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Abstract

Cellular senescence is a well-established driver of aging and age-related diseases. There are 

many challenges to mapping senescent cells in tissues such as the absence of specific markers 

and their relatively low abundance and vast heterogeneity. Single-cell technologies have allowed 

unprecedented characterization of senescence; however, many methodologies fail to provide 

spatial insights. The spatial component is essential, as senescent cells communicate with 

neighboring cells, impacting their function and the composition of extracellular space. The 

Cellular Senescence Network (SenNet), a National Institutes of Health (NIH) Common Fund 

initiative, aims to map senescent cells across the lifespan of humans and mice. Here, we provide 

a comprehensive review of the existing and emerging methodologies for spatial imaging and their 

application toward mapping senescent cells. Moreover, we discuss the limitations and challenges 

inherent to each technology. We argue that the development of spatially resolved methods is 

essential toward the goal of attaining an atlas of senescent cells.

Cellular senescence refers to the irreversible growth arrest that occurs when cells become 

exposed to a variety of stressors. Induction of senescence alters almost every aspect of 

cell biology, from marked changes in transcriptome and proteome, epigenetic remodeling 

of chromatin and changes in quantity and functionality of organelles to enhanced secretion 

of pro-inflammatory molecules commonly known as the senescence-associated secretory 

phenotype (SASP)1 (Fig. 1).
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Cells bearing senescence-associated markers have been shown to accumulate in most 

tissues during aging and age-related diseases. Importantly, several studies have shown 

that elimination of senescent cells in mice either genetically or by using drugs that can 

kill senescent cells (senolytics) alleviates several pathologies during aging and age-related 

disorders2. Therefore, these cells are thought to represent promising therapeutic targets to 

delay or even reverse functional deficits in aging. It should be noted, however, that senescent 

cells also have important physiological roles and that their clearance may be detrimental in 

certain conditions3–5.

Despite multiple molecular changes being described in senescent cells, the field is 

increasingly recognizing that these cells are incredibly difficult to detect in tissues. One 

major challenge is that there is no single, stand-alone marker to identify a senescent cell. 

None of the markers used to detect senescent cells are individually specific. For example, 

the commonly used marker senescence-associated β-galactosidase (SA-β-Gal) at pH 6 can 

be detected in vitro in confluent and immortalized cells6 and in activated macrophages7, 

while cell cycle kinase inhibitors p16INK4a and p21CIP1 can be expressed irrespectively 

of senescence in certain contexts7,8. For these reasons, the field collectively suggested 

that a multi-marker approach should be applied to detect senescent cells in vivo, and the 

idea of ever identifying a single universal senescence marker is regarded with widespread 

skepticism1.

Another major challenge in detecting senescent cells is that these cells are thought to 

be relatively rare, with some estimates indicating that they can be present below 5% in 

aged tissues9. This low abundance makes it paramount that single-cell methodologies have 

sufficient resolution and throughput to be able to detect senescence-associated markers and 

cover a sufficient area of tissue. Adding to this challenge, some of the senescence-associated 

markers require imaging platforms capable of visualizing subcellular structures, as we will 

discuss later.

The advance of all omics technologies in conjunction with increasingly affordable new 

achievements in microfluidic and microprinting fields has powered the revolution of single-

cell big data. In addition, the convergence of these technological innovations with a new 

wave of bioinformatic methodologies is altering the way in which we approach science 

and discovery. This technological revolution has already provided the community with 

extraordinary resources such as Tabula Muris10 and Tabula Sapiens11. Several studies 

have used single-cell technologies to successfully identify senescence-associated signatures 

in the context of aging12,13. There are, however, several technical factors that limit the 

information that one can extract from such analyses, particularly as they rely on dissociated 

cell suspensions. Preparation and preservation of the cell suspension can affect the final 

proportion of cells that are sampled. Some cell types are too large and incompatible with 

microfluidic-based single-cell isolation. In fact, size is a major issue in the preservation 

and detection of senescent cells, as they are characterized by increased cell volume and 

therefore can be irretrievably lost in these analyses. Adding to these limitations, inferring 

spatial relationships from single-cell suspensions is almost impossible.
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The spatial aspect is of major importance in understanding senescence, as senescent cells 

communicate with neighboring cells, impacting their function as well as the composition 

of extracellular space. Senescent cells can induce senescence in neighboring cells14,15 and, 

through the SASP, recruit immune cells to their vicinity. The SASP can have a major impact 

on various biological processes, including cell proliferation, angiogenesis, inflammation16, 

epithelial-to-mesenchymal transition17, tissue repair18 and wound healing3 (Fig. 2). The 

nature of this response is dependent on cell type and physiological context. Therefore, 

spatially resolved methods capable of quantitatively identifying senescent cells by a 

complex, multi-factorial molecular signature and mapping their location and interactions 

within the microenvironment are urgently needed.

This Review represents the collective knowledge from the imaging mapping working group 

from the SenNet, an NIH Common Fund initiative. The SenNet Consortium is invested 

in the development and application of spatial omics technologies not only to characterize 

and map senescence cells in tissues but also to establish potential relationships between 

senescent cells and their environment19. Here, we describe some current methodologies used 

by the SenNet Consortium to map senescent cells in tissues in a spatially resolved manner, 

ranging from low to high throughput. We also describe current developments in image-

analysis approaches and the emergent use of deep learning methods to detect senescent cells. 

Importantly, we discuss limitations of available technologies and challenges of applying 

them to the detection of senescent cells. We also speculate about the opportunities and 

challenges that the ongoing revolution in single-cell spatially resolved methodologies will 

bring to the field of cellular senescence.

Imaging-based technologies to detect senescent cells in tissue sections

Imaging-based technologies are essential for advancing senescence research. Over the 

years, various methods have been developed to achieve spatially resolved measurements 

of messenger RNA (mRNA) or proteins in biological samples. Here, we describe some of 

the methods, ranging from low plex to multiplex, that are currently being used within the 

SenNet Consortium (Fig. 3). Our purpose is not to compile a comprehensive list of markers 

or to make any considerations about their suitability and specificity. We intend to briefly 

describe some of the most frequently used techniques and how they have been used in 

the context of senescent cell detection in tissue sections as well as their advantages and 

limitations.

Low-plex imaging methods

Thus far, most studies aiming to identify senescent cells at the single-cell level in a 

spatially resolved manner have relied on the detection of one or few types of biomolecules 

using methods such as histochemistry, immunohistochemistry, immunofluorescence in situ 

hybridization (ImmunoFISH), fluorescence in situ hybridization (FISH) and RNA in situ 

hybridization (RNA-ISH). Here, we will provide some examples.

Histochemical methods.—Detection of the activity of the lysosomal enzyme SA-β-Gal 

at pH 6.0 is a common method used to detect senescent cells20. Limitations of this 

methodology for identification of senescent cells are that it requires frozen tissue sections 
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(not applicable to formalin-fixed paraffin-embedded (FFPE) samples) and its diffused 

cytoplasmic staining can be challenging to evaluate. Another histochemical assay to detect 

senescent cells in tissues is the detection of lipofuscin using dyes such as Sudan Black B 

or analogs21. Advantages of this method are that it can be applied to FFPE tissues and 

combined with other immunohistochemical techniques.

Immunohistochemistry and immunofluorescence.—Expression of p21CIP1, 

p16INK4A, p53, components of the DNA damage response (DDR; for example, γH2A.X 

and 53BP1)22, decreased lamin B1 (ref. 23), loss of nuclear high-mobility group box 1 

(HMGB1)24 and expression of GLB1 (ref. 25) (which encodes lysosomal β-D-galactosidase) 

are common senescence-associated markers assessed in tissues by immunohistochemistry 

and immunofluorescence. In immunohistochemical techniques, common challenges in 

visualizing senescence-associated markers are low levels of antigen expression, lack 

of specificity of the primary antibody, variability between antibodies even from 

the same manufacturer, cross-reactivity between primary and/or secondary antibodies, 

autofluorescence, quality of tissue fixation and others. Notably, many of these issues also 

affect highly multiplexed, antibody-based spatial imaging platforms. In addition, it is well 

established within the senescence community that many commercially available antibodies 

that target mouse p16INK4A are unspecific, making its detection in tissues unreliable. 

As such, we advise careful antibody validation to ensure that quality reagents are used, 

as, regrettably, often the information in commercial antibody datasheets or in academic 

publications does not necessarily withstand further experimental scrutiny.

ImmunoFISH, FISH and RNA-ISH.—ImmunoFISH has been widely used in the 

senescence field to detect telomere-associated DNA damage foci (TAF)26,27. This method 

involves evaluating colocalization between DDR foci (frequently using antibodies targeting 

γH2A.X and 53BP1) and FISH signals from telomere-specific peptide nucleic acid probes 

by fluorescence microscopy. Centromere FISH has also been used to detect senescence-

associated distension of satellites (SADS), also a senescence-associated marker, in multiple 

tissues28–30. Both methods require high-resolution fluorescence imaging, generation of z 
stacks (to acquire three-dimensional (3D) images) and have high analytical burden and 

therefore are not amenable to large-scale studies. RNA-ISH has also been used to visualize 

single RNA molecules encoding senescence-associated markers (for example, p16INK4A, 

p21CIP1 and specific SASP components) in different tissues13,16,31. These methods can be 

applied to both frozen and FFPE tissue sections. Factors such as tissue processing and 

autofluorescence greatly affect image quality and readout accuracy.

All methods mentioned here have the limitation of detecting one or relatively few 

biomolecules simultaneously and are therefore not adequate to characterize the molecular 

heterogeneity of senescent cells in a spatially resolved manner. There are, however, 

several advantages: these techniques are established, widely used and inexpensive; as such, 

protocols are relatively easy to apply and are generally reproducible.

Super-resolution microscopy.—Super-resolution microscopy has emerged as having 

great potential to investigate biological samples at unprecedented levels of detail, as new 

and powerful fluorescence-based methods now permit imaging cellular compartments at 
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a resolution beyond that of the diffraction limit of light (<200 nm). Super-resolution 

microscopy includes techniques such as structured illumination microscopy, photo-activated 

localization microscopy, stimulated emission depletion and stochastic optical reconstruction 

microscopy (STORM), which have been reviewed extensively elsewhere32. Several features 

associated with cellular senescence can benefit from the increased resolution afforded by 

these techniques. For example, structured illumination microscopy was used to estimate the 

density of nuclear pores33. Features that require detection of colocalized signals can also 

benefit from the increased resolution afforded by super-resolution methods. A prominent 

example is detection of DNA damage, which is achieved, for example, by detection of 

colocalized foci of 53BP1 and γH2A.X within the nucleus as evidence of DNA segments 

with chromatin alterations reinforcing senescence34 or TAF35. The increased resolution 

can make it possible to better identify these foci and quantify their number in individual 

cells. Senescent cells are known to display substantial changes in the organization of 

chromatin and DNA within the nucleus36. The ability of STORM to provide a detailed 

rendering of the structure of chromatin fibers37 makes it ideal to investigate changes in 

heterochromatin distribution within senescent nuclei, such as the loss of lamin-associated 

domains38, which has been primarily investigated via electron microscopy techniques39. 

Recent advances in 3D DNA FISH such as OligoSTORM can also be used to study, in 

more detail, local changes in the 3D structure of senescent chromosomes in individual 

cells that have been identified by genomic techniques such as high-throughput chromosome 

conformation capture (Hi-C)40,41.

Super-resolution imaging is still facing limitations that challenge its widespread adoption. 

For example, there are only a few effective photoswitchable dyes that can be used in multi-

color STORM. To overcome this limitation, many laboratories have taken advantage of 

microfluidic systems to image multiple cycles of STORM using the same dye. This method, 

however, is technically limiting and expensive. In addition, the recording of millions to 

billions of single-molecule localizations of fluorescent probes in techniques such as STORM 

comes at the cost of a substantially more demanding analytical and storage infrastructure. 

This is particularly relevant when applying these techniques to image senescent cells in 

tissues, given their very low abundance. A solution to overcome this problem is to use 

conventional widefield microscopy to identify putative senescent cells, which are then 

targeted for super-resolution imaging.

High-plex imaging methods

Spatial proteomics.—Spatially resolved proteomic approaches have the potential to 

characterize the density and microanatomical location of senescent cells, to define 

the impact of senescent cells on their microenvironment and the immune cell types 

interacting with them and to identify the distribution of key protein senescence effectors 

within human tissues. To date, there has been a disproportionate use of changes 

in mRNA levels to detect senescent cells. However, for many senescence-associated 

markers, it is not yet clear whether changes in mRNA correspond to a change in 

protein expression. Furthermore, high-plex proteomics can potentially aid in concurrently 

identifying senescence-associated features otherwise undetectable by transcriptomics such 

as morphologic changes to organelles, protein mislocalization and post-translational 
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modifications. Hence, the application of proteomics will be critical for defining senescent 

cell biology.

Fundamental considerations that define the value of spatial proteomic platforms include 

(1) the dynamic range of expressed protein detection, (2) the minimum distance between 

measured protein features (spatial resolution) and (3) the total area of spatially resolved 

tissue analyzed (spatial throughput). The majority of current high-plex spatial proteomic 

platforms use panels of tagged antibodies to detect and quantify between ten and 60 

proteins, although some have reported higher numbers. The benefits, limitations and 

validation of these tagged antibody approaches have been recently reviewed in depth42. 

Antibody-based approaches have an advantage over spatial transcriptomics in that multiple 

functional biomarkers can be simultaneously detected and localized to specific subcellular 

compartments. As an alternative to antibody-based methods, innovations for unbiased mass 

spectrometry-based studies are evolving to query a larger swath of the proteome and 

metabolome with spatial orientation in tissues, although these methods are still fairly limited 

in throughput and resolution43,44, restricting their application to mapping rare senescent 

cells.

However, there are challenges. For instance, expression of p16INK4A protein ranges from 

undetectable to qualitatively low in aged tissues and is an example of a senescence-

associated marker that requires a consistent and robust limit of detection sensitivity for 

accurate studies.

A high degree of subcellular resolution is also critical in the evaluation of biomarker 

distribution, as certain senescence patterns are linked to specific cellular compartments. 

For example, HMGB1, a ubiquitous and predominantly nuclear protein, localizes to the 

cytoplasm and is secreted during senescence24. Similarly, levels of lamin B1, which 

is a component of the nuclear lamina, decrease during senescence23, and its detection 

requires sufficient resolution to visualize a 30–100-nm-thick structure. Because both these 

senescence-associated markers rely on evaluating their absence or lower expression in a 

heterogeneous tissue, their detection may be particularly challenging and require imaging 

platforms with higher resolution.

Thorough in situ characterization of DDR foci also requires high-resolution imaging to 

detect and quantify distinct intranuclear puncta, as DDR foci are often under 1 μm34,35. 

Probes targeting SA-β-Gal will stain the lysosomes specifically, which vary in size from 100 

nm to over 1 μm20. This highlights the importance of selecting the optimal platform based 

on its resolution (Table 1).

Selection of an appropriate spatial proteomic platform to study senescence requires not only 

consideration of image-capture capabilities but also technical advantages and limitations 

in characterizing senescence. Iterative immunofluorescence methods, such as MACSima 

and CellScape, are capable of imaging with enough resolution to detect subtle changes 

in organelle structure and morphology (100–200 nm per pixel) and do not require 

specialized antibody conjugations, which are time consuming and expensive and have 

the potential to negatively affect their ability to recognize targets. Methods such as 
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cyclic immunofluorescence (CyCIF)45 and iterative indirect immunofluorescence imaging 

(4i)46, which do not require proprietary instrumentation, allow the elution of antibodies in 

relatively mild conditions that preserve the sample structure up to and possibly over 20 

rounds of elution and imaging, allowing the detection of over 40 protein targets. Iterative 

indirect immunofluorescence imaging was already successfully used to identify senescence-

associated markers and molecular signatures from a set of 48 cell cycle proteins47, hence 

achieving a similar plex level as that of commercial platforms without requiring a dedicated 

instrument, apart from a standard microfluidic system.

However, all iterative immunofluorescence methods share several caveats in their 

application. Repeated rounds of staining and bleaching may alter epitope stability and are 

subject to incomplete fluorophore inactivation between cycles. The added length of time 

for each subsequent staining incubation also hinders analytical throughput relative to other 

spatial proteomic innovations, making it more challenging and time consuming to identify 

rare cell types.

Platforms using barcoded antibodies (PhenoCycler, CosMx) implement a single antibody 

staining step followed by transient hybridization detection cycles with fluorescently tagged 

oligonucleotides. In these platforms, the diversity of barcode conjugates makes them 

unparalleled in their plex limit, potentially exceeding 100 targets on a single tissue 

section. Image resolution using these systems is similar to that of the aforementioned 

cyclical staining methods, although fluorescence-based detection may still suffer from high 

noise-to-signal ratios for low-expression targets such as p16INK4A, particularly in tissues 

that have undergone harsh fixation. Mass spectrometry-based platforms, which use up to 

40 different metal-conjugated antibodies in a single staining and detection step, permit 

highly sensitive protein detection. Metal tagging can circumvent other issues common 

to fluorescence-based approaches such as tissue autofluorescence; however, protocols for 

mass tagging antibodies can negatively impact their sensitivity. Furthermore, mass imaging 

obliterates the tissue sample, rendering multiplexed ion beam imaging (MIBI) and imaging 

mass cytometry (IMC) incompatible with sequential analyses. Irrespective of staining and 

detection modalities, platforms that limit the imageable tissue area (CosMx, MACSima, 

CellScape, PhenoCycler, IMC) may altogether miss populations of senescent cells, which 

may be unequally distributed, in subsections of larger tissues.

Attempts to characterize senescence spatially at the protein level must balance the 

breadth of tissue coverage with the depth of the data generated (Table 1). Protocols and 

reagents must be carefully considered and thoroughly validated in appropriate tissues. High-

plex imaging requires substantial time investment in the generation and optimization of 

conjugated antibody panels, in addition to the time required to acquire images. Moreover, 

even established workflows may require several days to weeks to capture, process and 

analyze enough raw imaging data to effectively characterize senescent cell features 

within a single tissue slide. The validation of high-quality antibodies for senescence and 

SASP biomarkers, optimized conjugation of these reagents to necessary reporter systems, 

continued improvement in both spatial resolution and throughput and determination of the 

data sufficiency for spatial identification of the SASP using each marker are key milestones 

to drive forward human senescence research with spatial proteomic techniques.
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Spatial transcriptomics

Current spatial gene expression profiling methods can identify transcripts’ locations at 

a subcellular level. A targeted gene panel (multiplexed error-robust FISH (MERFISH), 

sequential FISH (seqFISH)+, CoxMx, spatially resolved transcript amplicon readout 

mapping (STAR-Map)) could enhance detection of senescence-associated markers, while 

unbiased methodologies (Visium, deterministic barcoding in tissue for spatial omics 

sequencing (DBiT-seq), Seq-Scope) could be more appropriate for systematic and unbiased 

discovery-based approaches. While markers can help to identify specific cell types, 

senescence is a cell state with temporal and phenotypic heterogeneous characteristics that 

will depend on cell type, organ, stimulus and physiologic and temporal conditions. Unbiased 

spatial transcriptomics may be an invaluable tool to map and identify senescent cells to 

define where they originate or accumulate in human tissues across lifespan. Although 

there are multiple spatial transcriptomic methods, here we describe some of the strategies 

and methodologies currently in use by the SenNet Consortium as well as some of their 

advantages and pitfalls (Table 2 and Fig. 3).

Targeted methods.—FISH has been used to image RNA transcripts and allows the 

accurate localization and quantification of RNA molecules in single cells. However, there 

are technical challenges to the application of FISH to the identification of multiple 

mRNA molecules simultaneously, related to the limited number of distinct color channels. 

A solution to this challenge was the development of advanced highly multiplexed RNA-

detection methods that use RNA-ISH probes coupled with combinatorial barcodes. Cyclic 

hybridization and imaging of fluorescent reporter probes (complementary to barcodes) 

enables highly multiplexed in situ imaging and spatial localization of RNA probes at high 

resolution. Platforms using these techniques include seqFISH48, MERFISH49, NanoString 

CosMx50 and 10x Genomics Xenium.

The advantages of FISH-based methodologies are (1) high-plex number above hundreds, 

(2) high detection efficiency and high number of transcripts per cell in comparison 

with sequencing-based technologies, (3) single-cellular to subcellular resolution owing 

to advancement in machine learning-based segmentation algorithms, for example, 

Cellpose51, (4) standardized commercial platforms and reagents (MER-SCOPE, CosMx), 

(5) compatibility with FFPE and freshly frozen tissue sections and mouse and human 

tissues and (6) a highly advanced computation algorithm to allow for discovery of cell-

to-cell interactions, cell community identification and ligand–receptor delineation. This 

feature is ideal for discovering rare senescent cells and their spatial niche as well as 

intercellular secretome signaling pathways. However, current limitations to the targeted 

methods include (1) size of the imaging area and therefore low throughput for imaging large 

tissue areas, (2) long duration of imaging acquisition, (3) large dataset size, (4) limited and 

pre-selected panels of markers and (5) the need for expensive specialized equipment and 

custom-designed probe panels.

Unbiased methods.

Visium.: The company 10x Genomics currently offers spatial barcoding-based transcript 

detection (Visium) in flash-frozen and FFPE tissues, providing robust spatially resolved 
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whole-transcriptome evaluation at the cost of relatively low resolution and discontinuous 

detection area (barcoded spot diameter, ~50 μm; 100 μm between spots; 6.5 × 6.5-mm 

tissue-capture area). Already there are reports of Visium being used to investigate the 

spatial characteristics of cellular senescence in mouse52 and human brains53 as well as to 

decipher age-dependent tissue-regeneration capabilities54. An important advantage of this 

methodology is the possibility for retrospective analysis of stored FFPE blocks55, which 

allows designing experiments around a desired age range.

Visium version 2 slides have a tissue-capture area almost three times larger (11 × 11 mm) 

than the original, while Visium HD will offer continuous mRNA capture across the whole 

tissue section. The 10x Xenium platform claims to provide subcellular-level spatial mRNA 

and protein detection for several hundred targets at a time, using prebuilt tissue-specific 

probe panels (up to 300–400 genes at the moment), with up to 100 customer-specific probes 

added on top. Importantly, owing to the non-destructive nature of the assay, the same slides 

can be transferred for downstream unbiased Visium gene expression profiling. This provides 

a great opportunity for targeted and whole-transcriptome gene expression data integration.

Although Visium is an unbiased spatial transcriptomic solution, its low resolution (100 μm 

center to center; by comparison, the naked human eye has a resolution of ~40 μm) makes it 

unsuitable for profiling single cells. Therefore, isolating the senescent cell transcriptome and 

characterizing their spatial location will not be precise. Despite this limitation, Visium may 

still be useful for certain applications in which a coarser-resolution analysis is sufficient.

NanoString GeoMx is a spatial omics platform for analysis of RNA (whole transcriptome) 

or proteins (over 100-plex) that uses photocleavable oligonucleotide barcodes that are 

coupled to RNA probes or antibodies. UV light directed onto selected geometric regions 

of interest (or cell types based on fluorescence profiles) releases the probes, which are then 

collected to determine transcript or protein abundance56. Limitations include specific area or 

cell number requirements within region-of-interest (ROI) selection; thus, while specific cell 

types may be selected using morphology markers, this method cannot resolve down to the 

single-cell level.

An example of the application of Visium in combination with the NanoString GeoMx 

platform to identify senescence in the liver is illustrated in Fig. 4.

DBiT-seq.: DBiT-seq is an unbiased multiomic approach that allows for spatial barcoding 

of the transcriptome in tissues57. The flexibility of this microfluidic-based approach 

means that it can be extended to other omics analyses such as the epigenome and 

the proteome. In fact, co-profiling of the transcriptome and a panel of antibodies in a 

methodology known as spatial co-indexing of transcriptomes and epitopes for multiomic 

mapping by next-generation sequencing (CITE-seq) has already been applied58. Deng and 

colleagues also demonstrated spatial cleavage under targets and tagmentation (CUT&Tag) 

to study chromatin modifications at the cellular level59. Recently, DBiT-seq has also been 

applied to co-mapping the epigenome–transcriptome at the cellular level, allowing for this 

analysis to be performed in one single tissue section58. DBiT-seq is also compatible with 

FFPE tissue blocks, allowing the use of archived material60. Although DBiT-seq may 
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not be able to resolve senescent cells at single-cell resolution, the workflow is being 

optimized to allow for the combination of DBiT-seq and other high-resolution multiplex 

immunofluorescence imaging techniques on the same tissue slide. This would allow for 

integration of transcriptomic, proteomic and epigenomic data for the positive identification 

of senescent cells, which are typically rare.

High-resolution methods: Seq-Scope, Stereo-seq and PIXEL-seq.—The low 

frequency of senescent cells in tissues and their heterogeneity requires methods capable 

of precisely locating senescent cells and distinguishing them from surrounding cells. 

Furthermore, many of the senescence-associated transcripts, such as those encoding cell 

cycle-dependent kinase inhibitors, are not very abundantly expressed; therefore, high-

resolution and high-capture output are essential for spatial analysis of cell senescence.

Recently, several ultra-high-resolution technologies such as Seq-Scope61, Stereo-seq62 and 

polony-indexed library sequencing (PIXEL-seq)63 have been developed, which could prove 

ideal for identification and characterization of senescent cells and their interactions with 

the environment. In addition to providing submicrometer resolution, which is comparable 

to that of optical microscopy, these methods show highly efficient transcriptome-capture 

efficiency, up to ~23 unique transcripts per μm2 (Table 2). Considering that single cells 

can occupy up to 100–500 μm2, this output is comparable to that of conventional single-

cell RNA sequencing (scRNA-seq), enabling sensitive detection of senescent transcripts. 

Importantly, conventional microscopy is compatible with these transcriptomic procedures, 

as demonstrated by Seq-Scope (hematoxylin and eosin (H&E) histology61) and Stereo-Seq 

(4,6-diamidino-2-phenylindole (DAPI) fluorescence62). Furthermore, PIXEL-seq uses DNA 

arrays called ‘polony gels’, which capture tissue RNA from a single-cell layer touching the 

gel, similar to confocal microscopy, and restrain template diffusion, thus improving single-

cell resolution63. Therefore, microscopy-based identification of senescence-associated 

markers using other methods can be combined with transcriptomic data in a straightforward 

manner. Among these technologies, Seq-Scope and PIXEL-seq are currently being 

optimized for sensitive detection of cell senescence in tissues, as part of the SenNet 

technology development and adaptation program. Potentially, these methods could be also 

expanded to capture other spatial omics features, such as proteomic signatures, chromatin 

accessibility and epigenome structure.

Another emerging challenge is the application of image-analysis methods to the detection of 

senescent cells, which requires the development of a different set of complex tools. In the 

next section, we describe some of the methodologies currently in use and being developed in 

this area.

Image data analysis of senescent cells

Nuclear and cell segmentation

Identification of cell objects is an essential first component for spatial mapping. 

Segmentation can be used to define cell shape and other topological properties that are 

important features for cell type assignment64,65. In addition, errors in identifying cell or 

nucleus boundaries can directly impact the assignment of expression levels for genes or 
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proteins in cells, making it harder to uniquely identify cells expressing known senescence-

associated markers. Current cell-identification methods (Fig. 5) can largely be classified into 

three types: (1) methods that rely on nucleus or membrane staining (for example, DAPI 

and H&E), (2) methods that use the profiled proteins and RNA directly for segmentation 

and (3) segmentation-free methods. Most methods developed to date belong to group 1 

and focus on segmentation based on stained cells or nuclei51,66–70. Although generalizable 

to a variety of spatial profiling methods, such methods have several drawbacks. First, 

molecular and auxiliary stains can be misaligned. In addition, not all cells in the same 

tissue express the same membrane marker, making it hard to select a single stain for cell 

segmentation. Methods in group 2 solve this by using spatial distribution of RNA or protein 

molecules to improve segmentation. Examples of such approaches include ranking markers 

for cell segmentation (RAMCES)71, membrane pattern-based cell segmentation (MPCS)72 

and Cytokit73, which use proteomic data, and Baysor74, probabilistic cell typing by in 

situ sequencing (pciSeq)75 and joint cell segmentation and cell type annotation (JSTA)76, 

which use RNA for the same purpose. While addressing the image-analysis issue, such 

methods usually require additional information, including knowledge of the expected cell 

types and their markers72,76 or cell shape74,75. Finally, methods in group 3 are segmentation 

free. For example, spot-based spatial cell type analysis by multidimensional mRNA density 

estimation (SSAM)77 can directly assign cell cluster labels to pixels without grouping them 

to cells. However, these methods cannot be easily extended to cell-based analyses, including 

cell trajectory inference78–80 and cell–cell communication81,82, which are both important for 

studying senescent cell networks and modeling senescence development. Although current 

methods demonstrate various levels of success for the general purpose of cell-based analysis, 

further evaluations are needed in the context of senescent cell detection and modeling.

Integration with scRNA-seq data for cell type deconvolution

Spatial transcriptomic platforms such as Visium and Slide-seq83 measure gene expression 

profiles of spatial spots that may contain multiple cells from distinct cell types. When 

scRNA-seq data from the same tissue are available, computational methods such as 

SPOTlight, robust cell type decomposition (RCTD), Tangram and conditional autoregressive 

deconvolution (CARD)84–87 deconvolute the spatial transcriptomic data and infer the 

proportion of different cell types within each spatial spot. These methods can potentially 

infer the spatial locations of senescent cells if the senescent cells are annotated in the 

scRNA-seq data, but there could be important challenges. First, deconvolution methods may 

struggle to reliably detect differences between senescent and non-senescent cells within 

each cell type, which could be much smaller than the differences across cell types. Second, 

senescent cell density in some tissues could be overwhelmed by more prevalent cell types, 

causing a failure in detection of senescent cells. Third, reference scRNA-seq datasets 

with annotated senescent cells are lacking in many types of tissues. Finally, although 

there are studies benchmarking the performance of deconvolution methods in a more 

general setting88, the performance of deconvoluting senescent cells is largely unknown. 

Such a benchmark is necessary to determine whether methods specifically designed for 

deconvoluting senescent cells are needed.
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Tensor analysis of senescent cell populations

Current scRNA-seq data for senescent cell analysis often include measurements from 

multiple individuals, multiple time points, dozens of cell types and thousands of genes. 

The resulting data can be longitudinal, high dimensional and high order. Such data are 

naturally organized as tensors aligned over multiple directions representing individuals, 

time, cell types, genes and so on, but are less suited to traditional statistical modeling and 

methods. Instead, tensor-based statistical models and methods represent a better toolbox for 

senescent cell scRNA-seq population analysis. For example, tensor clustering will probably 

be important to reveal subpopulations among individuals and occurrence patterns among 

single-cell gene expression profiles89. Tensor regression may also yield interpretable models 

for phenotype prediction based on sequencing data90.

Tile-based image analysis

An alternative to identification of senescent cells individually is to computationally classify 

larger image tiles (also known as patches, typically 50–100 μm wide) by whether they 

contain a senescent cell (Fig. 5). This multiple-instance learning approach sacrifices 

cellular resolution, but it circumvents the uncertainties of cell segmentation within a tissue 

slice, caused by, for example, partial cells or regions of high cell density. Secondly, the 

patch scale subsumes cell–cell spatial relationships and extracellular microenvironmental 

features, providing a potentially richer and more phenotypically relevant predictive feature 

space. Lastly, patch-based approaches provide a common scale for cross-platform data 

comparisons, enabling evaluation of senescence classification methods across technologies 

with different resolutions. Such comparisons are possible through machine learning methods 

to convert data from different platforms (for example, CODEX, Visium, H&E), using 

spatially aware encoder–decoder deep learning approaches91, potentially reducing the need 

for markers to be measured simultaneously across platforms. These tile-based approaches 

will be valuable for analyzing SenNet tissues in two dimensions and potentially 3D92, 

complementing cell community and graph methods that analyze the spatial relationships of 

segmented cells93.

Three-dimensional and multi-modal analysis

Alternative approaches may provide 3D information to further delineate spatial relationships 

in larger volumes. For example, optical clearing renders whole tissue more transparent 

and less refractive and therefore more amenable to deeper confocal, multiphoton or light 

sheet microscopic detection of low-plex fluorescence markers94. While these approaches 

can profile volumes at high resolution, they are limited by the number and types of 

probes, for example, owing to poor penetration of antibodies into deeper tissue. Another 

approach is serial section reconstruction, which has been used to recreate 3D structure 

from histological slide scans95 and spatial transcriptomics92. Multi-modal image registration 

holds the promise of combination of 3D structure obtained by low-plex methods and 

spatial profiling data obtained only in select planes of the volume. Serial and multi-modal 

image registration is trivial owing to warping of tissue sections, and rigid and deforming 

image-registration methods are available to address this such as probabilistic alignment 

of spatial transcriptomic experiments (PASTE)92, CODA95, Autograd Image Registration 
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Laboratory (AirLab)96 and elastix97 and its ImageJ–Fiji–QuPath6 implementation Warpy98. 

While cell-level reconstruction across tissue sections has been attained92,98, this may be 

challenging in tissues with smaller cells or nuclei. Combining serial section approaches with 

deep learning-based image segmentation has allowed volumetric resolution of anatomical 

structures95. These approaches can improve our ability to predict where senescent cells 

occur as well as how and when they interact with the microenvironment.

Use of deep learning methods to identify senescent cells

Simple imaging-based methods coupled with deep learning predict cellular senescence

Deep learning methods have been recently developed to detect senescent cells in culture 

with phase-contrast imaging99 and tissues with H&E and DAPI staining65. Interestingly, 

p21CIP1-positive nuclei exhibited higher predicted levels of senescence in multiple tissues, 

while proliferating cells (indicated by 5-ethynyl-2′-deoxyuridine (EdU) incorporation) 

showed lower levels65. Further analysis of skin biopsies revealed that predicted senescence 

in the dermis of more than 160 individuals increased with age and showed expected 

associations with disease outcomes. This approach using deep learning for the identification 

of senescent cells was originally developed with human fibroblasts in cell culture, but, using 

image transformation to focus on nuclear morphology, these deep learning models were 

applied to diverse cell types in culture and tissues (Fig. 6a).

Image-based senescence assessment provides a unique and new approach to map and 

analyze cellular senescence in situ in human tissues. However, understanding the role of 

senescence in tissue is particularly challenging owing to its heterogeneity, with diverse 

cell types organizing to form complex structures. While the accuracy for individual nuclei 

is difficult to establish in tissues, deep learning predictors can offer overall assessment 

of senescence in tissues along with differential analysis across ages, medical conditions 

or other factors. For example, the SenNet Tissue Mapping Center at the Buck Institute 

applied the deep learning predictor to breast tissue biopsies from 67 healthy individuals, 

obtained from the Komen Tissue Bank, scoring 460,000 nuclei (Fig. 6b). By tracking the 

location of senescent cells within the breast tissue architecture, this project is exploring 

the spatial relationship between senescent and non-senescent cells. Additionally, deep 

learning methods can be used to automatically segment tissue types to study regional 

differences (Fig. 6c,d). High-precision prediction senescence scores per tissue type can then 

be correlated with transcriptional, histological and proteomic data, among other factors. 

Image-based senescence prediction can potentially provide a unique method for SenNet to 

better characterize the role of senescence in human aging and disease.

Integrative approaches using deep learning for fine-resolution tissue mapping of spatial 
transcriptomics

Incorporation of the imaging-based deep learning method described above into single-cell 

transcriptomic technologies offers an unprecedented solution for training models that can 

map senescent cells in tissues in health and disease. A proposed example of such a 

pipeline is delineated in this section. This starts with a time-series scRNA-seq and/or single-

nucleus RNA-sequencing (snRNA-seq) experiment to acquire transcriptome changes during 
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induction of cellular senescence for a certain cell type. Next, these data can be used to train 

a deep learning model to predict the senescent cell burden and extract top predictive features 

in an unsupervised manner, which would represent the markers of cell senescence for this 

specific cell type in vitro. These preliminary senescence-associated markers will be used in 

designing specific probes for in situ single-cell techniques such as CosMx or STARmap100 

and performing spatial alignment of scRNA-seq and/or snRNA-seq data acquired from the 

same tissue sample86. This is particularly important as it can overcome the gene-throughput 

limitations of CosMx and STARmap. Further extending the existing method65, which maps 

nucleus morphology to cell senescence, the senescent cells will also be precisely located 

based on their transcriptome signatures in the tissue. This will be achieved by obtaining 

a transcriptome of senescent cells and training the deep learning model to extract the top 

features as markers of cellular senescence in vivo. Consequently, these markers can be used 

to map senescent cells in the same tissue type, and the list of markers will be refined after 

multiple iterations of the proposed experiments (Fig. 6h).

Conclusions and future perspectives

While there is growing excitement about the therapeutic potential of targeting senescence 

in the context of aging and age-related disease, our understanding of this phenotype and 

its complexity in vivo is very much in its infancy. Since Hayflick’s seminal discovery 

more than 60 years ago, our field has made great strides in describing senescence and its 

underlying mechanisms, particularly in cultured cells; however, limitations in the available 

technology have hampered the characterization of senescence in tissues. It is our prediction 

that the current developments in single-cell spatially resolved platforms, image analyses 

and deep learning technologies will likely revolutionize the way in which we understand 

senescence in vivo.

We foresee that, in the future, we will be able to perform multimodal analyses of 

the proteome, the transcriptome, the epigenome and the metabolome of senescent cells 

at subcellular and single-molecule resolution. Quantum leaps in imaging throughput 

including imaging speed and area will enable spatial mapping of senescent cells and their 

microenvironment in 3D. Advancements in computational biology will allow us to easily 

integrate dissociative and non-dissociative methods, processing mega 3D spatial datasets and 

ultimately constructing comprehensive 3D cellular senescence networks in organs.
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Fig. 1 |. Senescence is a complex cell fate that alters almost every aspect of cell biology.
Some changes observed during senescence involve (1) alterations in protein and glycan 

receptors, (2) a pro-inflammatory SASP, (3) multiple nuclear abnormalities, such as 

DNA damage, telomere dysfunction, chromatin alterations and modifications to the 

nuclear envelope, (4) mitochondrial dysfunction and (5) changes in lysosomal mass and 

functionality. MMP, matrix metalloproteinase; ROS, reactive oxygen species.
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Fig. 2 |. Senescence communicates with neighboring cells and alters their function via the SASP.
Senescent cells can (1) spread senescence to surrounding cells, (2) disrupt stem cell niches 

and thereby impair tissue regeneration, (3) lead to extracellular matrix (ECM) degeneration, 

resulting in aberrant tissue architecture, (4) drive the recruitment of immune cells and 

exacerbate tissue inflammation, (5) affect tissue fibrosis and (6) stimulate the proliferation of 

precancerous cells.
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Fig. 3 |. Spatially resolved methods for mapping senescent cells and studying senescence-
associated pathology.
Three major approaches that have been proposed or are already being used for detection of 

senescent cells in freshly frozen or FFPE tissue samples. Imaging-based methods require 

light or a fluorescent microscope and include detection of established features of senescent 

cells, such as SA-β-Gal or TAF using commercially available assay kits. Various spatial 

transcriptomic methods can be generally assigned to those using in situ or ex situ sequencing 

technologies, depending on whether complementary DNA (cDNA) amplification and signal 

detection are performed at the physical transcript location or whether the transcript location 
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is barcoded using a probe that is hybridized to target RNA, providing spatial information 

during standard sequencing procedures. Spatial transcriptomic methods can be used for 

both precise localization of cells expressing signature genes with subcellular resolution or 

for unbiased identification and investigation of senescence hotspots in larger tissue areas, 

covering the full transcriptome but trading plexity for spatial resolution. A plethora of 

downstream analysis techniques can help with evaluation of cellular neighborhoods and 

the impact of senescent cells on surrounding tissues. Multiplexed antibody-based methods 

are serving as high-plex, high-throughput approaches to characterize the protein milieu of 

senescent cells and their neighbors. A key feature of these methods is the ability to focus 

on specific cell populations or areas with abundance of particular biomolecules of interest 

(including glycans and lipids) during the data-acquisition step. Depending on the hypotheses 

or research questions, panels can be built to not only localize and distinguish senescent cells 

from other cells but also to evaluate (patho-)physiological effects on surrounding tissues by 

investigating SASP factor distribution and markers of major cellular biology processes, such 

as the DNA damage, endoplasmic reticulum stress, mitochondrial dysfunction, and so on. 

WTA, whole transcriptome analysis.
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Fig. 4 |. Examples of exploratory strategies used by the University of Minnesota Tissue Mapping 
Center to identify senescence in liver samples using both the 10x Genomics Visium and the 
NanoString GeoMx platforms.
Tissues are from old, diseased liver (O1 and O2) or from young, healthy liver (Y1 and 

Y2). a, A spatial discovery approach was used with the Visium platform. H&E staining 

of tissues on the Visium slide is shown. b, Identification of 166 senescent spots in tissue 

O1 with differential expression of three senescence-associated genes (CDKN1A, GLB1 
and HMGB1). To investigate paracrine effects of senescence spots, clusters were created 

for the senescent spots (blue) and the surrounding area using three target rings (green, 

yellow and purple). c, Senescence and SASP-associated gene expression in each cluster 
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demonstrates that senescence-associated gene expression is highest in the center blue spots, 

but SASP gene expression is also elevated in the surrounding area. d, A hypothesis-driven 

approach was used with the GeoMx platform focused on liver anatomical structures to 

compare senescence gene expression across tissues. ROIs were selected based on liver zone 

1 (periportal), zone 2 (mid-lobular) and zone 3 (pericentral) and marked in white on the 

GeoMx immunofluorescent image. e, ROI selections in O1 using serial sections of H&E 

and Masson’s trichrome staining for ROI determination. f, Differential gene expression 

of senescence- and fibrosis-associated genes in zone 1 of all four tissues with increased 

expression in old, diseased liver (O1 and O2).
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Fig. 5 |. Image data analysis of senescent cells.
Top, platform comparisons can be performed by registering image tiles across different 

technology platforms, such as protein, RNA or H&E, and then identifying key features in a 

shared latent space through encoder–decoder approaches. Latent space features may be used 

to more robustly identify tiles containing senescent cells. Bottom, many machine learning 

or image-processing methods have been developed for segmenting cells from nucleus- or 

membrane-staining images as well as spatial RNA or protein data. Cell segmentation can be 

used to define cell shapes or determine gene expression of cells, which can further be used 

to model cell–cell communication in tissues. Such information is important for identifying 

senescent cells.
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Fig. 6 |. Nuclear morphology predicts senescence in tissues.
a, Workflow for detecting nuclei in culture or tissue, normalizing images and predicting 

senescence (tissue and cell image samples are reproduced with permission from ref. 65, 

Springer Nature America, Inc.). DNN, deep neural network. b, Nuclei with prediction 

scores above the 95th percentile for several models; orange, replicative senescence model; 

green, irradiation-induced senescence model; blue, AAD model, which was trained on 

multiple drug treatments including antimycin A, atazanavir–ritonavir and doxorubicin. c, 

Segmentation of adipose regions of breast tissue. d, Segmentation of epithelial regions 

of breast tissue. e, Workflow to identify markers, perform spatial analysis and refine 

morphology-based predictors by integrating single-cell and spatial transcriptomics.
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