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INTRODUCTION

In medical research, causality has been dealt with as one of the 

utmost importance. For instance, studies regarding minimally 

invasive surgery (MIS) are based on the causal hypothesis that 

such a surgical method will reduce the burden on patients and 

lead to a decrease in morbidity and rapid functional recovery 

compared to conventional open surgical treatments [1,2]. How-

ever, randomized controlled trials, considered as the gold stan-

dard for causality [3–5], are often difficult to implement owing to 

ethical or economic issues. For these reasons, researchers fre-

quently conduct observational studies, but these are often re-

garded as providing association results, not causality [3,4]. The 

main reason for losing causal meaning is the failure to compare 

like with like. For example, various baseline characteristics such 

as age and socioeconomic status may not be balanced be-

tween the two groups. To make them comparable, confound-

ers should be cautiously adjusted to identify the causal effect 

of interest. Nonetheless, it is a difficult task to determine which 

variables to adjust or not to adjust in observational studies. Tra-

ditional variable selection methods such as backward elimina-

tion and stepwise selection have been criticized because they 

often lead to biased causal effect estimates. Other variable 

selection methods are also subject to the same criticism. In 

particular, variable selection for prediction purposes may not be 

optimal for causal inference.

Directed acyclic graphs (DAGs) are useful tools for visualizing the hypothesized causal 
structures in an intuitive way and selecting relevant confounders in causal inference. However, 
in spite of their increasing use in clinical and surgical research, the causal graphs might also 
be misused by a lack of understanding of the central principles. In this article, we aim to 
introduce the basic terminology and fundamental rules of DAGs, and DAGitty, a user-friendly 
program that easily displays DAGs. Specifically, we describe how to determine variables that 
should or should not be adjusted based on the backdoor criterion with examples. In addition, 
the occurrence of the various types of biases is discussed with caveats, including the problem 
caused by the traditional approach using p-values for confounder selection. Moreover, a 
detailed guide to DAGitty is provided with practical examples regarding minimally invasive 
surgery. Essentially, the primary benefit of DAGs is to aid researchers in clarifying the research 
questions and the corresponding designs based on the domain knowledge. With these 
strengths, we propose that the use of DAGs may contribute to rigorous research designs, and 
lead to transparency and reproducibility in research on minimally invasive surgery.
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For variable selection with a focus on causal inference, we 

should determine which variables confound the relationship 

between the treatment (or exposure) variable and the outcome 

variable of interest. For this understanding, we need domain 

knowledge about the causal structure among the research 

variables. Directed acyclic graphs (DAGs) [4,7–9] have been 

widely used to visualize the domain knowledge, show which 

variables are confounders to be adjusted, and indicate when 

the causal effect of interest is nonparametrically identified in 

observational studies. Moreover, DAGs aid researchers in clari-

fying possible biases from current research designs such as 

selection bias and measurement error bias. Consequently, the 

use of DAGs may contribute to transparency and reproducibility 

in surgical research. In fact, a growing number of clinical jour-

nals have requested their inclusion in either the main body or 

supplementary material. Notwithstanding their recent extensive 

use, however, the lack of a clear understanding of the essential 

principles of DAGs may lead to their incorrect use [10].

In this article, we aim to describe the fundamental principles 

of DAGs and highlight their strengths in surgical research using 

practical examples. For this purpose, the current paper consists 

of the following three steps. In the first step, we briefly review 

the basic concepts and rules of DAGs. Especially, we link them 

to clinical examples from the literature on MIS. In the next step, 

we demonstrate potential pitfalls caused by the traditional p-val-

ue–based approach for confounder selection and emphasize 

the importance of theory-based DAGs in empirical studies. In 

the final step, we demonstrate DAGitty, a user-friendly program 

for displaying DAGs, with practical examples. These examples 

are used to illustrate caveats and recommendations for using 

DAGs in surgical research.

BASIC TERMINOLOGY AND 
FUNDAMENTAL PRINCIPLES OF 
DIRECTED ACYCLIC GRAPHS

In this section, we briefly review the basic concepts and termi-

nologies pertaining to DAGs and introduce important criteria 

that help readers specify research models.

Basic terminology: what are directed acyclic graphs?
Mathematically, a graph is defined as a set of nodes and edg-

es. In a graph, nodes may or may not be connected by edges. 

DAGs additionally have two important characteristics. First, a 

directed graph is a graph whose every edge has a direction 

[9]. Second, an acyclic graph contains no directed cycles [9]. 

An example of cyclic graphs is X → Y → Z → X, because X 

returns to itself. DAGs rule out graphs with such a cyclic loop. 

We interchangeably use the term arrow with directed edges 

throughout this paper. In DAGs, an arrow represents a (possibly 

non-zero) causal effect. Especially, in DAGs, to interpret arrows 

as causal relations, all common causes of any pair of variables 

on the graph should be incorporated [11].

We consider simple examples of DAGs for explanatory 

purposes. In Fig. 1A, we see the arrow from X to Y, which 

means that X may or may not affect Y. In contrast, in Fig. 1B, 

it is assumed that X does not affect Y based on the absence 

of the arrow. The third graph depicted in Fig. 1C, the simplest 

one among the three graphs, represents not only the possible 

causal relationships between X and Y but also the absence of 

common causes such as L in the other graphs.

It is worth mentioning that we do not assume any functional 

form for the causal relationship [7–9]. In a nutshell, an arrow 

from X to Y represents our hypothesized causal direction be-

tween two variables but does not contain any information about 

its detailed functional form, e.g., linear, quadratic, or logarithm.

To deal with causal relationships generally, it is useful to cat-

egorize nodes as shown below. Consider first Fig. 2. We see 

that the graph consists of four nodes with three arrows. In this 

graph, the node where the arrow starts from L is called the 

parent of the node that the edge goes into X. In a similar man-

ner, the node that the edge goes into is defined as the child of 

the node it comes from [4,9]. Therefore, Fig. 2 suggests that 

L is the parent of X, X is the parent of Y, and Y is the parent 

of Z. This means that L is connected to Z through X and Y, 

which is called the path between L and Z. In graphs including 

more nodes, there are many parents and children. If two nodes 

are connected by a directed path, the starting node is called 

the ancestor of all nodes on the corresponding path, and the 

other nodes are called the descendants of the ancestor. For 

Fig. 1. (A) A directed acyclic graph (DAG) indicating the causal 
relation between X and Y with a common cause (L). (B) A 
DAG indicating the null causal relation between X and Y with 
a common cause (L). (C) A DAG indicating the causal relation 
between X and Y in the absence of a common cause.

X Y

L

X Y

L

X Y

Fig. 2. An example of a path. 

L YX Z
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instance, it is clear that L is the ancestor of X, Y, and Z, and Z is 

the descendant of L, X, and Y in Fig. 2. Furthermore, it is worth 

mentioning that an ancestor cannot be its descendant because 

we deal with graphs without cycles.

The key information of DAGs lies in the absence of the arrow 

and its direction because they represent the causal structure of 

research variables based on subject matter knowledge. We in-

troduce three fundamental configurations that constitute the ba-

sis of the general forms of DAGs. These consist of three nodes 

and two arrows. The first configuration is a chain, which has an 

arrow coming into the middle node and another arrow coming 

out of the middle node [9]. To put it another way, a chain has 

only one-way arrows. In Fig. 3, we can imagine that the flow of 

water going from A to C can be blocked by using B. This can 

be translated as A and C are conditionally independent given 

B. To help readers understand this concept, consider that A is 

gender, B is occupation, and C is asbestos exposure. In this 

chain, A affects C because the majority of people who work 

at construction sites dealing with asbestos are men. However, 

gender may not affect asbestos exposure within each type of 

occupation. This is what conditional independence means. In 

mathematical language, conditional independence of the chain 

is expressed as A ⊥ C | B.

The second configuration is called a fork, which includes 

two arrows stemming from the middle node [9]. An example 

of a fork is suggested in Fig. 4, where B is a common cause 

of C and D. In the fork. if the middle node (B in Fig. 4) is given, 

the other two nodes (C and D) are independent. For example, 

we construct a model for workers using Fig. 4 including three 

variables (B, occupation; C, asbestos exposure; and D, smok-

ing). In this case, workers in some occupations have a higher or 

lower tendency to smoke, and types of occupation are related 

to asbestos exposure. However, if we observe workers within 

each occupation, we will not find evidence that smoking affects 

asbestos exposure or vice versa. This case is mathematically 

represented as C ⊥ D | B.

A collider, the third configuration, denotes the middle node 

into which two arrows are directed [9]. In Fig. 5, C and D are 

unconditionally independent. The imaginary flow of water going 

from C to E as well as going from D to E is blocked without us-

ing E because the flow from C to E collides with the flow from 

D to E. What if we condition on the collision node, E, instead? 

In this situation, C and D are generally dependent. To compre-

hend the failure of conditional independence when the collider 

node is conditioned, it would be helpful to look at the following 

example. Suppose there is a theoretical hypothesis that smok-

ing or asbestos exposure causes lung cancer in men (assuming 

no other factors). In this case, we assume that there are only 

two causes of lung cancer and the causes are independent. 

If we evaluated a lung cancer patient and found that he was a 

nonsmoker, we would conclude that he developed lung cancer 

due to asbestos exposure with high probability. This explains 

why conditional independence does not hold when the colli-

sion node is given. Furthermore, conditional independence also 

does not hold if not only E is conditioned but also its descen-

dants are conditioned, provided that the descendants of E ex-

ist. In Fig. 5, the corresponding mathematical expressions are 

written as C ⊥ D and C ⊥⁄⁄  D | E .

We introduced some basic and important components of 

DAGs and how to connect (unconditional and conditional) in-

dependence with simple DAG structures. Nonetheless, DAGs 

used in actual research are not as simple as the examples sug-

gested above. To determine conditional independence among 

variables in general, the following rule, d-separation (d means 

directional), provides a general principle based on the afore-

mentioned rules [4,8,9].

Definition 1 (d-separation)
A path p is blocked by a set of nodes N if and only if

1. p contains a chain or fork such that the middle node is in N, or

2. �p contains a collider such that the collision node and its de-

scendants are not in N.

As can be seen, these two rules are already mentioned in 

the previous examples. If a pair of nodes is d-separated, they 

are conditionally independent. From the perspective of graphs, 

Fig. 3. An example of a chain. A, gender; B, occupation; C, 
asbestos exposure.

A CB

Fig. 4. An example of a fork. B, occupation; C, asbestos 
exposure; D, smoking.

B

C D

Fig. 5. An example of a collider. C, asbestos exposure; D, 
smoking; E, lung cancer in men.

E

C D
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it means that every path between the nodes is blocked. If two 

nodes are not d-separated, they are called d-connected.

Fig. 6 shows a DAG including chains, forks, and colliders. In 

the causal diagram, the path between A and B is d-separated if 

any other nodes are not given. How about the path between C 

and D? They are d-connected, because they share a common 

cause, A. Note that they are independent, conditioned on A. In 

addition, suppose that F is also given. In this case, they are not 

independent anymore because the descendant F of the colli-

sion node E is given. As a final example, we look at the paths 

between A and G (A → D → E → F ← G, and A → C → E → 

F ← G). It seems obvious that the two nodes are unconditional-

ly independent. In contrast, they are not generally independent 

if F is given.

Confounding and the backdoor criterion
Although it is widely recognized that confounding should be 

considered properly in research designs, it is not easy to de-

cide which variables should be adjusted in each study. DAGs 

can help researchers to identify them. The intuition behind the 

variable selection based on DAGs is that we block non-causal 

paths (the so-called backdoor paths) and keep causal paths 

of interest open [4,9]. As can be seen in Fig. 7A, the graph in-

cludes a fork representing X and Y sharing a common cause 

L. In this situation, suppose that we adjust L which lies in a 

non-causal path from X to Y. The adjustment of L is depicted 

by a box around the variable in the graph on the right, and the 

adjustment of a common cause eliminates the dependence 

between its children X and Y. If we perform a statistical analysis 

without taking into account L in this case, the resulting estimate 

would be biased owing to confounding bias [12].

Should we adjust L in Fig. 8? Generally, not if a researcher is 

interested in the causal effect from X on Y. If we adjust L, which 

is called a mediator in the literature of mediation analysis, it 

eliminates the effect of X on Y through L. Noting that Fig. 8 im-

plies that L may have a statistically significant association with 

Y, we should not include all (possibly) associated variables, and 

that is why we should focus on the causal structure of research 

variables.

When researchers carry out observational studies, there may 

be cases where some variables are omitted or not measured 

owing to reasons such as protection of personal information or 

difficulty of measurement. If the nodes are not all present in a 

DAG, is it possible to investigate the causal effect in this situ-

ation? Fortunately, it is still possible in many cases. More pre-

cisely, there is a general condition to estimate the effect of X on 

Y, and the so-called backdoor criterion [8,9], helps researchers 

make the decision.

Definition 2 (the backdoor criterion)
Given an ordered pair of variables (X,Y) in a DAG, a set of 

variables S satisfies the backdoor criterion relative to (X,Y) if no 

node in S is a descendant of X, and S blocks every path be-

tween X and Y that contains an arrow into X.

For a more concrete explanation, we revisit the example 

described in Fig. 6. Suppose that our aim is to investigate the 

causal effect of C on F. The backdoor criterion tells us that 

every backdoor path should be blocked by a set of variables 

excluding descendants of C. As A and G are ancestors of C, 

a set S satisfying definition 2 is S = {A, G}, and the following 

backdoor paths become blocked.

C ← A → D → E → F, C ← A → D → F, C ← G → F

An important question is to ask whether such S is unique. 

The answer is generally no. Suppose that A is not included in 

the data, whereas the causal structure remains the same. In 

this case, it is obvious that the two paths including A are open, 

and the corresponding confounding bias consequently occurs. 

However, there is another way to block the non-causal paths: 

to control for D and G instead. In this regard, the backdoor 

criterion provides us with alternatives to estimate the causal 

Fig. 6. An example of directed acyclic graphs including chains, 
forks, and colliders. 

E

B

A

D

C

F G

Fig. 7. (A) An open backdoor path without the adjustment of L. 
(B) A blocked backdoor path with the adjustment of L. 

X Y

L

X Y

L

Fig. 8. An example of directed acyclic graph with a mediator. 

X Y

L
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effect even if some of the confounders (i.e., A) are unobserved. 

In addition, some readers might notice that there are more can-

didates for S. For example, the union of {A, G} and {D, G} also 

satisfies definition 2. The sets {A, G}, {D, G}, {A, D, G}, {A, B, G}, 

{B, D, G}, and {A, B, D, G} are candidates for S. Among these 

sets, the smallest sets, {A, G} and {D, G}, are called the mini-

mally sufficient adjustment sets [7,13].

DIRECTED ACYCLIC GRAPHS’ WARNING 
AGAINST CONFOUNDER SELECTION 
USING p-VALUES

In practice, researchers conventionally select confounders 

based on the statistical significance using p-values [14–16]. 

However, using p-values for the variable selection without un-

derstanding the causal structure may considerably distort the 

causal effect of interest. For a concrete explanation, consider 

Fig. 9 by Liu et al. [17] showing a hypothesized causal model 

including five binary variables (depression [DEP], ever smoker 

[SMOKE], coronary artery disease [CAD], selective serotonin 

reuptake inhibitor [SSRI], lung cancer [L-CANCER]).

For the moment, assume that we collect data without DEP 

and SMOKE. The causal relationship of our interest is the rela-

tionship between SSRI and L-CANCER. In this situation, the tra-

ditional confounder selection strategy using p-values will include 

CAD as a confounder. However, the DAG clearly indicates that 

DEP is a parent of CAD and SSRI, and SMOKE causes CAD 

and L-CANCER (two forks), and CAD is the common descen-

dant of DEP and SMOKE (one collider). As a result, SSRI and 

L-CANCER are unconditionally independent. In this situation, a 

collider bias can occur if CAD is adjusted. That is, the decision 

to include the collision node as a confounder based on p-values 

may induce bias by opening the non-causal path between two 

variables. Table 1 shows a numerical result of the consequence 

of this defective strategy.

For this numerical study, Poisson regression was used and 

relative risks (RR) were reported. In Table 1, the estimated RR 

(0.979) is reported as the average of 1,000 estimates obtained 

by each generated data set, and the bias presents the differ-

ence between RR and the true value of 1. The result indicates 

that the bias of RR obtained by the model adjusting CAD (in-

correct model) is much larger than that of the model without 

CAD (correct model). This is called M-bias [18], named after the 

shape of the graph presented above. The example of M-bias 

demonstrates that adjustment of variables associated with both 

exposure and outcome may be even harmful. This example is 

particularly appealing to explain why we should clearly under-

stand causal structures. Another example of M-bias is provided 

by [18], and related discussions are suggested in [17,19,20].

It is important to note that satisfying the backdoor criterion 

in DAGs refers to no unmeasured confounding assumption 

or conditional exchangeability mentioned in causal inference. 

Statistical methods used in causal inference such as standard-

ization, inverse probability of treatment weighting, and matching 

with propensity score are valid when no unmeasured con-

founding assumption or conditional exchangeability assumption 

holds. A set of variables W for satisfying the backdoor criterion 

in a DAG satisfies no unmeasured confounding assumption 

or conditional exchangeability assumption. In this respect, the 

strength of DAGs evidently appears in that they provide de-

tailed information about confounder selection and identification 

of the causal effects for each hypothesized causal structure. 

As described in the previous examples, DAGs display not only 

variables to be adjusted but also variables not to be adjusted. 

Once we specify the set of confounders to be adjusted, re-

searchers should determine some parametric or functional 

forms of confounders in the propensity score model or out-

come regression model. In this case, p-values can be utilized 

in practice. Alternatively, various machine learning techniques 

allowing a wide range of functional forms can be applied [21–23].

A GUIDE TO USE DAGitty WITH EXAMPLES

Even though we have explained the fundamental rules such as 

d-separation and the backdoor criterion, it is fairly difficult for 

researchers to apply those rules to their own DAGs and deter-

mine which variables should be adjusted. DAGitty is a useful 

Fig. 9. An example of M-bias. DEP, depression; SMOKE, 
ever smoker; CAD, coronary artery disease; SSRI, selective 
serotonin reuptake inhibitor; L-CANCER, lung cancer.

DEP

SSRI

SMOKE

L-CANCER

CAD

Table 1. Simulation result for Liu et al. [17]

RRRR % Bias% Bias

Incorrect model 0.979 –2.085

Correct model 1.000 <0.001

RR, relative risk (the true RR is 1).
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tool that helps researchers specify the set of variables to be 

adjusted in complex situations, and its web user interface ver-

sion is available at http://www.DAGitty.net/dags.html.

When users access the website, Fig. 10 shows what is dis-

played on the screen. A new node is generated by clicking on 

an empty spot on the graph and typing a variable name. In ad-

dition, a directed arrow between two nodes can be inserted by 

clicking the ancestor node first and then the other node. If you 

click once more on the ancestor node, the arrow is deleted. 

On the left side, menus for basic operations are displayed. We 

focus on the essential ones for beginners. The first menu on 

the left shows Variables, which contain four categories: expo-

sure, outcome, adjusted, and unobserved. The third category 

adjusted means variables that are adjusted in the analysis, and 

the remaining category unobserved refers to variables that are 

not included in the data. In addition, users can eliminate the 

names of variables by pressing delete and change variable 

names using rename. Next, Legend at the bottom of the menu 

provides the meaning of each element in the currently repre-

sented graph. In particular, it clearly suggests the ancestors 

of the exposure and outcome. More importantly, unobserved 

confounders and what path biases occur by not adjusting them 

can be identified. Biasing paths are displayed as violet-colored 

lines, whereas causal paths are colored green in the graph. If 

you turn off ancestral structure by clicking on it, detailed infor-

mation about the ancestor of exposure or outcome is hidden. If 

some biasing paths remain after users have adjusted available 

variables, the implemented adjustment is indicated as insuf-

ficient and suggests that biases are still present.

Causal effect identification at the top on the right directly tells 

users what variables need to be adjusted to identify the causal 

effect. The menu below, Testable implications, shows uncon-

ditional and conditional independence implied by the current 

DAG displayed on users’ screens. Model code represents the 

R-code that can restore the identical result. The figure can be 

saved as PDF, PNG, or JPEG file in the Model located at the 

top of the graph. Detailed information about the manipulation of 

DAGs is provided in [24].

The simple examples illustrated in the previous section are 

revisited with DAGitty. First, Fig. 11 shows a chain structure. As 

expected, we see that A and C are independent conditional on 

B in the testable implications. When we set A as the exposure 

and C as the outcome in the left-side menu, Causal effect iden-

tification informs us that no adjustment is necessary to estimate 

the causal effect of A on C (A ⊥ C | B).

Fig. 12 represents a fork. The violet-colored biasing path be-

tween C and D through B shows that C and D are not uncondi-

tionally independent. As explained above, this results from the 

presence of B, the common cause (also called the ancestor) of 

C and D. C and D are independent if B is adjusted as shown in 

the testable implications.

Fig. 13 presents the collider case and C and D are uncondi-

tionally independent, as displayed in the testable implications (C 
Fig. 10. The default screen and basic interface of DAGitty 
(http://www.DAGitty.net/dags.html).

Fig. 11. An example of a chain in 
DAGitty (http://www.DAGitty.net/
dags.html). A, gender; B, occu
pation; C, asbestos exposure.
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⊥ D). However, a biasing path occurs if the state of E is relocat-

ed to adjusted in the menu. Indeed, this operation is equivalent 

to opening the path from C to D by controlling for the collision 

node, E.

Next, the example of M-bias suggested in Fig. 14, which con-

sists of five variables (DEP, SMOKE, CAD, SSRI, L-CANCER), 

is revisited. Assuming that we are interested in the causal rela-

tionship between SSRI and L-CANCER, they are uncondition-

ally independent, and no adjustment is required as suggested 

in Causal effect identification. However, the adjustment of CAD 

induces a bias, because the variable is the collision node and 

the path from SSRI to L-CANCER becomes open. Therefore, 

to avoid this collision bias, we need to additionally adjust either 

DEP or SMOKE.

DAGitty has been used in several studies regarding MIS, and 

we explore an example from [25]. The authors were interested 

in the causal effect of surgery methods (open vs. MIS) on ve-

nous thromboembolism (VTE), and their hypothesized causal 

structure including nine variables is represented in Fig. 15 using 

DAGitty.

In the graph, there are three exogenous research variables 

that are not affected by other variables in the model: patients’ 

age (AGE), patients’ body mass index (BMI), and endometrial 

cancer (E-CANCER). The graph on the left suggests a model 

with no adjustment, and that on the right displays when the five 

uncolored variables are adjusted. As can be seen, the causal 

paths of MIS on VTE are colored green in both graphs. How-

ever, there are biasing paths colored violet in the unadjusted 

graph on the left, which means the adjustments are necessary. 

In particular, the path from surgical time (S-TIME) to VTE is 

shown as a biasing path compared to the figure on the right.

In this situation, Causal effect identification on the right menu 

(Fig. 16) helps researchers to correctly adjust confounders. The 

menu shows that AGE, BMI, and E-CANCER are sufficient for 

Fig. 12. An example of a fork in 
DAGitty (http://www.DAGitty.net/
dags.html). B, occupation; C, 
asbestos exposure; D, smoking.

Fig. 13. An example of a collider 
in DAGitty (http://www.DAGitty.net/
dags.html). C, asbestos exposure; 
D, smoking; E, lung cancer in men.

Fig. 14. An example including 
M-bias in DAGitty (http://www.
DAGitty.net/dags.html). DEP, 
depression; SMOKE, ever smoker; 
CAD, coronary artery disease; 
SSRI, selective serotonin reuptake 
inhibitor; L-CANCER, lung cancer.
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blocking the backdoors paths. It is also possible to adjust previ-

ous venous thromboembolism (P-VTE) because the path from 

P-VTE to VTE is merely blocked and identification of the causal 

effect would not change. In the original paper, the authors 

decided to adjust five variables including the three common 

ancestors of MIS and VTE, and this suggestion reflects their 

preference to provide a reliable result.

Then, what if we adjust S-TIME or length of hospital stay (L-

STAY), instead? When we attempt to adjust either of them, the 

following message “The total effect cannot be estimated due to 

adjustment for an intermediate or a descendant of an interme-

diate.” appears. This indicates that users tried to control for the 

variable that lies in a causal path, and this adjustment is not ap-

propriate for estimating the total causal effect of MIS on VTE. 

Here, intermediate variables in the message refer to mediators.

A PRACTICAL EXAMPLE USING DAGitty 
IN SURGICAL RESEARCH

In this section, we present a realistic example of DAG from [26]. 

Their DAG included 14 variables as shown in Fig. 17. In their 

study, the intervention was defined as screening for modifiable 

high-risk factors combined with targeted interventions, and the 

outcome was postoperative complications in patients undergo-

ing colorectal cancer surgery. Unlike previous examples, the 

DAG in Fig. 17 included unobserved variables colored gray: 

ALC, BMI, and PS. Therefore, it is important to ask what the 

consequences of the unobserved variables on the causal ef-

fect of TRT on OUT are.

To answer the question, assume that we observed all vari-

ables for the moment. In this case, DAGitty suggests three 

minimal sufficient adjustment sets as shown in Fig. 18. Note that 

the parents of both TRT and OUT (AGE, BMI, SEX, SP, UICC) 

are common in all the adjustment sets. The remaining two vari-

ables in each set (ALC, SMOKE or ASA, POLY or ASA, PS) 

indicate different ways to block the remaining backdoor paths. 

As an example, the second adjustment set S = {AGE, ASA, 

BMI, POLY, SEX, SP, UICC} is used for estimating the propen-

sity score e = Pr(TRT = 1 | S).

Specifically, the following logistic regression can be used for 

estimating the propensity score.

log( e
1 – e

) = β0 + β1 AGE + β2 ASA + β3 BMI + β4 POLY +  
β5 SEX + β6 SP + β7 UICC

However, some variables (ALC, BMI, PS) were not observed 

in the original paper. It can be seen that the first and third mini-

mal sufficient adjustment sets include two unobserved vari-

ables, whereas the second set has one unmeasured variable. 

Therefore, the causal effect of TRT is not estimable regardless 

of the choice of the minimal sufficient adjustment sets owing to 

the unobserved variable. Using the second adjustment set, the 

presence of a biasing path from BMI can be seen in Fig. 17. The 

estimate we would obtain from the use of the second adjust-

ment set suffers from the unmeasured confounding bias owing 

to BMI so that the result should be interpreted with utmost care. 

The usefulness of DAG is often beyond selecting confound-

ers. If the DAG were displayed prior to data collection and used 

in research design, readers might recognize the necessity of 

Fig. 15. (A) Directed acyclic graph 
(DAG) before the adjustment. 
(B) DAG after the adjustment. 
MIS, minimally invasive surgery; 
VTE, venous thromboembolism; 
AGE, patients’ age; BMI, patients’ 
body mass index; E-CANCER, 
endometr ial cancer ; LYMPH, 
lymphadenectomy; S-T IME, 
surgical time; L-STAY, length of 
hospital stay; P-VTE, previous 
venous thromboembolism.

AGE BMI E-CANCER

LYMPH

P-VTE

S-TIME

L-STAY

VTEMIS

AGE BMI E-CANCER

LYMPH

VTE

L-STAY

S-TIME

P-VTE

MIS

Fig. 16. Causal effect identification of the directed acyclic 
graph in Fig. 15. MIS, minimally invasive surgery; VTE, venous 
thromboembolism; AGE, patients’ age; BMI, patients’ body 
mass index; E-CANCER, endometrial cancer.
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BMI to identify the causal effect. In addition, as shown in this 

example, researchers would notice that not all of the three un-

observed variables are prerequisites for the causal effect using 

DAGs. Consequently, this can lead to focusing on the measure-

ment of the essential variables increasing the feasibility of the 

research.

CONCLUSION

In this article, the basic terminology and rules of DAGs were 

introduced. In addition, we focused on how the fundamental 

concepts and principles such as d-separation and the back-

door criterion are applied to DAGs. Ignoring the causal structure 

among variables, which corresponds to not using DAGs, in 

data analysis can lead to various types of biases and causally 

uninterpretable estimates.

Specifically, the strength of DAGs lies in providing research-

ers with what they must do and what they must not do based 

on the hypothesized causal structures. For the former, we 

emphasized that it is critical to select confounders that block all 

the backdoor paths, and failure to include them may lead to the 

unmeasured confounding bias. For the latter, we also illustrated 

that non–principle-based adjustments of variables can hinder 

the estimation of the causal effect. In particular, the collider bias 

and M-bias were described with the examples. Moreover, it 

was demonstrated that the traditional approach using p-value 

for confounder selection may be even deleterious to causal in-

ference.

Nonetheless, DAGs also have limitations despite their useful-

ness and applicability in empirical studies. First, DAGs do not 

contain information about the functional forms of variables [27]. 

As shown in the previous examples, the graphs do not assume 

specific functions such as linear or quadratic. This indicates that 

researchers should avoid misspecifying the functional forms 

even with properly selected confounders using DAGs. There-

fore, researchers may modify the models based on statistical 

significance, or employ various machine learning methods that 

allow a wide range of functional forms. Second, although the 

various types of biases using DAGs were addressed, their 

magnitudes are not provided by the graphs themselves [5,27,28]. 

This implies that additional domain knowledge is required to 

evaluate the extent of the bias. Third, the causal directions in 

DAGs are not always clear even when based on theory. In 

fact, there may be cases where the directions of arrows are 

somewhat ambiguous, especially when both directions are 

Fig. 17. The directed acyclic graph by Bojesen et al. [26]. UICC, Union for International Cancer Control; POLY, polypharmacy; 
AGE, age; SEX, patients’ sex; ALC, alcohol; PS, union for international cancer control; SMOKE, smoking; BMI, body mass index; 
TRT, screening for modifiable high-risk factors combined with targeted interventions; ASA, American Society of Anesthesiologists; 
PSUR, previous surgery; SA, surgical approach; SP, surgical procedure; OUT, postoperative complications in patients undergoing 
colorectal cancer surgery. 

Fig. 18. Minimal sufficient adjustment sets in the example 
of Bojesen et al. [26]. TRT, screening for modifiable high-
risk factors combined with targeted interventions; OUT, 
postoperative complications in patients undergoing colorectal 
cancer surgery; AGE, age; ALC, alcohol; BMI, body mass 
index; SEX, patients’ sex; SMOKE, smoking; SP, surgical 
procedure; UICC, Union for International Cancer Control; ASA, 
American Society of Anesthesiologists; POLY, polypharmacy; 
PS, union for international cancer control.
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reasonable. This leads to several different graphs on the same 

research problem [27,28]. In particular, this issue may arise as 

the number of variables increases. Concerning this issue, the 

disjunctive cause criterion was suggested as one of the alter-

native strategies for confounder selection [16,29]. The criterion 

states that a sufficient control for confounding is obtained by 

(1) adjusting all causes of the treatment (exposure), outcome, 

or both, (2) excluding instrumental variables, and (3) including 

proxy variables for unmeasured variables that are common 

causes of treatment and outcome [16]. These practical rules 

may help researchers select confounders and reduce the risk 

of unmeasured confounding even when the number of vari-

ables is large.

Despite these limitations, DAGs play a major role in shap-

ing research questions and are useful in a priori confounder 

selection. In this regard, we propose that DAGs should be used 

frequently in research on MIS for exploring causality. Further-

more, the causal graphs also serve as a useful communication 

tool for research collaboration in that they clearly convey the 

hypothesized models to other researchers in an intuitive way. 
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