values ≥ 2 for the immune
cells at most tumour purity levels and ≥10 at low tumour purity levels,
suggesting relatively poor performance for immune cells (Fig. 2b and
Supplementary Fig. 4c). Of note, CPM predicted similar proportions
for each cell type regardless of tumour purity level (Supplemen-
tary Fig. 5).

Cancer and normal epithelial were the most mis-predicted cell
types (highest RMSE values) across all purity levels for BayesPrism,
Scaden, MuSiC, CBX, DWLS, hspe, and EPIC (Fig. 2b and Supplemen-
tary Fig. 4c), with the magnitude of mis-prediction increasing with
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higher tumour purity (indicated by higher RMSE values). Interestingly,
raw prediction errors, which capture directionality in error distribu-
tions of cancer epithelial and normal epithelial cell types, showed that
cancer and normal epithelial cells were mis-predicted at similar mag-
nitudes, suggesting that the cancer epithelial cell type was decon-
volved incorrectly as normal epithelial in cell mixtures with higher
tumour content (Supplementary Fig. 6).

Confirmation of the performance of TME deconvolution
methods
Weused two additional single-cell RNA-seq datasets, Bassez et al.37 and
Pal et al.38, to repeat the analysis that assessed the impact of tumour
purity on deconvolution. Using this data, we simulated a further
85,000 test cell mixtures comprised of 5000 simulations (250 per
patient) for each of the 19 purity levels.

c
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In agreement with the initial findings from the simulated data
fromWu et al.15, BayesPrism showed the best overall performance and
robustness against tumour purity, being the only method achieving
Bray-Curtis dissimilarity ≤0.22 across all tumour purity levels for
simulated mixtures from both datasets (Supplementary Fig. 7a, b for
Bassez et al.37, and Supplementary Fig. 7c, d for Pal et al.38). Scaden,
MuSiC and CBX also showed good performance with Bray-Curtis dis-
similarity scores ≤0.22 for Scaden, ≤0.25 for MuSiC, and ≤0.37 for CBX
across both datasets. Among the other 4methods (Bisque, EPIC, DWLS
and hspe), only DWLS achieved comparable performance to BayesPr-
ism, MuSiC and Scaden (Bray-Curtis dissimilarity ≤0.16), but only with
mixtures from Pal et al.38.

BayesPrism, Scaden, MuSiC, CBX, and DWLS exhibited good
performance on immune cell types, consistent with findings from
the Wu et al.15 dataset, (Supplementary Fig. 8a for Bassez et al.37, and
Supplementary Fig. 8b for Pal et al.38). In terms of cancer-normal mis-
prediction, the Bassez et al.37 dataset did not have normal epithelial
annotations, however the data from Pal et al.38 confirmed that MuSiC,
CBX, and DWLS showedmisprediction of cancer and normal epithelial
that increased with tumour purity (Supplementary Fig. 8b). Interest-
ingly, while Bisque performed better with cancer populations at lower
tumour levels in Wu et al.15 (Fig. 2b and Supplementary Fig. 4c) and
Bassez et al.37 datasets (Supplementary Fig. 8a), this phenomenon was
reversed in the Pal et al.38 dataset (Supplementary Fig. 8b). We inves-
tigated this further by examining the distributions of predicted cancer
proportions, aggregated by tumour purity levels (Supplementary
Fig. 9). The results showed that most of Bisque predictions centred
around 20% tumour purity inWuet al.15 andBassez et al.37 datasets, and
dramatically shifted 65% in the Pal et al.38 dataset. By contrast, pre-
dicted cancer proportions of the top performing methods (BayesPr-
ism, Scaden, and MuSiC) generally followed their corresponding
tumour purity levels, highlighting the robustness of these methods
across datasets.

Additionally, we have tested the robustness of deconvolution
performancewhen technical batcheffect is present by using single-cell
reference profiles from Wu et al.15 for deconvolution of simulated
mixtures generated from Bassez et al.37 (Supplementary Fig. 10a, b)
and Pal et al.38 (Supplementary Fig. 10c, d). To ensure cell-type labels
are consistent across all three datasets, we collapsed several cell types
for Bassez et al.37 and Pal et al.38, e.g. dendritic cell, macrophage and
myeloid are grouped into myeloid (see Methods/Datasets and pre-
processing). Except for a reduction in performance of hspe in Pal
et al.38, results were consistent with patterns observed in the Wu et al.
dataset mixtures (Fig. 2a, b, Supplementary Fig. 4).

To confirm the deconvolution performance for major cancer and
immune cell types using non-simulated real bulk RNA-seq data, we
used data derived from breast cancer patients from The Cancer Gen-
ome Atlas (TCGA) study6,39. We compared predicted cancer cell pro-
portions against Consensus Purity Estimates (CPE) produced in Aran
et al.40 (n = 1031), and predicted lymphocyte proportions (T-cells and
B-cells) against tumour-infiltrating lymphocytes (TIL) estimates pro-
duced from H&E images using deep learning41 (n = 892). Consistent
with the simulated bulk results, BayesPrism, Scaden and MuSiC
showed the strongest performance for both cancer and lymphocyte
predictions, evidenced by the highest Pearson’s correlation

coefficients and lowest RMSE scores (Fig. 2c, d). Similar to simulated
bulk results, CBX, DWLS and hspe achieved better performance than
Bisque, EPIC and CPM in predicting cancer proportions (Fig. 2c),
however, except for hspe and DWLS, the 4 methods over-predicted
lymphocyte proportions (Fig. 2d). Generally, we did not observe pat-
terns in prediction correlations across the PAM50 subtypes.

Additionally, to confirm that cancer epithelial cells are mis-
predicted as normal epithelial in the simulated bulk experiments, we
collapsed cancer epithelial and normal epithelial cell types into one
class termed Epithelial and predicted major cell types. Compared to
previous predictions when all major cell types were considered (Sup-
plementary Fig. 4c), RMSE values decreased to ≤10.03, 10.75, 6.13,
15.53, 11.5, 10.31 and 15.45 for BayesPrism, Scaden, MuSiC, CBX, DWLS,
hspe and EPIC, respectively (Supplementary Fig. 11a). Similarly, when
we simulated additional 2000 mixtures (250 per patient) per purity
level with no normal epithelial cells, we observed decreased RMSE
values for cancer epithelial cell type predictions for the same seven
methods (Supplementary Fig. 11b).

Performance of deconvolution methods across normal epithe-
lial lineages in different breast cancer molecular subtypes
Next, we exploredwhether themis-prediction of cancer epithelial cells
as normal epithelial cells (observed in the seven methods) was asso-
ciatedwithbreast cancermolecular subtypes (ER+,HER+andTNBC)or
normal epithelial minor cell types (luminal progenitors, mature lumi-
nal and myoepithelial). To study this two-factor relationship, we
simulated new mixtures using minor subtype annotations for normal
epithelial cells at a fixed tumour purity of 50%, which was selected as
most methods perform optimally at this purity level (Fig. 2b). Within
each breast cancer molecular subtype, cancer epithelial and normal
epithelial minor cell types were the main drivers of raw predictions
errors, and the prediction of the three normal epithelial minor cell
types varied (Fig. 3a, b). In TNBC, luminal progenitors produced
highest RMSE scores (Fig. 3a) and were over-predicted while cancer
epithelial was under-predicted (Fig. 3b) across all deconvolution
methods, suggesting they are the likely cause of normal epithelial cell
mis-prediction. In contrast, the mature luminal cells were the likely
cause of mis-prediction in ER+ tumours. For the HER2+ molecular
subtype, the prediction errors were elevated for either luminal pro-
genitors or mature luminal cells depending on the method (luminal
progenitors for BayesPrism, Scaden,MuSiC andDWLS;mature luminal
for EPIC; and both for CBX).

False positive and false negative predictions across deconvolu-
tion methods
In the context of deconvolution, false positive and false negative pre-
dictions can lead to severe mischaracterisation of cell compositions
within the TME. False positives occur when a method predicts a cell
type to be present, while it is absent in the mixture (<0.1%), and zero
false negatives occur when a method predicts a cell type to be absent
(< 0.1%), while it is present (Fig. 4a). We used the 2000 cell mixtures
(250 per patient) at 50% tumour purity and nine major cell types from
the previous tumour purity experiment (Fig. 1b) to determine false
positive and false negative prediction rates for each deconvolution
method.

Fig. 1 | Experimental designof thebenchmarking study.Workflow tobenchmark
performance of nine transcriptomic-based TME deconvolution methods in differ-
ent biological conditions using scRNA-seq breast cancer data. a Annotated scRNA-
seq data fromWu et al.15 is oversampled so that within each patient, the number of
cells in the less abundant cell types matches the number in the most abundant cell
type.bOversampled scRNA-seq data are assigned to train data (n = 18patients) and
test data (n = 8 patients). Train data was used to generate either artificial bulk
mixtures or single-cell reference matrix as input to the different TME deconvolu-
tionmethods (left block). Test data was used to generate artificial bulkmixtures for

different benchmarking investigations (tumour purity, normal epithelial cell lines,
immune cell linage) (right block). c Within each investigation, the overall decon-
volution performanceof the nine benchmarkedmethodswas evaluated using Bray-
Curtis dissimilarity, Aitchison distance, RMSE and Pearson’s r, while the perfor-
mance of predicting individual components was assessed using RMSE. ER+:
estrogen receptor positive, HER2+: Human Epidermal growth factor Receptor 2
positive, TME: tumour microenvironment, TNBC: triple-negative breast cancer,
RMSE: Root Mean Square Error, scRNA-seq: single-cell RNA sequencing. Figure was
made using BioRender.com.
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For the false positive predictions, we focused on cell mixtures
where one or more cell-type components were absent (n = 5247 of
18,000 components across 2000 mixtures each with nine compo-
nents). Overall, the hspe method predicted the lowest percentage of
false positives across all cell types (20.7%), followed by BayesPrism
(31.9%), MuSiC (36.1%), EPIC (46%), DWLS (48.4%), CBX (50%) and
Bisque (61.1%) (Fig. 4b). Scaden and CPM showed the highest false

positive rate. For Scaden, most false positives (74.1%) were mis-
predicted to be contributing between 1–10% to a mixture, for CPM the
majority of false positives (69%) were predicted to be contributing
over 10% (Supplementary Fig. 12a). TheCPM result was expected, since
as noted earlier CPM predicted similar proportions for each cell type
regardless of mixture composition (Supplementary Fig. 5). The cell
type with the largest proportions of false positives was normal
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epithelial with most severe mis-predictions across all methods except
for Bisque (Fig. 4). In terms of the proportion of false positives for the
immune cell types (T-cells, B-cells and myeloid cells), hspe, BayesPr-
ism, MuSiC, and DWLS showed the best performance with false posi-
tive rates of ≤42% (Fig. 4b) and the majority of mis-predicted
proportions being either 0.1–1% or 1–10% (Supplementary Fig. 12a).
The false positive rate was not determined for cancer epithelial cell
type, as the tumour purity was fixed at 50% for this experiment.

For the false negative rate calculation, we focused only on the cell-
type components that were present in the mixtures (n = 12,753 of
18,000 components). In terms of false negatives, Scaden and CPM
were the only methods with no false negatives, but in the case of CPM
(Fig. 4c), this was caused by poor overall performance with similar
proportions predicted for each cell type. Among the methods with
detected false negatives, BayesPrism, MuSiC, CBX, and DWLS had the
lowest overall false negative rate of 2.6%, 5.7%, 3.2%, and 6.8%
respectively (Fig. 4c). While hspe showed the best performance for
false positives, it had the highest false negative rate of 24.4%. When
compared by cell type, Bisque was the only method with a high false
negative rate for the normal epithelial cell type (40.3%; Supplementary
Fig. 12b). In terms of false negatives for the immune cell types,
BayesPrism, MuSiC, CBX, and DWLS showed the best performance.
Notably, Bisque did not predict any false negatives for T-cells but had a
high false negative rate (11.5%) for B-cells, most with the ground truth
proportions between 1–10% (Supplementary Fig. 12b). Overall, taking
both false positive and negative rates into consideration, no single
method outperformed the others, but BayesPrism, MuSiC, CBX and
DWLS showed the best comparable performances.

Performance of deconvolution methods across lineage levels of
immune cells
Our initial observations suggested that two methods, BayesPrism and
DWLS had the best performance in deconvoluting major immune cell
types, followedby Scaden,MuSiC andCBX (Fig. 2b).We next sought to
determine whether the deconvolution performance would decline in
the context of minor cell types or more granular subset cell types for
T-cells (11 subtypes), B-cells (2 subtypes), and myeloid cells (10 sub-
types; Fig. 5a).

We used Aitchison Distance to compare the overall performance
of each method across lineage levels. BayesPrism had the lowest
median distance corresponding to the best overall performance at all
major, minor and subset cell type levels, with Aitchison distance of
2.88, 8.2 and 12.14 at major, minor and subset level, respectively
(Fig. 5b). The overall performance across three levels was followed by
DWLS,MuSiC, andCBX.While Scadenperformancewas comparable to
the top four methods at major and minor level (3.86 and 7.53,
respectively), its’ performance severely deteriorated at subset level
(15.46), dropping to the second worst performance after CPM (24.41;
Fig. 5b). When using only the immune portion of the mixtures to cal-
culate the Aitchison distance between predicted and expected pro-
portions, DWLS outperformed the other methods at subset andminor

levels, while BayesPrism remained the best method at major level
(Fig. 5c). For the subsequent analysis, we focused on BayesPrism and
DWLS, as these methods showed the best and second-best overall
performance across all lineage levels, respectively.

For both, BayesPrism and DWLS, scatter plots of predicted versus
actual proportions showed higher level dispersion, indicating worse
performance, with increased level of granularity for T-cells, B-cells and
myeloid (Supplementary Fig. 13). This was supported by analysis of the
raw prediction errors, which showed that major cell type predictions
had the least number of outliers, and minor and subset cell type pre-
dictions had more outliers compared to their parent major and minor
cell types, respectively (Supplementary Fig. 14). With regards to
deconvolving immune cell types at each lineage level, the performance
of BayesPrism was worse than DWLS across major (RMSE 2.0-4.5 for
BayesPrism and 2.1-3.2 for DWLS), minor (RMSE 3.4-8.5 for BayesPrism
and 2.8-9.4 for DWLS) and subset levels (RMSE 0.8-9.4 for BayesPrism
and 0.7-14.8 for DWLS; Fig. 5d, Supplementary Data 3). For both
BayesPrism and DWLS, several cell types at minor and subset levels
(e.g. NKT cells, B-cell naïve cells at minor level, and IFN-Signature T-
cells and Mono:IL1B cells at subset level) showed patient-specific
clustering of predictions (Supplementary Fig. 13).

At minor and subset levels, small errors can be more severe than
at major level as cell-type proportions are generally low. We used the
Relative Proportion Error (RPE) values to understand themagnitude of
misprediction per each percentage of ground truth. Under this cri-
terion, DWLSproduced lower RPE values thanBayesPrism formost cell
types at all three lineages levels (Fig. 5e, Supplementary Data 3).
However, both BayesPrism and DWLS also produced several extreme
mispredictions at subset levels, for example RPE values over 24 for
cycling T-cells and chemokine-expressing T-cells for BayesPrism, and
RPE values over 25 for cycling T-cells and Mono:FCGP3A for DWLS.

BayesPrism and DWLS produced false positive and false negative
predictions at the minor and subset lineage levels (Supplementary
Fig. 15a, b). Overall, DWLS and BayesPrismhad the lowest false positive
rates across all minor and subset immune cell types, respectively
(29.9% for DWLS and 22.10% for BayesPrism; Supplementary Fig. 15a).
For both methods, most false positives were mis-predicted to be
contributing between 1–10% and above 10% for all minor and subtype
cell types. On the other hand, DWLS outperformed BayesPrism in
handling false negatives, achieving lower false negatives rates at both
minor (28.3% compared to 40.1% of BayesPrism) and subset (49.0%
Compared to 55.8% of BayesPrism) levels (Supplementary Fig. 15b).
Similar to falsepositives,most falsenegativesweremis-predicted tobe
contributing between 1–10% and above 10% for all minor and subset
cell types.

Discussion
Accurately profiling the TME provides insight into tumour develop-
ment and can lead to identification of prognostic and treatment mar-
kers. Single-cell sequencing and spatial transcriptomics enable high-
resolution profiling of the TME, however these technologies are

Fig. 2 | Impact of variable tumour purity on deconvolution. a Bray-Curtis dis-
similarity between predicted and ground truth cell compositions across 7 tumours
purity levels (from 5% to 95%, 15% interval). Deconvolution methods are organised
in order of decreasing performance based on their median Bray-Curtis dissimilarity
values. n = 2000 artificial bulk at each purity level. Each box represents the middle
50%ofBray-Curtis values, which includes the first quartile (Q1), themedian, and the
third quartile (Q3). Upper and lower whiskers depict maxima and minima of Bray-
Curtis values, excluding outliers. Outliers are Bray-Curtis values that aremore than
1.5x the interquartile range from either Q1 or Q3. Higher Bray-Curtis dissimilarity
indicates poorer performance. b Median RMSE between predicted and actual cell
compositions, aggregated by cell type. Seven tumour purity levels are shown (from
5% to 95%, 15% interval). Darker shade of red represents higher RMSE values and
poorer performance, with numeric RMSEvalues shown.Major cell types (y-axis) are

organised into three categories: epithelial (normal epithelial and cancer epithelial),
immune (T-cells, B-cells andmyeloid), and stromal cells (endothelial, CAFs, PVL and
plasmablasts). CAFs: Cancer Associated Fibroblasts, PVL: Perivascular-like, RMSE:
RootMeanSquare Error. Scatter plots of predicted tumour purity (cancer epithelial
proportions, y-axis) versus tumour purity derived from copy number variations by
Aran et al.40 (x-axis) in linear scale (c), and predicted lymphocytes (T-cells and B-
cells, y-axis) versus tumour-infiltrating lymphocytes (TIL) estimations by Saltz
et al.41 (x-axis) in log scale (d). Each point represents one bulk mixture from TCGA
breast cancer patient, with its colour representing the associated molecular sub-
types. Dotted 45-degree diagonal line represents perfect prediction where pre-
dicted proportions match actual proportions. Each subplot is annotated with its
correlation coefficient (r) and root mean square error (rmse). Source data are
provided as a Source Data file.
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expensive and have specific sample processing requirements and thus
not amenable to routine clinical practice. Therefore, approaches that
accurately estimate cell types within a tissue sample using bulk RNA-
seq have been exploited. Using one of the best-annotated breast can-
cer scRNA-seq dataset to date15 and three validation datasets6,37–39, we
comprehensively benchmarked the performance of nine TME

deconvolution methods across 19 tumour purity levels, and their
ability to estimate three normal epithelial minor cell types in different
breast cancer molecular subtypes, and three lineage granularity levels
of immune cells. By utilising Bray-Curtis dissimilarity and Aitchison
distance, we addressed their compositional nature and enabled
mixture-to-mixture comparisons of methods’ performance.
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Fig. 3 | Impact of normal epithelial lineages and molecular subtypes on
deconvolution. a RMSE between predicted and actual cell compositions, aggre-
gated by molecular subtypes (HER2+, ER+ and TNBC). Darker shade of red repre-
sents higher RMSE values and poorer performance, with numeric RMSE values
shown. Cell types (y-axis) are organised into four categories: cancer epithelial,
normal epithelial (luminalprogenitors,mature luminal andmyoepithelial), immune
(T-cells, B-cells and myeloid), and stromal cells (endothelial, CAFs, PVL and plas-
mablasts). CAFs: Cancer Associated Fibroblasts, PVL: Perivascular-like, RMSE: Root
Mean Square Error.bRawprediction errors of sevenmethods, BayesPrism, Scaden,
MuSiC, CBX, DWLS, hspe and EPIC, for cancer epithelial and three minor subtypes
of normal epithelial cells aggregated by molecular subtypes (HER2+, ER+ and

TNBC). Higher positive and lower negative raw prediction errors represent poorer
performance. Mixtures were synthesised at a fixed purity level of 50% using three
minor cell types of normal epithelial cells and eight other major cell types (cancer
epithelial, T-cells, B-cells, myeloid, endothelial, CAFs, plasmablasts and PVL).
n = 2000 artificial bulk mixtures. Each box represents the middle 50% of raw pre-
diction errors, which includes the first quartile (Q1), the median, and the third
quartile (Q3). Upper and lower whiskers depict maxima and minima of raw pre-
diction errors, excluding outliers. Outliers are raw prediction errors that are more
than 1.5x the interquartile range from either Q1 or Q3. Zero line indicates a perfect
match between prediction and ground truth. Source data are provided as a Source
Data file.
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Obtaining bulk RNA-seq data from thousands of samples with
matching cell-type proportions required for benchmarking would be
expensive and resource-intensive. Even the use of flow cytometry
would not overcome the expense and is technically challenging to
apply to large cohorts of solid tumours, preventing the experimental
mixing of single cells used in benchmarking studies like ours. Similar to
previous deconvolution benchmarking efforts26–28, we overcome the
challenge of data scarcity by mixing data from single cells to create
artificial bulk RNA-seqmixtures.Without resampling a single cell more
than once for one mixture, proportions of cell types in artificial mix-
tures are constrained by the number of available single cells in the
scRNA-seq data (i.e. constraint sampling). This means a cell type with
only 50 cells will never make up more than 10% of any artificial bulk

mixture for a mixture size of 500 cells, and it is more likely that the
same set of cells are sampled for differentmixtures. To overcomeclass
imbalance problems and sampling individual cells many times, we
synthesised new cells using the tool SMOTE36,42. On this note, we
acknowledge that a potential limitation of SMOTE versionwe used is it
does not attempt to model the underlying distribution of single-cell
gene distributions. On the other hand, non-linear and generative deep
learning methods such as variational autoencoders43 and generative
adversarial networks44 can learn the distribution of each class and
enforce synthesised samples to fit in such distributions. A notable
example is DeepSMOTE45, which combines the Cartesian distance
algorithm of SMOTE with a variational autoencoder architecture. We
recommend future studies to explore the potentials of generative

Fig. 4 | The performance of the nine deconvolution methods assessed by false
positive and false negative rates. a Confusion matrices depicting all nine meth-
ods’ performance on predicting whether a cell type is absent (<0.1%) or present
(≥0.1%) in a mixture. For each confusion matrix, x-axis represents predicted
absence/presence, y-axis represents actual absence/presence, and false positive,
true positive, false negative, and true negative numbers are aggregated across all
cell types. b Predicting cell type presence when cell type absent in the mixture.
Percentages of the three levels of false positives out of the total number of false
positives and true negatives (actual proportion <0.1%). Counts of false positives are

shownabove eachbar for all cell types. cPredicting cell type absencewhen cell type
present in themixture. Percentages of the three levels of false negatives out of total
number of all false negatives and true positives (predicted proportions <0.1%).
Counts of false negatives are shown above each bar for all cell types. Figure legend
for both (b) and (c) illustrates definitions of true negative, false positive, true
positive, and false negative predictions. The more accurate a method in predicting
presence/absence, the lower false positive rates and false negative rates are. Source
data are provided as a Source Data file.
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deep learning methods in single-cell data synthesis. For each patient,
SMOTE synthesised asmany cells as necessary so that cell counts of all
cell types were equal to the count of the most abundant cell type,
ensuring all cell types are randomly sampled with the same prob-
abilities. We show that this approach synthesised cells that cluster
tightly with original cells. SMOTE has been used previously in RNA-
seq46, and while we believe data synthesis is a better alternative to

resampling and constraint sampling, as it introduces more hetero-
geneity to the artificialmixtures, we do not suggest it as a replacement
for real samples. Rather, increasing availability and resolutionof single-
cell data will be critical for improving performance of deconvolution
methods.

In this study, we showed that deconvolution methods may per-
form worse in the presence of a higher proportion of cancer cells.
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Newman et al.18 showed that Pearson’s r values of CIBERSORT, an
earlier version of CIBERSORTx, and 6 other deconvolution
methods47–51 declined as tumour purity levels in simulated mixtures
increased. We confirm this pattern for the newer deconvolution
methods, and in addition found that BayesPrism, Scaden, MuSiC, CBX
and DWLS are superior compared to Bisque, hspe, EPIC, and CPM in
overall performance and in deconvolution of major immune cell types
across different tumour purities. In addition, we show the cause of the
performance decline in increasing tumour purity is due to methods
mistaking normal epithelial for cancer epithelial cells in high tumour-
purity mixtures. Similar patterns were also observed when we used
simulated mixtures generated from two additional scRNA-seq data-
sets, Bassez et al.37 and Pal et al.38, indicating the robustness of our
findings when technical batch effect is present. Furthermore, our
validation work on Bassez et al.37 and Pal et al.38 confirmed BayesPrism,
MuSiC and Scaden are resilient against variable tumour purity, and
their good performance on deconvolving major immune cell types is
generalisable acrossdatasets. InPal et al.38, where normal epithelial cell
labels were provided, we also confirmed the normal-cancer mis-
prediction for MuSiC, CBX, DWLS, and hspe.

The true test for deconvolution methods is how they perform on
real bulk mixtures. Our validation analysis on 1038 breast cancer
samples from TCGA revealed that the three methods showing highest
level of resilience against tumour purity (BayesPrism, Scaden and
MuSiC) were also the top-performing methods in predicting tumour
purity, compared against Aran et al.40 estimates, and tumour-
infiltrating lymphocyte (TIL) content, compared against Saltz et al.41

estimates. CBX and hspe also showed comparable performance to
BayesPrism, Scaden, and MuSiC in predicting tumour purity. We do,
however, note that most methods only achieved sub-optimal perfor-
mance with TIL estimation, which could have been a result of the RNA-
seq extraction sample and the H&E image used for true TIL content
having been collected from two tumour regions.

We also found that cancer cells were mis-predicted as different
subtypes of normal epithelial cells depending on the breast cancer
subtype, observed in the predictions BayesPrism, Scaden,MuSiC, CBX,
DWLS, hspe and EPIC. This observation supports that there are tran-
scriptional similarities between normal epithelial cell subtypes and
different cancer subtypes, which could be reflective of the cancer cell
of origin. Luminal progenitor cells were generally overpredicted as
TNBC cancer samples, aligning with the hypothesis that basal-like
cancers, which overlap with TNBC subtype52, originate from luminal
progenitor cells53,54. Mature luminal cells were generally overpredicted
for ER+ cancer samples. These cells are hormone receptor positive and
are reported to have molecular profiles closest to luminal A cancers53,
which are generally ER+/PR+52, although the cell of origin for this
subtype is yet to be definitively confirmed54. Finally, HER2+ cancers
had a less definitive normal cell type mis-predictions, which varied
depending on the deconvolution method, although mostly reflected
luminal cell lineage rather thanmyoepithelial lineage. This alignedwith
the hypothesis that HER2+ cancers arise through HER2 (ERBB2)
amplification in cells committed to the luminal lineage53,54.

Granularity is a recent focus in deconvolution research, with
several of the latest methods dedicated to estimating populations of
rare immune subtypes such as MuSiC20 or DWLS23. Prior to the advent

of these methods, Newman et al.18 and Jiménez-Sánchez et al.27 sug-
gested that deconvolution performance is not uniform across the
immune subtypes. In this study, we conducted cross-lineage-level
comparisons and showed that deconvolution performance decreased
frommajor tominor to subset immune cell types. At subset level, even
the two best-performing methods, BayesPrism and DWLS, did not
produce optimal predictions and had numbers of false-positive and
false-negative failures for all cell types. Interestingly, the second best-
performing method DWLS was purposely built to deconvolve rare cell
types, by dynamically penalising more abundant cell types and
weighting up rare cell types based on their population in the single-cell
reference matrix. Increasing availability of scRNA-seq data with larger
representation of rare cell types will likely help address this issue.

We acknowledge potential limitations of our study. First, we did
not assess enrichment-based methods such as ConsensusTME27,
TIMER 2.028, and xCell55, which use single-sample Gene Set Enrichment
Analysis (ssGSEA)56,57 to calculate collective up-or down-regulation of
known marker genes of specific immune cell types (enrichment
scores). Mixtures with higher populations of an immune cell type will
have higher enrichment scores using its relatedmarker genes. This is a
more objective metric compared to the relative nature of cell pro-
portions. In addition, ConsensusTME27, TIMER 2.028, and xCell55 have
each incorporatedmarker gene signatures frommultiple cancer types
for pan-cancer deconvolution, which currently no fraction-based
methods (either single-cell-based or deep learning methods) achieve.
However, we did not include thesemethods in this study, as it was not
feasible to assess them together with the proportion-based deconvo-
lution methods, and based on the experiments and metrics used
herein. The second potential limitation in our study is the process of
dissociating tumours and the microfluidics kinetics, used in the 10X
Genomics Drop-Seq for single-cell capture, can potentially lead to an
overrepresentation of immune cells. In addition, there are granulo-
cytes such as Neutrophils that are not captured with Drop-Seq. For
future studies, single-cell spatial transcriptomics is likely to be the
solution for this issue. Lastly, in this study we fixed cell count of all
pseudobulkmixtures at 500. Thiswasmainly to ensure thatwe did not
resample the same cell twice for a mixture, as some samples only
contained between 500 and 1000 for the most prevalent cell type.
With the average number of reads per cell of approximately 7000 in
Wu et al.15, a 500-cell mixture would have around 3.5 million reads per
pseudobulk, which is less than the typical amount of 25–50 million
reads. This small library size could have led to underrepresentation of
lowly expressed genes compared to real bulk data.

Overall, we found that BayesPrism, MuSiC, DWLS, CBX and Sca-
den are the most robust deconvolution methods against changing
biological conditions of the TME. Four of these approaches, BayesPr-
ism, MuSiC, DWLS and Scaden, also showed the best performance
using bulk RNA-seq to predict tumour purity. While all four methods
were robust against variable tumour purity levels, BayesPrism and
DWLS showed themost resiliencewith higher cell type granularity. The
increasing availability of more diverse and well-annotated scRNA-seq
datasets will greatly facilitate deconvolution of rare immune cell types.
For improved deconvolution of rare immune subtypes, we expect
futuremethods to build uponpurposely developed algorithms such as
the dynamic weighting system in DWLS and the hierarchical

Fig. 5 | Impact of immune lineages on deconvolution. a The relationship of
immune cells in the major, minor and subset cell types. b, c Aitchison distance
betweenpredicted and actual compositions of 2000mixtures containing 23 subset
cell types of T-cells, B-cells and myeloid at 50% tumour purity level. The median
Aitchison distance across 2000 mixtures is shown for each of the nine methods
using either b all cell types or c only immune cell types. Lighter shade of teal
indicates smaller Aitchison distance and between performance. RMSE (red) (d) and
RPE (orange) (e) between predicted and actual cell proportions of BayesPrism and
DWLS, aggregated into major, minor and subset cell types. Darker shades of red

and orange represent higher RMSE and RPE values and poorer performance,
respectively. Cancer epithelial, normal epithelial, endothelial, CAFs, PVL and plas-
mablast cell types were used for artificial bulk simulation at all three levels and,
therefore, possess three sets of RMSE and RPE values across the lineage levels.
Several minor immune cell types, such as NK cells or memory B-cells, do not have
any subset cell types andwere therefore re-used at the subset level, resulting in two
sets of RMSE and RPE values at minor and subset level. RMSE: Roost Mean Square
Error, RPE: relative proportion error. Source data are provided as a SourceData file.
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proportioning system in MuSiC. We also anticipate deep learning
methods to become more popular and translate the success of incor-
porating biological knowledge using Graph Convolutional Neural
Networks (GCNN) from domains of cancer research to
deconvolution58–60. Deep learning methods can also be useful in pan-
cancer deconvolution for fraction-based methods. The prospect of a
deep learning method trained on simulated mixtures from many
cancer types is interesting and should be explored.

Methods
Ethics approval and consent to participate
This projectused scRNA-seq andbulkRNA-seqdata frombreast cancer
patients which was previously published. The QIMR Berghofer Human
Research Ethics Committee approved use of public data (P2095).

Dataset selection and pre-processing
In this study, we collected raw gene counts and annotated single cell
labels, including cancer cell labels which were inferred using Copy
Number Variations (CNV), from the breast cancer scRNA-seq datasets
in Wu et al.15, Bassez et al.37, and Pal et al.38. For all 3 datasets, we
normalised downloaded raw gene counts by counts-per-10,000 using
Seurat v3 NormalizeData() function with normalisation method set to
relative counts (RC), which applied counts-per-10,000 normalisation
without log transformation. The resulting normalised counts were
then used for downstream benchmarking analyses.

Of note, we were not able to use CPM for Bassez et al.37 and Pal
et al.38, as the CPM approach requires UMAP coordinates which were
not available for these additional datasets.

Wuet al. The annotated scRNA-seq data from26 patients representing
3 major clinical subtypes with 100,064 single cells was accessed from
Gene Expressions Omnibus (GEO, GSE176078). The downloaded data
were mapped to GRCh38 human reference genome and included fil-
tered Unique Molecular Identifier (UMI) gene counts (excluding cells
with gene and UMI counts below 200 and 250, respectively, and
mitochondrial percentages less than 20%), UMAP coordinates and cell
annotations. The cell annotation included nine major cell types,
29 minor cell types, and 49 subset cell types.

Bassez et al. The annotated scRNA-seq data from Bassez et al.37 was
accessed via the study’s official website at https://lambrechtslab.sites.
vib.be/en/single-cell. The study includes 2 patient cohorts: 39 patients
who received one dose of pembrolizumab before surgery (cohort 1)
and 15 patients undoing neoadjuvant chemotherapy before receiving
pembrolizumaband the subsequent surgery (cohort 2),with single-cell
sequencing conducted both pre-and post-treatment. We only used
pre-treatment cell counts and cell annotations of 42 patients (31 from
Cohort A and 11 from Cohort B) from whom scRNA-seq data was
retrievable, which include 105,222 single cells representing 3 major
clinical subtypes. The downloaded gene counts were mapped to
GRCh38human referencegenome and excluded cells expressing <200
or >6000 genes, cells containing less than 400 UMIs, as well as cells
with more than 15% mitochondrial reads. Cell annotations included
eight major cell types.

Pal et al. We downloaded scRNA-seq profiles of 52 patients in Pal
et al.38 from GEO (GSE161529), which includes tumour samples as well
as their matching normal and pre-neoplastic samples. Following the
download analysis guide in61, we retrieved cell annotations of from
Seurat-integrated objects of 13 ER+, 6 HER2+ and 8 triple-negative
tumour samples, comprising of 148,694 single cells from 27 patients.
The downloaded UMI counts excluded cells with less than 500 genes
or less than 20% mitochondrial reads, as well as cells with unusually
high number of reads or genes. Cell annotations included 12 major
cell types.

Oversampling of minority cell types
The data synthesis method Synthetic Minority Oversampling Techni-
que (SMOTE)36 was used to generate new cells for under-represented
classes before using single-cell RNA-seq data to simulate artificial bulk
mixtures. SMOTE is a data augmentation technique that synthesises
new data based on the original data points. For each data point in a cell
type, SMOTE draws a vector between the point and a random point of
the same cell type before creating a new data point at a random place
along this vector. The result is new data points that are not exact
replicates of, but also not too deviated from the original data. The
Python implementation of Distance SMOTE42 v0.4.0 (https://github.
com/analyticalmindsltd/smote_variants) was applied to cells for each
individual patient sample. To ensure synthesised cells are repre-
sentative of original cells, for experiment, we discarded cell types with
less than 10 cells before executing SMOTE. After data oversampling,
Seurat v3.5 implementation of UMAPwas executed on the output gene
counts.

To preserve inter-patient variability, we conducted SMOTE sepa-
rately per patient, i.e. synthesized cells are created for each patient
using only the patient’s original cells. This means if a cell type is not
present for a patient, its cell count after SMOTE is still 0.

Additionally, cohort 1 and cohort 2 in Bassez et al.37 were
sequenced separately, resulting in different gene lists in their scRNA-
seq profiles (25,288 genes for Cohort 1 and 22,889 genes for Cohort 2).
After counts-per-10,000 normalisation, we used all genes for each
patient in Bassez et al.37 during SMOTE and only retained the 22,567
intersecting genes between two cohorts for the subsequent generation
of single-cell reference profiles and simulated bulk mixtures. Unique
gene list of each cohort and their intersecting gene list are provided in
Supplementary Data 4.

Splitting data into training and test
The deconvolutionmethods benchmarked in this study require one of
three types of training input: 1) a single-cell reference profile matrix
containing gene expression of all cells from the training dataset (Bis-
que, CBX, CPM, DWLS, hspe, and MuSiC), 2) a signature matrix con-
taining differentially expressed genes for all cell types (EPIC), or 3)
simulated bulkRNA-seqmixtureswith known cell fractions for training
a model (Scaden). In addition, all methods require separate test data
for performance evaluation. As methods must be completely blind to
the test data,we assigned all cells from certain patients to training data
and those from the remaining patients to the test data, ensuring all cell
types and molecular subtypes are present in both train and test data.
Supplementary Fig. 1 details which patient was assigned to train/test
and cell-type-specific counts at each linear level for Wu et al.15.

Simulation of training artificial bulk RNA-seq mixtures
To generate bulk RNA-seq mixtures with known cell fractions,
cells were randomly sampled from the training dataset to create
artificial bulk mixtures. This random sampling was constrained to
cells from only one patient per mixture to capture inter-patient
gene expression heterogeneity. The code implementation was
based on the Python packages pandas v1.1.5 and numpy v1.19.15
and was influenced by a similar procedure used in Menden et al.17.
First, the total number of cells per mixture was fixed to 500 cells.
For each mixture, a random number of cell types between 5 and
maximum available cell types for a patient was chosen to be
included. Then, a random fraction between 0 and 1 was generated
and assigned to a random cell type, which effectively enables one
random cell type per mixture to have a free-range proportion:

f c = random:def aultrng ðÞ:choiceðÞ ð1Þ

where f c is the free-range proportion of cell type C. We then randomly
generated fractions for other cell types, normalised them between [0,
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1] and thennormalised themagainbetween [0, 1- f c] to ensure cell-type
proportions sum to 1:

r�c = random:def aultrng ðÞ:choiceðÞ ð2Þ

f �c =
r�cP
�call

�c
× ð1� f cÞ ð3Þ

where r�c and f �c are non-normalised and normalised proportions,
respectively, for any cell type besides C. Then each fraction was
multiplied by 500 to retrieve the corresponding cell counts for each
cell type:

nc = f c × 500 ð4Þ

n�c = f �c × 500 ð5Þ

where nc is cell counts of cell type C, n�c is cells counts of any other
cell type.

For each simulated bulk mixture, we repeated this process to
collect a unique set of single cells and sum counts-per-10,000 nor-
malised counts across all 500 cells to produce the simulated bulk
counts. We used this process to generate different sets of train mix-
tures with known cell-type proportions, which were used as training
data for the deep-learning model Scaden.

Variable tumour-purity mixtures. We used labels of major cell types
from Wu et al.15 (n = 9), Bassez et al.37 (n = 8), and Pal et al.38 (n = 11) to
randomise cell-type-specific proportions for each simulated mixture.
Wegenerated 5000mixtures per patient, resulting in 90,000mixtures
per experiment from Wu et al.15, 110,000 mixtures per experiment
from Bassez et al.37, and 80,000 mixtures per experiment from Pal
et al.38. Each mixture was simulated using single cells from only one
scRNA-seq dataset and bulk deconvolution only relied on single-cell
reference profiles from the same dataset.

Normal epithelial lineages mixtures. We used single cells from Wu
et al.15 for this experiment as it was the only dataset with lineage of
normal epithelial cells. We used major cell type labels for cancer epi-
thelial, T-cells, B-cells, myeloid, endothelial, cancer-associated fibro-
blasts (CAFs), perivascular-like cells (PVL), and plasmablasts, and
replaced normal epithelial with their subtype labels (luminal progeni-
tors, mature luminal, and myoepithelial) (Supplementary Data 2). We
generated two different sets of train mixtures, one where all three
minor cell types of normal epithelial were included in the simulation
process and another where they were all excluded. Each set had 5,000
mixtures per train patient, resulting in 90,000 mixtures in total.

Immune lineages mixtures. We used single cells from Wu et al. 15 for
this experiment as it was the only dataset with lineages of immune cell
types at both minor and subset levels. We generated two sets of arti-
ficial bulk mixtures using minor and subset immune cell annotations.
In the twodatasets, we usedmajor cell type labels for cancer epithelial,
normal epithelial, endothelial, CAFs, PVL, and plasmablasts. We then
used the 11 minor cell-type annotations of T-cells, B-cells, and myeloid
cells, and generated 5000 mixtures per patient (90,000 mixtures in
total) (Supplementary Data 2). This formed our train data at minor
immune lineage level. In addition, we also used 17 subset cell-type and
six minor cell-type annotations (which do not have any subset cell
types) of T-cells, B-cells and myeloid to generate another set of 5000
mixtures per patient (90,000 mixtures in total) (Supplementary
Data 2). This formed our train data at subset immune lineage level.
Note that at subset level, we did not use T-cells:GZMK, M2-like

Macrophage, and Myeloid:DC/LAMP3, as they were only detected in
one train set patient and MuSiC is a multi-subset method.

Generation of single-cell reference profiles and signaturematrix
BayesPrism, Bisque, CBX, CPM, DWLS, hspe, and MuSiC require a
single-cell reference matrix containing all cell types present in the
deconvolved bulkmixtures. For each set of simulated trainmixtures
described above, we generated the corresponding single-cell
reference profiles by discarding oversampled cells and retaining
scRNA-seq data from only original cells in patients selected for
training. For EPIC, we provided it with the signature matrix pro-
duced by CBX. This means patient-specific and cell-type counts
detailed in Supplementary Data 2 also depicts the compositions of
each single-cell reference profile.

Simulation of test artificial bulk RNA-seq mixtures
The simulation process used to generate artificial training mixtures
was adapted to generate different sets of test mixtures.

Variable tumour-purity mixtures. We used the same major cell-labels
from Wu et al.15 (n = 9), Bassez et al.37 (n = 8), and Pal et al.38 (n = 11) as
were used in the training mixture simulation. However, tumour purity
level of eachmixture was fixed at one of the 19 values between 5% and
95% with 5% interval. All other cell types were randomised similarly to
the training simulation.Wegenerated 250mixtures per purity level per
test patient sample, resulting in a total of 38,000 mixtures from Wu
et al.15, 57,000mixtures fromBassez et al.37, and 38,000mixtures from
Pal et al.38.

For the technical batch effect validation experiment where single-
cell reference and train simulated mixtures come from Wu et al.15, we
grouped original cell-type labels in Bassez et al.37 and Pal et al.38 con-
sistently with cell-type labels from Wu et al.15. For Pal et al.38, we
grouped tumour-associated macrophages (TAMs) and dendritic cells
(DCs) into myeloid. We also dropped pericytes, as they are not anno-
tated inWu et al.15. This resulted in 8major cell types: cancer epithelial,
normal epithelial, T-cell, B-cell, myeloid, endothelial, CAFs, and plas-
mablasts. For Bassez et al.37, we grouped mast cells and plasmacytoid
dendritic cells (pDC) into myeloid, resulting in 6 major cell types:
cancer epithelial, T-cell, B-cell, myeloid, endothelial, and CAFs. After
this cell annotation grouping step, 57,000 mixtures from Bassez
et al.37, and 38,000mixtures from Pal et al.38 were generated using the
same process described above. For each set of simulatedmixtures, we
only retained the intersecting genes between Bassez et al.37 and Wu
et al.15, and Pal et al.38 and Wu et al.15, respectively (Supplemen-
tary Data 5).

Similar to train mixture simulation, each test mixture was simu-
lated using single cells from only one scRNA-seq dataset.

Normal epithelial lineages mixtures. We used the same minor cell-
type labels of normal epithelial cells and major cell-type labels for
other cell types from Wu et al.15 as were used in the train mixture
simulation. Also similar to train mixture simulation, we generated
two different sets of test mixtures, one where all three minor cell
types of normal epithelial were included in the simulation process
and another where they were all excluded. Both sets had 250 mix-
tures per test patient (2000 mixtures in total, Supplemen-
tary Data 2).

Immune lineages mixtures. We used the same minor and subset cell-
type labels of immune cell types and major cell-type labels for other
cell types fromWu et al.15 as were used in the train mixture simulation.
Also similar to train mixture simulation, we generated two different
sets of test mixtures, one with minor and one with subset immune cell
types. Both sets had 250 mixtures per test patient (2000 mixtures in
total, Supplementary Data 2).
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Validation on real bulk mixtures from TCGA breast cancer
samples
RNA-seq data from the TCGA breast cancer project was obtained from
the UCSC Cancer Genomics Hub (no longer operational) in November
2014. Reads were trimmed for adapter sequences using Cutadapt62

(version 1.9) and aligned using STAR63 (version 2.5.2a) to GRCh38
human reference genome with the gene, transcript, and exon features
of Ensembl (release 84) gene model. Quality control metrics were
computed using RNA-SeQC64 (version 1.1.8) and expression was esti-
mated using RSEM65 (version 1.2.30). The analysis was restricted to
1038 primary tumour samples with intragenic rate >95% and protein-
coding rate >90%. Gene counts were normalised by Transcript-per-
Million (TPM).

To run deconvolution on TCGA bulk mixtures, we reused the
same single-cell reference profiles (for Bisque, BayesPrism, CBX, CPM,
DWLS, hspe, and MuSiC) and train simulated mixtures (for Scaden)
with annotations of nine major cell types from Wu et al.15. that were
generated for the variable tumour purity experiment. We also pro-
vided EPIC with the signature matrix generated by CBX.

For PAM50 subtyping, lowly expressed genes were filtered, fol-
lowed by upper-quantile normalisation and log RPKM value transfor-
mation using edgeR66 package. PAM50 subtypingwasperformedusing
genefu67 package.

Validation of tumour purity estimations. We downloaded the Con-
sensus Tumour Estimates (CPE) of 1113 breast cancer patients in TCGA
fromAran et al.40, whichwas unified across tumour purity estimates by
ABSOLUTE68, ESTIMATE69 and LUMP40, as well as pathologist-
annotated estimates (Pathology)40 (Supplementary Fig. 16). Out of
these 1113 patients, we were able to match 1031 patients back to the
downloaded transcriptomics data using patient barcodes. We vali-
dated deconvolution performance on purity by comparing predicted
cancer epithelial proportions of populations against CPE tumour
purity estimations from the filtered list of 968 patients (Supplemen-
tary Data 6).

Validation of lymphocyte estimations. We downloaded tumor-
infiltrating lymphocytes (TIL) estimations of 944 breast cancer
patient patients in TCGA from Saltz et al.41, which was produced by a
trained deep-learning model using H&E images. This deep learning
model was trained using H&E images manually annotated by pathol-
ogists and shown to have strong correlationwith cellular compositions
derived by the deconvolution method CIBERSORT18, an earlier itera-
tion of CIBERSORTx. Out of 944 patients, we were able to match 892
patients back to the downloaded transcriptomics data using patient
barcodes. We validated deconvolution performance on lymphocyte
populations by comparing total predicted proportions of T-cells and
B-cells against TIL estimations from Saltz et al. from the filtered list of
892 patients (Supplementary Data 7).

False positives and false negatives in tumour deconvolution
To analyse false positive rates, we identified true negatives, here
classed as actual cell type proportion <0.1%, and binned the predicted
proportions into four intervals (<0.1%, 0.1%−1%, 1%−10% and >10%).
Predicted proportions <0.1% were considered true negatives (TN), i.e.
correctly predicting a cell type is missing. Predictions in the other
three intervals were considered false positives (FP). We counted the
number of occurrences of each interval and calculated false positive
rates as FP/(FP + TN).

To analyse false negative rates, we identified true positives (actual
cell type proportions ≥0.1%) and binned the actual proportions into
three intervals (0.1%−1%, 1%−10% and >10%). We also identified pre-
dicted negatives (predicted cell type proportions of <0.1%). Actual
proportions ≥0.1% were true positives (TP). Predictions of <0.1% in the
three intervals were considered false negatives (FN). We then counted

the number of occurrences of each interval and calculated false
negative rates as FN/(FN + TP).

Overview of TME deconvolution methods
In this study, we benchmarked three categories of deconvolution
methods: deep learning (Scaden17 v1.1.2), single-cell-referenced-based
(BayesPrism29 v2.0, Bisque22 v1.0.5, CIBERSORTx19 – available as of 29th
June 2021, CPM24 v0.1.6, DWLS23 v0.1.0, hspe35 v0.1, MuSiC20 – available
as of 29th June 2021) and signature-based (EPIC25 v1.1). When further
data analysis was required, we employed the R package Seurat v3.5, as
well as the Python package Distance SMOTE v0.4.0, pandas v1.1.5,
numpy v1.19.15, scanpy v1.7.2, scikit-learn v0.24.2, and scikit-bio v0.5.6.

Of note, the methods BayesPrism, Bisque, MuSiC and hspe could
incorporate cell-type-specific marker genes during deconvolution. By
contrast, DWLS could either use Seurat or MAST to build its internal
signaturematrix. In this study, we chose to use default parameters for
all methods and hence reported results produced by the no-marker-
genes version of BayesPrism, Bisque, MuSiC and hspe, and the Seurat
version of DWLS. We have, however, provided a performance com-
parison across all three immune lineage levels in Supplementary
Fig. 18, which shows slight differences for BayesPrism, Bisque, MuSiC
and better performance for hspe when marker genes are not used
(Supplementary Fig. 18a, b), as well as slightly better performance for
DWLS-with-Seurat (Supplementary Fig. 18c, d). When performance
optimisation is of concern in future studies, we do recommend con-
sidering different parameter settings for each method.

Here we provide a description of how these methods were exe-
cuted in this study. Summarised technical overview of the methods is
provided in Supplementary Note 1.

BayesPrism. BayesPrismv2.0was installed fromtheGitHub repository
https://github.com/Danko-Lab/BayesPrism. In addition to cell types,
BayesPrism allows the option to specify cell subtypes, known as cell
states, in the single-cell referencematrix. Deconvolved fractions of cell
states of each cell type would be summed to produce the cell type’s
fraction. To make BayesPrism comparable with other methods, we
chose not to use this option and only specify cell types for BayesPrism.
All other parameterswere set as the algorithm’s default options. Lastly,
BayesPrism produces two sets of predicted cell-type fractions, one
before and one after the Gibbs sampling step, in which the reference
matrix is updated using within-sample tumour expression and across-
samples non-tumour expression.We used post-Gibbs-sampling results
for BayesPrism in this study and have provided a cross-dataset per-
formance comparison of pre- versus post-Gibbs-sampling in Supple-
mentary Fig. 17.

bisqueRNA (Bisque). BisqueRNA (Bisque) v1.0.5 was installed from
https://cran.r-project.org/web/packages/BisqueRNA. In Jew et al.22,
single-cell gene counts were normalised, filtered for variable genes,
and scaled using the SCTransform function. We chose not to filter raw
counts for variable genes to ensure identical gene sets in reference
single-cell data across allmethods.Moreover, the benchmarking study
by Cobos et al.26 suggested that performance of Bisque remains rela-
tively unchanged across many normalisation methods. For these rea-
sons, we chose not to process single-cell data for Bisque using the
SCTransform function, but instead kept gene counts linear, similarly to
other methods. All other parameters were set as the algorithm’s
default options.

CIBERSORTx (CBX). The containerised version of CIBERSORTx (CBX)
was downloaded from https://hub.docker.com/r/cibersortx/fractions.
We executed CBX using the algorithm’s default parameters. CBX also
offers several functionalities to deconvolve tumours across sequen-
cing platforms and infer cell-type-specific gene expression values,
among which was the S-mode option used for batch effect correction
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between bulk mixtures and droplet-based single-cell reference. We
utilised this functionality when running deconvolution methods on
TCGA bulk samples.

Cell Populating Mapping (CPM). Cell Population Mapping (CPM)
v0.1.6 was installed from the CRAN repository https://cran.r-project.
org/web/packages/scBio. When running CPM, all parameters were set
as the algorithm’s default options, apart from cell-state space and
neighbourhood size. As suggested in24, we chose to employ UMAP
coordinates as the cell-state space. This was achieved by obtaining the
original UMAP coordinates of train set patient samples in Wu et al.15.

CPM instructions recommend choosing a neighborhoodSize
value representing themaximum number of cells of the same cell type
surrounding any random cell in the cell-state space. As our cell-state
space was a dense UMAP distribution, we aimed to select the highest
possible value for neighborhoodSize. We followed CPM’s tutorial
where neighborhoodSize is roughly one-fourth of the count of the
smallest cell type. As our least abundant cell type was 1330 (normal
epithelial cells), we chose neighborhoodSize=250.

Dampened Weighted Least Squares (DWLS). Dampened Weighted
Least Squares (DWLS) v0.1.0 was installed from the CRAN repository
https://cran.r-project.org/web/packages/DWLS. All parameters used
for running DWLS were set as the algorithm’s default options.

Estimating the Proportion of Immune and Cancer cells (EPIC).
Estimating the Proportion of Immune and Cancer cells (EPIC) v1.1 was
installed from the GitHub repository https://github.com/GfellerLab/
EPIC. Unlike deep learningmethods or single-cell-basedmethods, EPIC
is a signature-basedmethod and requires amatrix of expression values
of differentially expressed genes for all present cell types. We could
not achieve this using EPIC’s default signature matrix as it does not
include all cell types in our scRNA-seq data. To overcome this, we
chose to run EPIC using the signature matrix that CBX produced for
each corresponding experiment. All other parameters were set as the
algorithm’s default options.

hybrid-scale proportions estimation (hspe). Hybrid-scale propor-
tions estimation (hspe) v.01 was installed from the Github repository
https://github.com/gjhunt/hspe. All parameters used for running hspe
were set as the algorithm’s default options. Importantly, hspe assumes
input gene counts of both single-cell reference profiles and bulk mix-
tures are in logarithmic space and applies an inverse-logarithm step
before deconvolution to convert counts to linear space. Due to this
reason, we applied log2(gene_counts+1) transformation for hspe.

MUlti-Subject SIngle Cell deconvolution (MuSiC). MUlti-Subject
SIngle Cell deconvolution (MuSiC) was installed from the GitHub
repository https://github.com/xuranw/MuSiC, using the version made
available on 29th June 2021. Notably, MuSiC implements a multi-
subject gene-weighting approach, which dynamically penalises genes
with low between-subject variance for the single-cell reference pro-
files. This feature is a core step of MuSiC deconvolution process, and
we therefore chose to utilise it by including matching patient IDs for
the single-cell reference. Additionally, MuSiC can option-
ally deconvolve cell subtypes before adding fractions of subtypes
together to form cell type fractions. For MuSiC to be comparable with
other methods, we chose not to use this functionality. All other para-
meters used to run MuSiC were set as the algorithm’s default options.

Single cell–assisted deconvolutional DNN (Scaden). Scaden v.1.1.2
was installed from the Bioconda repository https://anaconda.org/
bioconda/scaden. The simulated train mixtures were used to train the
Scaden model for 15,000 steps for each experiment. The trained

model was then used to predict compositions of the test mixtures for
each experiment.

Evaluation metrics
Compositional evaluation metric. Cell-type proportions are compo-
sitional, i.e. the total sum of all cell types within one mixture is always
100%, and a change in one cell type influences other cell types. We
used two compositional evaluation metrics, Bray-Curtis dissimilarity
and Aitchison distance70, to assess the overall mixture-to-mixture
deconvolution performance. Thesemetrics model amixtures asmulti-
dimensional data point and each cell type within a mixture as a
dimension, e.g. a mixture consisting of nine major cell types is con-
sidered a nine-dimensional data point. Under this paradigm, predic-
tion errors are how close or similar the predicted multi-dimensional
data points are to the true data points.

We used Bray-Curtis dissimilarity to assess influence of variable
purity levels on deconvolution, which is measured as:

BrayCurtis = 1� 2Cpred=truth

Spred + Struth
ð6Þ

where Cpred=truth is the total sum of lesser counts for each cell types in
both predicted and true mixture, Spred is the total number of cells in
the predictedmixture, and Struth is the total number of cells in the true
mixture. Of note, this formula implies that Bray-Curtis dissimilarity is a
count-based metric rather than a percentage-metric. However, we
could use it in this study as cell counts for all mixtures were fixed at
500, essentially rendering cell counts and cell percentages equivalent.

We used Aitchison distance to assess deconvolution performance
across different lineage levels of immune cell types (major, minor, and
subset). As recommended by Aitchison et al.70, we applied Centred
Log-Ratio (CLR) transformation on proportions and calculated the
Aitchison distance. Prediction errors are the Aitchison distance
between a mixture’s ground truth and prediction data points:

AitcsD=

ffiffiffiffiffiffiffiffiffiffiffiffiffiXk

i = 1

r
ðCLRðPrediÞ � CLRðTruthiÞÞ2 ð7Þ

where i is each cell type and k is the number of cell types for each
mixture.

Cell-type specific evaluation metric. We used Root Mean Square
Error (RMSE) to measure pair-wise margin of error and Pearson’s r to
measure pair-wise correlation between predicted and actual cell pro-
portions. These values are computed differently across all cell types
compared to each cell type.Whenevaluatingperformance foreachcell
type, we computed RMSE and Pearson’s r across all mixtures and
presented the median value for each metric. We relied primarily on
RMSE over Pearson’s r as the pair-wise metric when ranking methods’
performance, as higher Pearson’s r values can occur to predictions
with both high and low RMSE values26,71.

To investigate the direction of mispredictions, we used raw pre-
diction errors (predicted proportion – actual proportion). Of note, we
kept all raw prediction error values as is and only used them for dis-
tribution plots (such as boxplots), as averaging or adding them would
cause positive and negative values to eliminate each other.

Rare cell types typically have low proportions, which makes the
relative magnitudes between themargin of error and the ground truth
can be of great importance. For example, a margin of error of 5% to a
ground truth of 2% (for a rare cell type) is muchmore severe than to a
ground truth of 30% (for a non-rare cell type). This problem usually
manifests in artificially low values of RMSE for rare cell types. Fur-
thermore, this also makes comparison of deconvolution methods
between mixtures with a lot of rare cell types andmixtures with only a
few cell types challenging. To address this, we calculated Relative
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Proportion Error (RPE) for each cell type i in each mixture j as follows:

RPEij =
jPredij � Truthijj

Truthij
ð8Þ

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
This project used previously published scRNA-seq data available at
GSE176078 from Wu et al.15, count data from [https://lambrechtslab.
sites.vib.be/en/single-cell] for Bassez et al.37 (raw data for this data is
available at [https://ega-archive.org/studies/EGAS00001004809]),
and GSE161529 from Pal et al.38. We accessed count level data that can
be accessed publicly. RNA-seq data from TCGA for breast cancer was
downloaded from UCSC Cancer Genomics Hub, currently available at
[https://portal.gdc.cancer.gov]. Source data are provided with
this paper.

Code availability
The R and Python used for analyses in this study is available at https://
github.com/MedicalGenomicsLab/deconvolution_benchmarking72.
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