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Abstract
Motivation: The Jaccard similarity on k-mer sets has shown to be a convenient proxy for sequence identity. By avoiding expensive base-level
alignments and comparing reduced sequence representations, tools such as MashMap can scale to massive numbers of pairwise comparisons
while still providing useful similarity estimates. However, due to their reliance on minimizer winnowing, previous versions of MashMap were
shown to be biased and inconsistent estimators of Jaccard similarity. This directly impacts downstream tools that rely on the accuracy of these
estimates.

Results: To address this, we propose the minmer winnowing scheme, which generalizes the minimizer scheme by use of a rolling minhash with
multiple sampled k-mers per window. We show both theoretically and empirically that minmers yield an unbiased estimator of local Jaccard simi-
larity, and we implement this scheme in an updated version of MashMap. The minmer-based implementation is over 10 times faster than the
minimizer-based version under the default ANI threshold, making it well-suited for large-scale comparative genomics applications.

Availability and implementation: MashMap3 is available at https://github.com/marbl/MashMap.

1 Introduction

The recent deluge of genomic data accelerated by population-
scale long-read sequencing efforts has driven an urgent need
for scalable long-read mapping and comparative genomics
algorithms. The completion of the first Telomere-to-Telemore
(T2T) human genome (Nurk et al. 2022) and the launch of
the Human Pangenome Project (Wang et al. 2022a) have
paved the way to mapping genomic diversity at unprece-
dented scale and resolution. A key goal when comparing a
newly sequenced human genome to a reference genome or
pangenome is to accurately identify homologous sequences,
i.e. DNA sequences that share a common evolutionary
source.

Algorithms for pairwise sequence alignment, which aim to
accurately identify homologous regions between two sequen-
ces, have continued to advance in recent years (Marco-Sola
et al. 2021). While a powerful and ubiquitous computational
tool in computational biology, exact alignment algorithms are
typically reserved for situations where the boundaries of ho-
mology are known a priori, due to their quadratic runtime
costs and inability to model non-linear sequence relationships,
such as inversions, translocations, and copy number variants.
Because of this, long-read mapping or whole-genome align-
ment methods must first identify homologous regions across
billions of nucleotides, after which the exact methods can be

deployed to compute a base-level “gapped” read alignment
for each region. To efficiently identify candidate mappings,
the prevailing strategy is to first sample k-mers and then iden-
tify consecutive k-mers that appear in the same order for both
sequences: known as “seeding” and “chaining,” respectively.

For many use cases, an exact gapped alignment is not
needed and only an estimate of sequence identity is required.
As a result, methods have been developed which can predict
sequence identity without the cost of computing a gapped
alignment. Jaccard similarity, a metric used for comparing the
similarity of two sets, has found widespread use for this task,
especially when combined with locality sensitive hashing of
k-mer sets (Brown and Irber 2016, Ondov et al. 2016, Jain
et al. 2017, 2018a, Baker and Langmead 2019, Ondov et al.
2019, Shaw and Yu 2023). By comparing only k-mers, the
Jaccard can be used to estimate the average nucleotide identity
(ANI) of two sequences without the need for an exact align-
ment (Ondov et al. 2016, 2019, Blanca et al. 2022).

To accelerate mapping and alignment, k-mers from the in-
put sequences are often down-sampled using a “winnowing
scheme” in a way that reduces the input size while still en-
abling meaningful comparisons. For example, both
MashMap (Jain et al. 2017, 2018a) and Minimap (Li 2018)
use a minimizer scheme (Roberts et al. 2004), which selects
only the “smallest” k-mer from all w-length substrings of the
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genome. Of relevance to this study, MashMap2 then uses
these minimizers to approximate the Jaccard similarity be-
tween the mapped sequences, and these estimates have been
successfully used by downstream methods, such as FastANI
(Jain et al. 2018b) and MetaMaps (Dilthey et al. 2019).

However, a recent investigation noted limitations of the
“winnowed minhash” scheme introduced by MashMap
(Belbasi et al. 2022). Although the original MashMap paper
notes a small, but negligible bias in its estimates (Jain et al.
2017), Belbasi et al. (2022) proved that no matter the length
of the sequences, the bias of the minimizer-based winnowed
minhash estimator is never zero.

To address this limitation, we propose a novel winnowing
scheme, the “minmer” scheme, which is a generalization of
minimizers that allows for the selection of multiple k-mers per
window. We define this scheme, characterize its properties,
and provide an implementation in MashMap3. Importantly,
we show that minmers, unlike minimizers, enable an unbiased
prediction of the local Jaccard similarity.

2 Preliminaries

Let R be an alphabet and SkðSÞ be a function, which returns
the set of all k-mers in S. Similarly, given a sequence S, we de-
fine WðwÞ

i ðSÞ as the sequence of w k-mers in S starting at the
ith k-mer. When w and S are clear from context, we use Wi.
We use the terms sequence and string interchangeably.

2.1 Jaccard similarity and the minhash

approximation

Given two sets A and B, their Jaccard similarity is defined as
JðA;BÞ ¼ jA\Bj

jA[Bj. The Jaccard similarity between two sequences
R and Q can be computed as JðSkðRÞ;SkðQÞÞ for some k-mer
size k.

However, computing the exact Jaccard for SkðRÞ and
SkðQÞ is not an efficient method for determining similarity
for long reads and whole genomes. Instead, the minhash algo-
rithm provides an estimator for the Jaccard similarity while
only needing to compare a fraction of the two sets. Assuming
U is the universe of all possible elements and p : U ! ½jUj� is
a function which imposes a randomized total order on the
universe of elements, we have that

JðA;BÞ ¼ Prðmin
x2A
ðpðxÞÞ ¼ min

x2B
ðpðxÞÞ:

This equivalency, proven by Broder (1997), is key to the
minhash algorithm and yields an unbiased and consistent
Jaccard estimator Ĵ with the help of a sketching function ps.
Let ps return the lowest s items from the input set according
to the random total order p. Then, we define the minhash as

ĴðA;BÞ ¼ jpsðA [ BÞ \ psðAÞ \ psðBÞj
jpsðA [ BÞj :

Importantly, this Jaccard estimator has a standard devia-
tion that scales with Oð1=

ffiffi
s
p
Þ and is therefore independent of

the size of the original input sets. While there are a number of
variants of minhash, which provide the same guarantee
(Cohen 2016), we will be using the “bottom-s sketch” (as op-
posed to the s-mins and s-partition sketch) since it ensures a
consistent sketch size regardless of the parameters and
requires only a single hash computation per element of Sk.

Additionally, the simplicity of the bottom-s sketch leads to a
streamlined application of the sliding window model, which
we describe next.

2.2 Winnowing

While sequences can be reduced into their corresponding
sketch via the method described above, this is a “global”
sketch and it is difficult to determine where two sequences
share similarity. In order to perform local sketching,
Schleimer et al. (2003) and Roberts et al. (2004) indepen-
dently introduced the concept of “winnowing” and
“minimizers.” In short, given some total ordering on the
k-mers, a window of length w is slid over the sequence and
the element with the lowest rank in each window (the
“minimizer”) is selected, using the left-most position to break
ties (Roberts et al. 2004). By definition, winnowing ensures
that at least one element is sampled per window and therefore
there is never a gap of more than w elements between sampled
positions. Here, we extend the winnowing concept to allow
the selection of more than one element per window (the
“minmers”), and we refer to the set of all minmers and/or
their positions as the “winnowed” sequence.

2.2.1 Winnowing scheme characteristics

Definition 2.1. A winnowing scheme has a ðw; sÞ-window
guarantee if for every window of w k-mers, there are
at least minð#distinct; sÞ k-mers sampled from the
window, where #distinct is the number of distinct
k-mers in the window.

This definition is more general than the commonly used w-
window guarantee, which is equivalent to the ðw;1Þ-window
guarantee. While not all winnowing schemes must have such
a guarantee, this ensures that no area of the sequence is un-
der-sampled.

Recently, Shaw and Yu (2022) provided an analytical
framework for winnowing schemes and showed that mapping
sensitivity is related to the distribution of distances (or
“spread”) between sampled positions, and precision is related
to the proportion of unique values relative to the total number
of sampled positions. As the overarching goal of winnowing
is to reduce the size of the input while preserving as much in-
formation as possible, winnowing schemes typically aim to
optimize the precision/sensitivity metrics given a particular
density.

Definition 2.2. The density d of a winnowing scheme is
defined as the expected frequency of sampled positions
from a long random string, and the density factor df is
defined as the expected number of sampled positions
in a window of wþ 1 k-mers.

There has been significant work on improving the perfor-
mance of minimizers by identifying orderings that reduce the
density factor (Marçais et al. 2017). Minimizer schemes,
which use a uniformly random ordering, have a density factor
of df ¼ 2 and recent schemes like Miniception (Zheng et al.
2020) and PASHA (Ekim et al. 2020) are able to obtain den-
sity factors as low as 1.7 for certain values of w and k.

For the remainder of this work, we will assume that
w� 4k, i.e. the windows are not so large that we expect
duplicate k-mers in a random string. This ensures that each
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k-mer in a window has probability s=w of being in the sketch
for that window.

2.2.2 Winnowing scheme hierarchies
Recent winnowing methods have focused on schemes that se-
lect at most a single position per window, which simplifies
analyses but restricts the universe of possible schemes.
Minimizers belong to the class of “forward” winnowing
schemes, where the sequence of positions sampled from adja-
cent sliding windows is non-decreasing (Marçais et al. 2018).
More general is the concept of a w-local scheme (Shaw and
Yu 2022), defined on windows of w consecutive k-mers but
without the forward requirement. Non-forward schemes are
more powerful and are not limited by the same density factor
bounds as forward schemes. While the need of non-forward
schemes to “jump back” in order to obtain lower sampling
densities is acknowledged by Marçais et al. (2018), there are
currently no well-studied, non-forward, w-local schemes.

2.3 MashMap

MashMap is a minimizer-based tool for long-read and whole-
genome sequence homology mapping that is designed to iden-
tify all pairwise regions above some sequence similarity cutoff
(Jain et al. 2017, 2018a). Specifically, for a reference sequence
R and a query sequence Q comprised of w k-mers, MashMap
aims to find all positions i in the reference such that
JðA;BiÞ � c, where A ¼ SkðQÞ and Bi ¼WðwÞ

i ðRÞ, and c is
the sequence similarity cutoff. For ease of notation, we will
use B to refer to the sequence of k-mers from the reference se-
quence R.

Importantly, MashMap only requires users to specify a
minimum segment length and minimum sequence identity
threshold, and the algorithm will automatically determine the
parameters needed to return all mappings that meet these cri-
teria with parameterized confidence under a binomial muta-
tion model.

To simplify the computation of the minhash, prior versions
of MashMap first winnowed the query and reference sequen-
ces using the minimizer scheme after which the Jaccard was
estimated from the bottom-s sketches of the minimizers. It is
this use of minimizers, though, which was recently shown to
introduce bias into the Jaccard estimation (Belbasi et al.
2022).

Here, we replace the minimizer-based approach of prior
versions of MashMap with minmers. While the problem for-
mulation remains the same, our method for computing the
reference index and filtering candidate mappings is novel. We
will first introduce the concept of minmers, which enable win-
nowing the input sequences while still maintaining the k-mers
necessary to compute an unbiased Jaccard estimation between
any two windows of length at least w. We will then discuss
the construction of the reference index and show how query
sequences can be efficiently mapped to the reference such that
their expected ANI is above the desired threshold.

3 The minmer winnowing scheme

Minmers are a generalization of minimizers that allow for the
selection of more than one minimum value per window. The
relationship between minmers and minimizers was noted by
Berlin et al. (2015) but as a global sketch and without the use
of a sliding window. Here, we formalize a definition of the
minmer winnowing scheme.

Definition 3.1. Given a tuple ðw; s;k;pÞ, where w, k, and s
are integers and p is an ordering on the set of all k-
mers, a k-mer in a sequence is a minmer if it is one of
the smallest s k-mers in any of the subsuming windows
of w k-mers.

Similar to other w-local winnowing schemes, ties between
k-mers are broken by giving priority to the left-most k-mer.
From the definition, it follows that by letting s ¼ 1, we obtain
the definition of the minimizer scheme. Compared to minimiz-
ers with the same w value, minmers guarantee that at least s
k-mers will be sampled from each window. However, as a
non-forward scheme, a minmer may be one of the smallest s
k-mers in two non-adjacent windows, yet not one of the
smallest s k-mers in an intervening window (Fig. 1). To
account for this and simplify development of this scheme, we
define a “minmer interval” to be the interval for which the
k-mer at position i is a minmer for all windows starting within
that interval. Thus, a single k-mer may have multiple minmer
intervals starting at different positions.

Definition 3.2. A tuple ði; a;bÞ is a minmer interval for a
sequence S if the k-mer at position i is a minmer for all
windows Wj where j 2 ½a;bÞ, but not Wa�1 or Wb.

Any region of w k-mers may contain more than s minmers
(e.g. B0 and B1 contain six minmers while s ¼ 3 in Fig. 1a),
and so to naively compute the minhash between a query and
Wj would require identification of the s smallest minmers in
Wj. Minmer intervals are convenient because for any window
start position j, the s smallest k-mers in Wj are simply the
ones whose minmer intervals contain j. Thus, indexing S with
minmer intervals enables the efficient retrieval of the smallest
s k-mers for any window without additional sorting or
comparisons.

Another benefit of minmer intervals is that the smallest s k-
mers for any window of length w0 > w are guaranteed to be a
subset of the combined ðw; sÞ-minmers contained in that win-
dow. This subset can be easily computed with minmer inter-
vals, since the set of ðw; sÞ-minmer intervals that overlap with
the range ½i; iþw0 �w� are also guaranteed to include the s
smallest k-mers of the larger window, and the overlapping
minmer intervals can be inspected to quickly identify them.

3.1 Constructing the rolling minhash index

In this section, we will describe our rolling bottom-s sketch al-
gorithm for collecting minmers and their corresponding min-
mer intervals. Popic and Batzoglou (2017) proposed a related
rolling minhash method for short-read mapping, but using an
s-mins scheme without minmer intervals. For the remainder
of the section, we will assume no duplicate k-mers in a
window and an ideal uniform hash function, which maps to
[0, 1]. Duplicate k-mers are handled in practice by keeping a
counter of the number of active positions for a particular
k-mer, similar to the original MashMap implementation (Jain
et al. 2017). Minmer intervals longer than the window length
sometimes arise due to duplicate k-mers and are split into
adjacent intervals of length at most w. This bound on the
minmer interval length is necessary for the mapping step.

For ease of notation, we now consider B as a sequence of k-
mer hash values x0;x1; . . . ; xn where each xi 2 ½0;1� and refer
to these elements as hashes and k-mers interchangeably. We
use a min-heap H and a sorted map M, both ordered on the
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hash values, to keep track of the rolling minhash index. As
the window slides across B, M will contain the minmer inter-
vals for the lowest s hashes in the window and H will contain
the remaining hashes in the window. We denote the minmer
interval of a hash x in M by M½x�ðstartÞ and M½x�ðendÞ. In prac-
tice, H may contain “expired” k-mers, which are no longer
part of the current window, however by storing the k-mer po-
sition as well, we can immediately discard such k-mers when-
ever they appear at the top of the heap. To prevent expired
k-mers from accumulating, all expired k-mers from the heap
are pruned whenever the heap size exceeds 2w.

After initialization of H and M with the first w k-mers of B,
we begin sliding the window for each consecutive position i
and collect the minmer intervals in an index I. For each win-
dow Bi, there will be a single “exiting” k-mer xi�1 and a sin-
gle “entering” k-mer xiþw�1, each of which may or may not
belong to the lowest s k-mers. Therefore, we have four possi-
bilities, examples of which can be seen in Fig. 1.

1) xi�1 > maxðMÞ and xiþw�1 > maxðMÞ
Neither the exiting nor the entering k-mer is in the sketch.
Insert xiþw�1 into H.

2) xi�1 > maxðMÞ and xiþw�1 � maxðMÞ:
The exiting k-mer was not in the sketch, but the entering
k-mer will be. Since the incoming k-mer xiþw�1 enters
the sketch, the largest element in the sketch must be re-
moved. Therefore, M½maxðMÞ�ðendÞ is set to i and the min-
mer interval is appended to the index I. maxðMÞ is then
removed from M and the new k-mer xiþw�1 is inserted to
M, marking M½xiþw�1�ðstartÞ ¼ i.

3) xi�1 � maxðMÞ and xiþw�1 > maxðMÞ
The exiting k-mer was in the sketch, but the entering k-
mer will not be. Since the exiting k-mer xi�1 was a mem-
ber of the sketch, set M½xi�1�ðendÞ ¼ i, remove M½xi�1�
from M and append it to I, and insert xiþw�1 into H. At
this point, jMj ¼ s� 1, as we removed an element from
the sketch but did not replace it. To fill the empty sketch
position, k-mers are popped from H until a k-mer x,
which has not expired is obtained. This k-mer is added to
M, setting M½x�ðstartÞ ¼ i.

4) xi�1 � maxðMÞ and xiþw�1 � maxðMÞ:

Both the exiting and entering k-mers are in the sketch. As
before, set M½xi�1�ðendÞ ¼ i and remove M½xi�1� from M
and append it to I. The entering k-mer belongs in the
sketch, so set M½xiþw�1�ðstartÞ ¼ i:

Our implementation of M uses a balanced binary tree and
H is pruned in OðwÞ time by constructing a new heap from
the w relevant k-mers. As the pruning cannot occur more
than once every w k-mers, the amortized time complexity of
the pruning step is Oð1Þ and therefore each sliding window
update is OðlogðwÞÞ. In order to efficiently use the index for
mapping, we sort I based on the start positions of the minmer
intervals and in addition, we compute a reverse lookup table
T, which maps hash values to their corresponding ordered
lists of minmer intervals.

The expected size of the index is nd�ðw;sÞ, where d�ðw;sÞ is the
minmer interval density (defined in Section 4.1.2) and is
O s

w

� �
. Therefore, the initial winnowing complexity is

Oðn logðwÞÞ and the time complexity for sorting the intervals
is O ns

w log ns
w

� �� �
in expectation. As the index consists solely of

minmer intervals, the space complexity is O ns
w

� �
in

expectation.

3.2 Querying the rolling minhash index

MashMap computes mappings in a two-stage process. In the
first stage, all regions within the reference that may contain a
mapping satisfying the desired ANI constraints are obtained.
In the second stage, the minhash algorithm is used to estimate
the Jaccard for each candidate mapping position i produced
by the first stage. As the second stage is the most computa-
tionally intensive step, we introduce both a new candidate re-
gion filter and a more efficient minhash computation to
improve overall runtime. We assume here that query sequen-
ces are w k-mers long. In practice, sequences longer than w
are split into windows of w k-mers, mapped independently,
and then chained and filtered as described in Jain et al.
(2018a).

3.2.1 Stage 1: candidate region filter
First, the query sequence A is sketched using a min-heap to
obtain the s lowest hash values. All m minmer intervals in the
reference with matching hashes are obtained from T and a

Figure 1. Constructing the rolling minhash index. (a) A sliding window Bi of length w ¼ 10 is moved over the hashes of all k-mers. At each position i of

the sliding window, the positions with the s ¼ 3 lowest hash values are marked as minmers. The three minmers for each window are highlighted with

colored circles, with the smallest hash in each window (the minimizer) having a bolded outline. Sampled minmers are also identified by an asterisk below

their position. (b) The values of the hashes in the map M and heap H as the window slides over the sequence. The expired k-mers in the heap are crossed

out. (c) The final sorted minmer interval index I.
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sorted list L is created in Oðm logðsÞÞ time, where L consists
of all minmer start and end positions and is sorted on geno-
mic position in ascending order. In this way, we can iterate
through the list and keep a running count of the overlapping
minmer intervals by incrementing the count for each start-
point and decrementing the count for each end-point.

Unlike the previous versions of MashMap that look for all
mappings above a certain ANI threshold, MashMap3 pro-
vides the option to instead filter out all mappings, which are
not likely to be within DANI of the best predicted mapping
ANI. This significantly reduces the number and size of the
candidate regions passed on to the more expensive second
stage.

This filter, described in more detail in Supplementary
Section S1.1, leverages the fact that the numerator of the min-
hash formula for A and Bi is hypergeometrically distributed
when conditioned on jpsðAÞ \ psðBiÞj. As a result, we can ob-
tain the probability distribution of the minhash for a mapping
using the cardinality of the intersection of the minmers alone.
MashMap3 then uses these distributions filter to out any can-
didate mappings where the probability of the candidate map-
ping being within DANI of the best candidate mapping is
below some threshold.

3.2.2 Stage 2: efficiently computing the rolling minhash
Given a candidate region ½a; zÞ, the goal of Stage 2 is to calcu-
late the minhash for all A, Bi pairs for i 2 ½a; zÞ. In order to
track the minhash of A and Bi for each i, MashMap2 previ-
ously used a sorted map to track all active seeds in each win-
dow. We improve upon this by observing that the minhash
can be efficiently tracked using only psðAÞ, psðAÞ \ psðBiÞ,
and the number of minmers from psðBiÞ in-between each con-
secutive pair of minmers from psðAÞ. This allows MashMap3
to use a static array of s elements to compute the rolling min-
hash estimate for each window. While each iteration requires
a binary search on the array and therefore has the same com-
plexity as modifying an ordered map, Oðlog sÞ, the perfor-
mance of the array implementation in practice is much faster.
The details of this data structure can be found in
Supplementary Section S1.2.

3.2.3 Early termination of Stage 2
Instead of computing the Stage 2 step for each candidate re-
gion obtained in the first stage, we aim to terminate the sec-
ond stage once we have confidently identified all mappings
whose predicted ANI is within DANI of the best predicted
ANI. We do this by sorting the candidate regions in decreas-
ing order of their maximum interval overlap size obtained in
Stage 1. The Stage 2 minhash calculation is then performed
on each candidate region in order, keeping track of the best
predicted ANI value seen. Let j be numerator of the minhash
that corresponds to an ANI value DANI less than the best pre-
dicted ANI value seen so far and Yi be a random variable for
the numerator of the minhash for A and Bi. Then, given a
candidate region with a maximum overlap size of ci < j, we
know that PrðYi � jÞ ¼ 0 and therefore no more candidate
regions can contain mappings whose predicted ANI is within
DANI of the predicted ANI of the best mapping.

4 Results

4.1 Characteristics of the minmer scheme

Here, we provide formulas for the density of minmers and min-
mer intervals and an approximation for the distance between ad-
jacent minmers. Proofs of the formulas are presented in the
Supplementary Material. We then compare these formulas to
results on both simulated and empirical sequences. For the simu-
lated dataset, we generated a sequence of 1 million uniform ran-
dom hash values. For the empirical dataset, we used
MurmurHash to hash the sequence of k-mers in the recently-
completed human Y-chromosome (Rhie et al. 2022) with
k ¼ 18.

4.1.1 Minmer density
To obtain the formula for the minmer density, we consider
how the rank of a random k-mer changes with each consecu-
tive window that contains it. As a result, we have a distribu-
tion of the rank of a random k-mer throughout consecutive
sliding windows. This distribution enables us to not only ob-
tain the density (Fig. 2), but also determine other characteris-
tics such as the likelihood of being a minmer given some
initial rank r1 or given a hash value z.

Theorem 4.1. Let dðw;sÞ be the expected density of ðw; sÞ-
minmers in a random sequence. Then,

dðw;sÞ ¼
1
w

X
r1;rw2f1...wg

PrðC ¼ 1jr1; rwÞPrðRw ¼ rwjr1Þ;

where Rwjr1 � BetaBinomialðr1;w� r1 þ 1Þ and

Pr C ¼ 1jr1; rwð Þ ¼
Xd

u¼0

PrðU ¼ uÞ

2uþ rw � r1

uþ rw � s

� �

2uþ rw � r1

u

� � r1; rw > s

1 otw

;

8>>>>><
>>>>>:

where U � Hypergeometricðw� 1; r1 � 1;w� rwÞ and d ¼
minðr1 � 1;w� rwÞ.

Figure 2. The density and interval density of a ð1000; sÞ-minmer scheme

compared to a w 0-minimizer scheme, which also yields a ð1000; sÞ-
window guarantee. To ensure that the minimizer scheme satisfies the

ð1000; sÞ-window guarantee, the minimizer scheme is set with

w 0 ¼ b1000=sc
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4.1.2 Minmer interval density

Theorem 4.2. Let d�ðw;sÞ be the density of ðw; sÞ-minmer
intervals in a random sequence, i.e. the probability
that for a randomly selected position i,
psðWiÞ 6¼ psðWi�1Þ. Then,

d�ðw;sÞ ¼ 1� ðw� sþ 1Þðw� sÞ
wðwþ 1Þ :

We can use d�ðw;sÞ to provide an expectation on the number of
elements in our minmer interval index I. As expected, letting
s ¼ 1 yields the same density as minimizers, 2=ðwþ 1Þ, and a
similar formula appears when determining the probability of
observing s consecutive unsampled k-mers under the mini-
mizer scheme (Spouge 2022). As the number of minmers is a
strict lower bound on the number of minmer intervals, this re-
sult also gives an upper bound on the density of ðw; sÞ-
minmers.

4.1.3 Minmer window guarantee
As the main difference between minimizers and minmers is
the window guarantee, it is important to observe the differ-
ence in the density of the minmer scheme compared to a mini-
mizer scheme, which also satisfies the ðw; sÞ-window
guarantee. In Fig. 2, we consider the case where we have a
ð1000; sÞ-minmer scheme and a w0-minimizer scheme, where
w0 is set to obtain the same ð1000; sÞ-window guarantee of
the minmer scheme by letting w0 ¼ b1000=sc. We observe
that for sketch sizes other than 1 and 1000, for which the den-
sity of the schemes is equal, the density of the minmer scheme
is strictly less than the density of the corresponding minimizer
scheme. For some values of s, the density of the b1000=sc-
minimizer scheme is over 70% larger than the ð1000; sÞ-min-
mer scheme.

4.1.4 Minmer spread
Let Gi be the distance between the ith selected minmer and
the ðiþ 1Þth selected minmer. For a ðw; sÞ-minmer scheme
with a density factor df , we have that

PrðGi ¼ dÞ 	

w� d
df � 2

� �

w
df � 1

� � :

To see how well this approximation holds, we plot the
results on both empirical and simulated data in
Supplementary Fig. S2.

4.2 ANI prediction ideal sequences

We replicated the experiments for Table 1 of Belbasi et al.
(2022) using the minmer-based MashMap3 (commit
4f4df5d), with the exception that we report the mean pre-
dicted sequence divergence error as opposed to the median.
Results for the relative median error are similar and can be
found in Supplementary Fig. S3. For each divergence rate
r 2 f0:01;0:05;0:10g, 100 random windows of 10 000 bp
were selected from the Escherichia coli genome and 10 000r
positions were selected at random and mutated, ensuring that
no duplicate k-mers were generated. The reads were mapped
back to the reference E.coli genome and the predicted diver-
gence was compared to the ground truth (Fig. 3).

The parameters of the minmer-based MashMap3 were set
to obtain a similar number of sampled k-mers as the
minimizer-based MashMap2 under MashMap2’s default den-
sity of 0.009. Both MashMap2 and MashMap3 were run
with k ¼ 19. As expected, the results show that the ANI val-
ues predicted by the minmer scheme are significantly closer to
the ground truth than those predicted by the minimizer
scheme. Notably, in the case where the true divergence was
1%, the relative error is reduced from 29.5% to 2.6%
(Fig. 3).

4.3 ANI prediction on simulated reads

In addition to the ANI prediction measurements from Belbasi
et al. (2022), we also simulated reads from the human T2T-
CHM13 reference genome (Nurk et al. 2022) at varying error
rates to determine the accuracy of the ANI predictions. We
compared the minmer-based MashMap3 against the
minimizer-based MashMap2 with similar densities for each
run as well as against Minimap2 (Li 2018). While there have
been other recent advancements in approximate read map-
ping, these tools either do not report the estimated ANI [e.g.
Ekim et al. (2022)] or are based on Minimap2 [e.g. Jain et al.
(2022) and Firtina et al. (2023)]. Minimap2 was run in its de-
fault mode with -x map-ont set, which, like MashMap,
computes approximate mappings and estimates the alignment
identity. MashMap2 was modified to use the binomial model
for estimating the ANI from the Jaccard estimator, which has
been shown to be more accurate (Belbasi et al. 2022).

We used Pbsim (Ono et al. 2013) to simulate three datasets:
“CLR-95,” “CLR-98,” and “CLR-99,” where the number
following the dash represents the average ANI across reads.
The standard deviation of the error rates was set to 0, and the
ratio of matches, insertions, and deletions was set to
20:40:40, respectively, to ensure that mapped regions would,
on average, be the same length as the reads. For each dataset,
5000 bp reads were generated with the CLR profile at a depth
of two, resulting in 1.25 million reads for each dataset.

The predicted ANIs were then compared to the gap-
compressed ANIs of the ground-truth mapping, where the

Table 1. Metrics for simulated Nanopore read mapping to the human genome.a

Minimap2 MashMap2 MashMap3

Dataset CPU time (m) Memory (GB) ME MAE CPU time (m) Memory (GB) ME MAE CPU time (m) Memory (GB) ME MAE

CLR-99 154.20 9.89 �0.25 0.34 80.27 9.92 �0.27 0.29 33.64 13.07 0.03 0.17
CLR-98 147.29 9.89 �0.36 0.52 82.46 9.92 �0.33 0.39 35.13 13.09 0.06 0.29
CLR-95 96.35 9.89 �0.46 0.81 106.81 9.92 �0.25 0.59 42.81 13.10 0.21 0.62

a Minmer and minimizer-based MashMap implementations as well as Minimap2 were used to map simulated reads from the human reference genome
using Pbsim (Ono et al. 2013) and the mean error and mean absolute error are reported. Bolded values signify the best performance for each dataset.
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gap-compressed ANI formula is analogous to the standard
ANI formula with the exception that consecutive gap columns
are counted as a single gap column. The use of gap-
compressed ANI is motivated by the fact that it is less sensi-
tive to homopolymer errors and long indels. To measure bias
and magnitude of error, we report the mean error (ME) and
mean absolute error (MAE). The results of the simulations
can be seen in Table 1, with the median errors reported in
Supplementary Table S1.

For MashMap2 and MashMap3, we used a k-mer size of
19 and set the MashMap2 minimizer w to 89 and minmer s
to s ¼ 100 obtain a density of 0.0222 for both tools. The ANI
cutoff was set to 94%, 93%, and 90% for the CLR-99, CLR-
98, and CLR-95 datasets, respectively. The indexing times for
Minimap2, MashMap2, and MashMap3 were 1.7, 2.8, and
9.8 min, respectively. Indexing times for MashMap2 and
MashMap3 across varying densities can be found in
Supplementary Fig. S4.

4.4 ANI prediction on mammalian genome

alignments

To test the performance of MashMap3 at the genome-
mapping scale, we computed mappings between the T2T hu-
man reference genome and reference genomes for chimpanzee
(Kronenberg et al. 2018) and macaque (Warren et al. 2020).
In absence of ground-truth ANI values, we used wfmash
(Guarracino et al. 2021) to compute the gap-compressed ANI
of the segment mappings output by MashMap and report the
results of the mappings with � 80% complexity in Table 2.
For a small proportion of segment mappings output by
MashMap2 and MashMap3, wfmash did not produce an

alignment. When the ANI threshold is 85%, these cases
accounted for 0.07% of chimpanzee mappings and 0.3% ma-
caque mappings. When the ANI threshold was 90% or 95%,
<0.01% of mappings were not aligned with wfmash for both
chimpanzee and macaque. We consider these mappings as
false positives. For the ANI thresholds of 95%, 90%, and
85%, the winnowing scheme densities were set to 0.043,
0.053, and 0.064, respectively.

To isolate the effect of the new seeding method, we turned
chaining off for both tools. As the Jaccard estimator is known
to perform poorly in the presence of many degenerate k-mers,
results for query regions above and below 80% complexity
are reported separately, where complexity is defined as the ra-
tio of observed distinct k-mers in a region to w. Low-
complexity mappings make up for at most 1% and 3% of the
mappings for chimpanzee and macaque genomes, respec-
tively. We show the table of the metrics for the low-
complexity mappings in Supplementary Table S3.

5 Discussion

Minmers are a novel “non-forward” winnowing scheme with
a ðw; sÞ-window guarantee. Similar to what has been done for
other proposed schemes, we have derived formulas (approxi-
mate and exact) that describe the scheme’s characteristics. We
have replaced minimizers with minmers in MashMap3 and
demonstrated that minmers eliminate Jaccard estimator bias
and enable new methods to reduce mapping runtime
compared to MashMap2. In addition, we show that minmers
require substantially less density than minimizers when a
ðw; sÞ-window guarantee is required.

5.1 The minmer scheme enables sparser sketches

The minimizer winnowing scheme has long been the domi-
nant method for winnowing due to its ðw;1Þ-window guaran-
tee, simplicity, and performance. Other 1-local methods, such
as strobemers (Sahlin 2021) and syncmers (Edgar 2021) re-
move the window guarantee and rely on a random sequence
assumption to provide probabilistic bounds on the expected
distance between sampled k-mers.

Minmers represent a novel class of winnowing schemes
that extend the window guarantee of minimizers. Unlike stro-
bemers, syncmers, and other 1-local methods, the minmer
scheme guarantees a lower bound on the number of k-mers
sampled from a window, so long as it contains at least s dis-
tinct k-mers. This is particularly desirable for accurate
Jaccard estimation and the winnowing of low-complexity

Table 2. Comparison of MashMap2 and MashMap3 for identifying mappings between pairs of mammalian genomes.a

MashMap2 MashMap3

Query species ANI threshold (%) Basepairs
mapped (Gb)

CPU
time (m)

Memory (GB) ME MAE Basepairs
mapped (Gb)

CPU
time (m)

Memory (GB) ME MAE

Chimpanzee 95 2.80 39.76 19.95 �0.25 0.29 2.81 32.76 27.07 0.01 0.22
Chimpanzee 90 2.82 118.31 24.55 �0.22 0.29 2.82 51.12 36.20 0.01 0.25
Chimpanzee 85 2.83 787.44 44.96 �0.18 0.27 2.83 64.48 39.47 0.02 0.25
Macaque 95 0.38 30.0 20.83 0.29b 0.46 1.08 28.67 28.97 0.57b 0.66
Macaque 90 2.54 40.49 23.04 �0.30 0.69 2.56 34.87 35.91 0.01 0.74
Macaque 85 2.60 446.71 38.13 �0.24 0.74 2.61 43.74 39.49 0.05 0.87

a MashMap2 and MashMap3 were used to align the human reference genome to chimpanzee and macaque genomes. The mean error and mean absolute
error metrics shown are for query segments with at least 80% k-mer complexity. Bolded values signify the best performance for each dataset. Corresponding
metrics for low-complexity mappings can be found in Supplementary Table S3.

b Sampling bias leads to ANI over-estimation (see Section 5 for details).

Figure 3. Eliminating the bias in MashMap. The experiments from Table 1

of Belbasi et al. (2022) were replicated. Divergence, defined as 1-ANI,

was predicted across 100 sequences for both MashMap2 and MashMap3

using a density of 0.009 (w ¼ 10 000, s ¼ 78)
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sequence where the density of sampled k-mers from 1-local
schemes can vary significantly.

Unlike the ðw; sÞ-minmer scheme, a bw=sc-minimizer scheme
satisfies both the ðw; sÞ-window guarantee and the ðbw=sc; 1Þ-
window guarantee. However, this minimizer scheme does not
yield an unbiased Jaccard estimator. Notably, the density of the
bw=sc-minimizer scheme tracks closely with the density of
ðw; sÞ-minmer intervals (Fig. 2), which, while not necessary for
the use of minmers, serve as a helpful auxiliary index for im-
proving query performance in MashMap3.

Additionally, while the ðw; sÞ-minmer scheme does not pro-
vide as strong constraints on distances between adjacent seeds
as the bw=sc-minimizer scheme does, we provide an approxi-
mate distribution on the distance between adjacent minmers
in Section 4.1.4 and show that the distribution holds up in
both simulated and empirical data (Supplementary Fig. S2).

5.2 Minmers yield an unbiased estimator at lower

computational costs

Indexing minmers rather than minimizers removes the
Jaccard estimator bias present in earlier versions of
MashMap. For any window, the set of sampled k-mers is
guaranteed to be a superset of the bottom-s sketch of that
window. Therefore, running the minhash algorithm on min-
mers yields the same estimator as running the minhash algo-
rithm on the full set of k-mers.

In addition to the experiments from Belbasi et al. (2022),
which focus on “ideal” sequences with no repetitive k-mers,
we also measured the performance of the ANI prediction for
different levels of divergence on the human genome across
mappings of simulated reads and a sample of mammalian
genomes. Our results showed that MashMap3 with minmers
not only produced unbiased and more accurate predictions of
the ANI than Minimap2 and MashMap2, but it did so in a
fraction of the time.

We replicated the behavior of minimizers to under-predict
ANI as seen in Belbasi et al. (2022) across all experiments. At
the same time, in both the simulated reads and empirical ge-
nome alignment results, we see that MashMap3 slightly over-
predicts the ANI at larger divergences. Further inspection
reveals that this is due to indels in the alignment, which are
not modeled by the binomial mutation model used to convert
the Jaccard to ANI (Supplementary Table S2).

The optimizations to the second stage of mapping com-
bined with the minmer interval indexing leads to significantly
better mapping speeds in MashMap3. Relative to Minimap2
and MashMap2, MashMap3 spends a significant amount of
time indexing the genome (Supplementary Fig. S4). This,
however, serves as an investment for the mapping phase,
which is significantly faster than MashMap2, particularly at
lower ANI thresholds. The tradeoff of indexing time for map-
ping speedups is particularly useful for large references, such
as pangenomes, as the quadratic time complexity of alignment
dominates the linear time complexity of indexing. As an addi-
tional feature, MashMap3 provides the option to save the ref-
erence index so that users can leverage the increased
mappings speeds for previously indexed genomes.

Similar to MashMap2, MashMap3 by default uses the
plane-sweep post-processing algorithm described in Jain et al.
(2018a) to filter out redundant segment mappings. We show
that by using the probabilistic filtering method described in
Section 3.2.1, we can discard many of these mappings at the
beginning of the process as opposed to the end, yielding

significant runtime improvements. As the purpose of the
probabilistic filtering is to remove weaker mappings in the
presence of stronger mappings at an earlier stage, the speedup
becomes more prominent as the ANI threshold is decreased
(Table 2).

MashMap3 is significantly more efficient at lower ANI
thresholds, which is helpful for detecting more distant homol-
ogies. For example, in the human–macaque mapping, we re-
covered an additional 50 Mb of mapped sequence by
reducing the ANI threshold from 90% to 85% while also
completing over 10
 quicker than MashMap2. It is also
worth noting that the default ANI of MashMap2 and
MashMap3 is 85%, and often the ANI of homologies be-
tween genomes is not known a priori.

Further motivating the improved efficiency of low ANI
thresholds is the fact that thresholds above the true ANI can
lead to recovering mappings, which over-predict the ANI
while discarding those which accurately or under-predict the
ANI. This sampling bias leads to an increase in the ANI esti-
mation bias. We see this behavior in the human–macaque
alignment with a threshold 95% ANI (Table 2). At lower
ANI thresholds, we observe that the majority of mappings are
in the 90%–95% ANI range.

5.3 Limitations and future directions

MashMap’s Jaccard-based similarity method tends to overes-
timate ANI in low-complexity sequences. For downstream
alignment applications, the resulting false-positive mappings
can be pruned using a chaining or exact alignment algorithm
to validate the mappings. Unreliable ANI estimates could also
be flagged by using the bottom-s sketch to determine the com-
plexity of a segment as described in Cohen and Kaplan
(2007), but a sketching method and distance metric that bet-
ter approximates ANI across all sequence and mutational
contexts would be desirable.

An important characteristic of MashMap is the relatively
few parameter settings necessary to tune across different use
cases. Building on this, we aim to develop a methodology that
can find maximal homologies without a pre-determined seg-
ment size, similar to the approach of Wang et al. (2022b).

6 Conclusion

In this work, we proposed and studied the characteristics of the
minmer scheme and showed that they belong to the unexplored
class of non-forward local schemes, which have the potential to
achieve lower densities under the same locality constraints as
forward schemes (Marçais et al. 2018). We derived formulas for
the density and approximate spread of minmers, enabling them
to be objectively compared to other winnowing schemes.

By construction, minmers, unlike minimizers, enable an un-
biased estimation of the Jaccard. We replaced the minimizer
winnowing scheme in MashMap2 with minmers and showed
that minmers significantly reduce the bias in both simulated
and empirical datasets.

Through leveraging the properties of the minmers, we
implemented a number of algorithmic improvements in
MashMap3. In our experiments, these improvements yielded
significantly lower runtimes, particularly in the case when the
ANI threshold of MashMap is set to the default of 85%.
With the improvements in MashMap3, it is no longer neces-
sary to estimate the ANI of homologies a priori to avoid
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significantly longer runtimes, making it an ideal candidate for
a broad range of comparative genomics applications.
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