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Environmental gradients reveal stress hubs 
pre-dating plant terrestrialization

Armin Dadras    1,14, Janine M. R. Fürst-Jansen    1,2,14, Tatyana Darienko1, 
Denis Krone1, Patricia Scholz    3, Siqi Sun    4, Cornelia Herrfurth    3,5, 
Tim P. Rieseberg    1, Iker Irisarri1,2,6, Rasmus Steinkamp1, Maike Hansen    7, 
Henrik Buschmann8, Oliver Valerius9, Gerhard H. Braus    9, Ute Hoecker    7, 
Ivo Feussner    3,5,10, Marek Mutwil    11, Till Ischebeck    4, Sophie de Vries    1, 
Maike Lorenz    12 & Jan de Vries    1,2,13 

Plant terrestrialization brought forth the land plants (embryophytes). 
Embryophytes account for most of the biomass on land and evolved from 
streptophyte algae in a singular event. Recent advances have unravelled 
the first full genomes of the closest algal relatives of land plants; among 
the first such species was Mesotaenium endlicherianum. Here we used 
fine-combed RNA sequencing in tandem with a photophysiological 
assessment on Mesotaenium exposed to a continuous range of temperature 
and light cues. Our data establish a grid of 42 different conditions, resulting 
in 128 transcriptomes and ~1.5 Tbp (~9.9 billion reads) of data to study the 
combinatory effects of stress response using clustering along gradients. 
Mesotaenium shares with land plants major hubs in genetic networks 
underpinning stress response and acclimation. Our data suggest that 
lipid droplet formation and plastid and cell wall-derived signals have 
denominated molecular programmes since more than 600 million years of 
streptophyte evolution—before plants made their first steps on land.

Plant terrestrialization changed the face of our planet. It gave rise 
to land plants (Embryophyta), the major constituents of Earth’s bio-
mass1 and founders of the current levels of atmospheric oxygen2. 
Land plants belong to the Streptophyta, a monophyletic group that 

includes the paraphyletic freshwater and terrestrial streptophyte 
algae and the monophyletic land plants. Meticulous phylogenomic 
efforts have established the relationships of land plants to their 
algal relatives3–6. These data brought a surprise: the filamentous and 
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Mesotaenium in a large-scale setup in 1.5 l of C-medium up to a cell den-
sity of 0.33 AU at 680 nm and distributed the culture across 504 wells 
(42 12-well plates, 2.5 ml of culture per well). Well plates were placed 
on a table with a temperature gradient from 8.6 ± 0.5 °C to 29.2 ± 0.5 °C 
on the x axis; from above, light-emitting diode (LED) lamps created an 
irradiance gradient from 21.0 ± 2.0 to 527.9 ± 14.0 µmol photons m−2 s−1 
across the y axis, thus creating a two-dimensional gradient table (Fig. 1b,  
Supplementary Table 1 and for light quality, see Extended Data Fig. 4); 
the conditions were chosen to strike a balance between cell viability and 
environmental challenge, as determined in a set of pre-experiments 
(Extended Data Figs. 4–6 and Methods). The 504 cultures were exposed 
to this gradient setup for 65 h. The physiological status of the algae was 
assessed by determining the maximum quantum yield of photosystem II 
(Fv/Fm) using pulse amplitude modulation fluorometry (IMAGING-PAM, 
Walz) and a microplate reader with absorption at 480, 680 and 
750 nm (Fig. 1c, Extended Data Fig. 5 and Supplementary Fig. 1a);  
the entire procedure was repeated in three successive biological rep-
licates (that is, three runs of the table, 504 Fv/Fm and 4,536 absorption 
measurements per replicate).

The algae showed significant differences (P ≤ 0.001) in Fv/Fm values 
as well as absorption values, both decreasing with rising intensities 
of irradiance (for Fv/Fm values at 20.5 ± 1.0 °C: from 0.66 ± 0.02 at a 
light intensity of 21.14 µmol photons m−2 s−1 to 0.042 ± 0.04 at a light 
intensity of 534.7 µmol photons m−2 s−1) (Fig. 1d, Supplementary Fig. 1  
and Supplementary Table 2); despite ample growth at 29.2 ± 0.5 °C 
and low irradiance, higher temperatures (that is, above 29 °C) were 
out of the tolerable scope of Mesotaenium (Extended Data Fig. 5). We 
recorded the lowest Fv/Fm values (down to zero) at conditions of high-
est irradiance and lowest temperature. Under the ranges tested here, 
the low temperature had a stronger negative impact on physiology 
than light. For example, Fv/Fm values at 8.6 ± 0.5 °C and 133 ± 27 µmol 
photons m−2 s−1 are in a different significance group (P ≤ 0.001) (group 
o in Fig. 1d) than Fv/Fm values at 29.2 ± 0.5 °C at 118 ± 25 µmol photons 
m−2 s−1 (purple, group k in Fig. 1d). Values on physiology clustered by 
light were less broadly distributed than if clustered by temperature  
(Fig. 1e,f). Even the highest light intensity (527.9 ± 14.0 µmol photons 
m−2 s−1) was stressful but tolerable for the physiology of Mesotae-
nium at temperatures between 20.5 ± 0.1 °C (Fv/Fm = 0.042 ± 0.04) 
and 25.3 ± 0.1 °C (Fv/Fm = 0.045 ± 0.04); more extreme temperatures 
resulted in undetectable Fv/Fm values. On the basis of the environmen-
tal parameters tested herein, eurythermy (broad viable tolerance of 
temperature) might establish the foundation for euryphoty (broad 
viable tolerance of light intensities) in M. endlicherianum. Thus, we 
used regression analysis to understand the effect and importance of 
the independent values of light and temperature on the dependent 
physiological values (Fig. 1g–i, Supplementary Fig. 1b and Supplemen-
tary Table 2). We find that physiology was always better explained by a 
combination of temperature and light than a single parameter alone 
(for example, for Fv/Fm, R2 of 0.776 versus 0.652 and 0.095; Fig. 1g–i).

unicellular Zygnematophyceae—and not other morphologically more 
elaborate algae—are the closest algal relatives of land plants. Now, 
the first genomes of major orders of Zygnematophyceae (see ref. 7) 
are at hand: Mesotaenium endlicherianum8, Spirogloea muscicola8, 
Zygnema circumcarinatum9, Closterium peracerosum–strigosum–lit-
torale10 and Penium margaritaceum11. Using these, we are beginning 
to redefine the molecular chassis shared by land plants and their 
closest algal relatives. Included in this shared chassis will be those 
genes that facilitated plant terrestrialization. In this Article, we focus 
on one critical aspect: the molecular toolkit for the response to envi-
ronmental challenges. For this, we used the unicellular freshwater/
subaerial alga Mesotaenium endlicherianum.

Land plants use a multi-layered system for the adequate response 
to environmental cues. This involves sensing, signalling and response, 
mainly by the production of, for example, protective compounds. Some 
of the most versatile patterns in land plant genome evolution concern 
genes for environmental adaptation12–14. That said, there is a shared core 
of key regulatory and response factors that are at the heart of plant phys-
iology. These include phytohormones such as abscisic acid (ABA) found 
in non-vascular and vascular plants15,16, protective compounds resting 
on specialized metabolic routes such as phenylpropanoid-derived 
compounds and proteins such as LATE EMBRYOGENESIS ABUNDANT 
(LEA)17,18. Many of the genes integrated into these stress-relevant 
metabolic routes have homologues in streptophyte algae19. Taking 
angiosperms as reference, such stress-relevant pathways are often 
patchy. Whether these are also used under the relevant conditions is 
currently unknown. For example, while Zygnematophyceae have a 
homologue to the ABA-receptor PYL8,20, this homologue works in a 
different, ABA-independent fashion21. Thus, it is important to put the 
genetic chassis that could act under environmental shifts to the test.

Here we used a fine grid of a bifactorial gradient for two key ter-
restrial stressors, variation in irradiance and temperature, to probe the 
genetic network that the closest algal relatives of land plants possess 
for the responsiveness to abiotic cues. Correlating environmental 
parameters, physiology and global differential gene expression pat-
terns from 128 transcriptomes (9,892,511,114 reads, 1.5 Tbp of data) 
across 126 distinct samples covering a temperature range of >20 °C 
and light range of >500 µmol photons m−2 s−1, we pinpoint hubs in the 
circuits that have been shared along more than 600 million years of 
streptophyte evolution.

Results
A physiological grid: co-dependency of eurythermy and 
euryphoty
We studied the genome-sequenced strain SAG 12.97 of the freshwa-
ter alga Mesotaenium endlicherianum, a member of the Zygnemato-
phyceae, the closest algal relatives of land plants8 (Fig. 1a,b). Natural 
habitats for Mesotaenium, belonging to the order Serritaeniales, are 
diverse—ranging from plankton to aeroterrestrial7,8. We cultivated 

Fig. 1 | A fine-combed setup for assessing environmental responses in 
Mesotaenium. a, Cladogram of Streptophyta, highlighting that Mesotaenium 
endlicherianum SAG 12.97 is a representative of the closest algal relatives of 
land plants. KCM, the grade of Klebsormidiophyceae, Chlorokybophyceae 
and Mesostigmatophyceae; ZCC, the grade of Zygnematophyceae, 
Coleochaetophyceae and Charophyceae. b, M. endlicherianum grown in 
C-medium in 42 12-well plates on a gradient table that produces a temperature 
range of 8.6 ± 0.5 °C to 29.2 ± 0.5 °C on the x axis and an irradiance gradient of 
21.0 ± 2.0 to 527.9 ± 14.0 µmol photons m−2 s−1 on the y axis; for phenotyping per 
well, at least ten micrographs were taken, all showing similar phenotypes of the 
cells. c, Overview of the measured maximum quantum yield Fv/Fm as a proxy 
for gross physiology (blue) and absorption (abs.) at 480 (orange) and 680 nm 
(green); individual replicates of the biological triplicates are shown on the 
left and the average values are shown on the right. d, Statistical analysis of the 
physiological values (Fv/Fm, abs. 480 nm, abs. 680 nm). Numbers correspond 

to environmental conditions on the table. Biological triplicates were grouped 
into significant groups (a–o, a–s and a–u) with R (version 4.1.3) using a Kruskal–
Wallis test coupled with Fisher’s least significance; P values were Bonferroni 
corrected. Significant differences at P ≤ 0.001 are shown as letters. e, Heat maps 
displaying averaged physiological values of the 42 conditions sorted either by 
temperature (temp.) or light. A cut-off was set (black vertical line) on the basis of 
the distribution of the highest values, which were then summed to determine a 
positive correlation with temperature or light conditions. f, Two PCAs showing 
the correlation of light conditions (left) or temperature conditions (right) to 
physiological values (Fv/Fm, abs. 480, 680 nm). Clusters are shown in different 
colours, which are also visualized in an overview scheme of the gradient table 
at the top of the plots. g,h, Unifactorial regression analysis of light intensity (g) 
and temperature (h) versus Fv/Fm; note the unifactorial linear regression curves 
(white) versus the bifactorial (violet). i, Contour plot of the bifactorial impact of 
light and temperature on Fv/Fm (gradient colour).
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Fig. 2 | Global profiles of environment-governed gene expression response. 
a, PCA visualizing PC1 and PC2. Backgrounds were drawn to highlight 
our interpretation of the observed trends; samples are coded by colour 
(temperature) and symbols (irradiance in µmol photons m−2 s−1). Samples that 
did not yield usable RNA are indicated as grey dots in the top-right overview 
of the experimental setup. b, Visualization of Euclidean distances between 
samples via heat map, from red, zero distance, to blue, furthest distance  
(a distance of 300). c, Heat map of Spearman correlation between samples, from 
red, maximum correlation (1.0), to blue, least correlation (<0.8). The clusters 
were calculated via the Euclidean distance. d,e, PC1 and PC2 scrutinized 
using a small multiples method of light intensity (d) and temperature (e). 
In d, shades of grey correspond to different light intensities. In e, different 

colours represent different temperatures and were mapped with the same 
colours as a. To perform differential gene expression analysis, we divided the 
table into nine sectors (see scheme of the table); additionally, a tenth group 
was raised based on Fv/Fm < 0.5. Linear models were fitted for each gene and 
empirical Bayes statistics computed for DEGs by the limma package. In total, 
37 comparisons were made. DEGs were defined as genes with an absolute fold 
change (FC) ≥2 and Benjamini–Hochberg-adjusted P value less than 0.01. 
f, Volcano plots of DEGs for nine selected comparisons based on the sectors and 
the Fv/Fm < 0.5 criterion. g, Heat maps of numbers of DEGs for all sector-based 
comparisons (blue, downregulation; red, upregulation; yellow, sum of up- and 
downregulated genes); grey bars label the first component (treatment) for 
calculating the contrasts (treatment versus control).
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Fine-combed global gene expression profiles and gene models
To shed light on the molecular mechanisms that underpin the switch 
from tolerable conditions to adverse environmental cues in Meso-
taenium, we applied global gene expression analyses using RNA 
sequencing (RNA-seq). We pooled all 12 wells per plate and extracted 
RNA from a total of 126 samples (42 plates, three biological replicates). 
A total of 114 samples yielded usable RNA that was used to build 128 
libraries for sequencing on the Illumina NovaSeq 6000 platform (a 
minimum of three biological replicates and additional technical rep-
licates; see cartoon of grid in Fig. 2). We generated a total of 1.5 Tbp 
of 150 bp paired read data at an average depth of 37.7 million reads 
per sample (~9.9 billion reads in total). Building on this wealth of data, 
we updated the Mesotaenium gene models to V2. V2 has an increased 
number of protein-coding messenger RNAs, from 11,080 in the original 

annotation8 (V1) to 40,326 protein-coding mRNAs (26,009 high confi-
dence, 14,317 low confidence; including splice variants) in 19,233 genes; 
we labelled an additional 4,408 mRNAs (in 4,312 genes) as ‘predicted 
gene’ (Supplementary Table 3). With V2, we bring the number of genes 
in Mesotaenium closer to other Zygnematophyceae with similar genome 
sizes; V2 has 43 more complete and single copy Benchmarking Univer-
sal Single-Copy Orthologs (BUSCO) genes than V1 (+10%; 21 less frag-
mented, 22 less missing; viridiplantae_odb10; Supplementary Fig. 2).  
To assess the congruence between biological evidence and V1 and V2, 
we calculated annotation edit distance metrics (AED; 0 to 1, with 0 
being the best). In the cumulative fraction of annotation against AED 
score, V2 has more mRNAs with AED <0.5. For example, 70% of mRNAs 
in V1 (7,756 mRNAs) have an AED score <0.5 compared with 60% in V2 
(26,840 mRNAs). This is sensible since V2 was built based on the same 
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Fig. 3 | Comparative analyses of global differential gene expression profiles 
across stress-treated streptophyte algae. Publicly available data on stress 
transcriptomes from ten different streptophyte algae were downloaded and 
significant differential gene expression between stress treatment and control 
per species were calculated. Phylogenetic HOGs were inferred with Orthofinder. 
a, Bar graph of the number of all HOGs detected (black), HOGs shared with 
Mesotaenium endlicherianum (tan), all regulated HOGs in a given species (white) 
and, of those regulated, which are in the same HOG as significantly regulated 

genes in Mesotaenium (red); the relationship between the streptophyte algae 
is shown by the cladogram on the left. b, GO term-based biological theme 
comparison of these shared significantly regulated genes in HOGs. Note the 
recurrent pattern of chloroplast-associated differential gene expression (green), 
light quality (purple) and the putative integration of calcium signalling with 
pathways known from phytohormone signalling, including ABA, in land plants 
(blue, also note the little sketch of a hypothetical model). PCD, programmed  
cell death.
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set of evidence used to calculate AED and it shows higher congruence 
with them (Supplementary Fig. 3a). Thus, we pseudo-aligned our data 
onto the new Mesotaenium transcriptome V2 (average alignment rate 
was 87.31%; Supplementary Table 4a).

Cheng et al.8 reported that 33.2% of the genome was impacted by 
transposable elements. We surveyed V2 for protein domains related 
to transposon biology, retrieving 6,186 entries in 1,748 unique genes 
(Supplementary Table 4b). Among the 96 that passed the expression 
threshold, high temperature (29 °C) appeared to have had the strongest 
effect on transposable element mobilization (Supplementary Fig. 3b).

To understand the gross profile of the gene expression data, we 
performed a principal component analysis (PCA; Fig. 2a). Independ-
ent biological replicates from the same condition clustered in close 
proximity. High temperature followed by irradiance brought forth 
clear separation of the data, with PC1 describing 35% and PC2 describing 
18.1% of the variance. We evaluated the distance (Fig. 2b) and Spear-
man correlation (Fig. 2c) using all genes to look for trends among 
different environmental conditions. The data can be grouped into at 
least three categories: (1) samples with high light and/or high tempera-
ture, (2) a collection of low-temperature (8, 13 and 17 °C) samples, and 
(3) samples at moderate conditions. Large clusters included low to 
medium light + medium temperature (‘moderate’ conditions), high 
light + high temperature, and high light (Fig. 2a). Most distinct was 
the cluster formed by samples from the high temperature + high light 
(small multiples; Fig. 2d,e).

Plastid-related genes stand out in differential gene expression 
profiles
For dissecting the differential gene expression responses, we divided 
the table into nine sectors and, additionally, a cohort of stressed 
algae based on Fv/Fm < 0.5 (Fig. 2f,g). We performed 36 comparisons, 
among which we focused on nine, which additionally included the 
Fv/Fm-based comparison. Genes were considered to be differentially 
expressed between groups at an absolute fold change ≥2 and a Ben-
jamini–Hochberg-corrected P ≤ 0.01 (Fig. 2f,g). The intensity of envi-
ronmental cues governed gross gene expression profiles as increasing 
disparity between conditions yielded more differentially expressed 
genes (DEGs), generally following the pattern of the PCA (compare 

Fig. 2a,g). The most differentially regulated genes (6,578) were pin-
pointed by comparing low light and low temperature (LLI_LT) versus 
high light and high temperature (HLI_HT). Enriched Gene Ontology 
(GO) terms among regulated genes most frequently included plastid 
biology-associated genes (Extended Data Fig. 1); similar patterns were 
recovered in 63 unifactorial comparisons where we kept one environ-
mental parameter constant (Extended Data Fig. 7a). To scrutinize our 
data for specific genes that show a robust and universal response to 
alterations in the environment, we intersected all 8,157 significantly 
regulated genes pinpointed by the different comparisons: 3, 30 and 124 
genes overlapped among all 9, 8 and 7 comparisons, respectively. These 
concertedly pinpointed genes were mostly light harvesting genes, 
corroborating the importance of plastids in the overall cell biology 
of Mesotaenium (Extended Data Fig. 7b). Indeed, the 30 genes found 
in all comparisons included, for example, reactive oxygen species 
(ROS)-relevant genes such as EARLY LIGHT-INDUCIBLE PROTEIN (ELIP) 
and fatty acid metabolic genes.

How do these responses compare across land plants’ close rela-
tives? To answer this, we downloaded major stress transcriptome data 
from streptophyte algae9,20,22–25, inferred significant differential gene 
expression between stress treatment and control per species, and asked 
whether regulated genes belong to the same phylogenetic hierarchi-
cal orthogroups (HOGs, inferred with Orthofinder26). Depending on 
the phylogenetic distance of the species, we found between 3,107 and 
6,458 HOGs shared with Mesotaenium, with 46.6–73.0% shared within 
and 15.8–30.4% outside of the clade Zygnematophyceae (Fig. 3a). Of 
these shared HOGs, between 4.6% and 59.8% show shared regulation 
with Mesotaenium. The degree of similarity depends on treatment not 
phylogenetic position. The most common responses across species 
were related to chloroplasts and photosynthesis (Fig. 3b and Extended 
Data Fig. 2). However, within Zygnematophyceae, additional signalling 
processes such as kinase activities and calcium-dependent signalling 
stood out (Fig. 3b and Extended Data Fig. 2), corroborating (1) their 
noted importance in Zygnematophyceae23,24 and (2) the concept that 
important steps in the evolution of streptophyte calcium signalling 
system (Extended Data Fig. 2) occurred before plant terrestrialization27.

To understand whether these genes integrate into the context of 
molecular programmes, we next analysed gene co-expression.
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Fig. 4 | Unsupervised gene expression clusters recover genetic programmes 
separated by environmental cues. Gene expression clustering into 26 coloured 
modules was performed using WGCNA; grey is the module of unclustered genes. 
a, Hierarchical cluster tree of 17,095 genes. The heat map below the dendrogram 
and module colour assignment shows the gene significance measure (from red, 
positive correlation, to white, no correlation, to blue, negative correlation) for 
the four different conditions or physiological parameters. b, Heat map of the 
module–trait correlation based on eigengenes (from red, positive correlation, 
to white, no correlation, to blue, negative correlation); see Supplementary 

Fig. 7. c, Box plots of the mean gene significance across modules (given in 
the corresponding module colour) towards the parameters light intensity, 
temperature and Fv/Fm. The box plots display the interquartile range (IQR) of 
the data, compactly displaying the distribution of a continuous variable. They 
visualize five summary statistics (the median, two hinges and two whiskers). The 
upper whiskers extends from the hinges to the largest/smallest value no further 
than 1.5× IQR from the hinge. Each data point (n) is a gene, and the total n of genes 
is the same as shown in b. We calculated the gene significance for each gene using 
the WGCNA package and Pearson method.
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Gene expression clusters recover ancient genetic programmes
The environmental gradients triggered changes in the expression of 
gene cohorts. We wanted to understand their concerted action inde-
pendent of any prioritization guided by homology to any land plant 
genes—solely from the molecular programmes that operated in the 
algae. To do so, we applied a weighted gene co-expression network 
analysis28 (WGCNA) for unsupervised clustering (Fig. 4, Supplementary 
Figs. 4–7 and 10–13 and Extended Data Fig. 8). To then understand the 
driving forces behind these changes, we turned to the highly connected 
genes (nodes) in the network (hubs) (Fig. 5).

We clustered the 17,905 genes expressed in our samples (passing 
the minimum expression threshold) into 26 modules, which we refer 
to with colours (Fig. 4a). Orange is the smallest module (39 genes), 
and the largest modules are turquoise, blue and brown with 3,568, 
3,101 and 1,746 genes, respectively (Fig. 4b). The samples reflect a 
range of distinct physiological conditions and resulting data are a 
combined expression of the different environmental cues and the 
modulation of the algal physiology. To investigate the biological role 
of each module, we used their eigengenes as representatives for the 
modules’ gene expression profiles and correlated their behaviour 
with the two environmental cues (light intensity and temperature), as 
well as the physiological parameters absorption and Fv/Fm (Fig. 4b,c). 
One of the foremost general patterns in cellular response to stress are 
ROS. ROS act as signals as well as culprits that, if not quenched, damage 
biomolecules; GO terms capture ROS biology (Extended Data Fig. 3), 
especially in module green that positively correlates with light intensity 
(r = 0.88, P = 6 × 10−43) and negatively with Fv/Fm (r = −0.79, P = 6 × 10−29) 
(Extended Data Fig. 3, Supplementary Figs. 4–7 and Supplementary 
Tables 5 and 6).

The clusters also recover the genetic signatures of thriving algae. 
Module purple negatively correlates with increasing light (r = −0.94, 
P = 3 × 10−60) and positively with absorption and Fv/Fm (r = 0.71, 
P = 3 × 10−21 and r = 0.79, P = 4 × 10−28). These dense and physiologically 
healthy cell populations (experiencing no light stress) likely ramped 
up cell division (Extended Data Fig. 3 and Supplementary Table 6), 
signified by homologues of cyclin and TPX2 appearing as hub genes  
(Fig. 5e). The ninth most connected hub is a kinesin homologous to 
genes coding for proteins such as PHRAGMOPLAST ORIENTING KINE-
SIN 2, and homologues of the important growth regulators29 Tesmin 
and TSO1 ranked at positions 7, 15 and 17 of the most connected hubs 
in module purple (Fig. 5e and Supplementary Table 7).

To understand the evolutionary conservation of the genetic 
programmes in these modules, we processed 212 publicly available 
RNA-seq datasets from Zygnema circumcarinatum9, M. polymorpha, 
P. patens and A. thaliana exposed to diverse abiotic challenges using 
the same WGCNA pipeline, which yielded between 12 and 29 modules. 
We determined orthogroups between the modules of these different 
species and compared the similarity in modules by calculating Jaccard 

indices (Fig. 5f) and GO-term enrichment in these modules (Fig. 5g  
and Supplementary Fig. 14b–e). Also here, blue, brown, turquoise and 
yellow stand out as important and likely conserved environmental 
response modules (compare Figs. 4b and 5f and Extended Data Fig. 3). 
We further analysed shared connectivity of hub orthogroups. For the 
mentioned Tesmin and TSO1 orthogroups (Fig. 5h), this reveals that 
they are likely connected regulators of cell division since about 600 
million years of streptophyte evolution. To scrutinize this aspect, we 
inferred the evolutionary history of the 160 hubs using maximum likeli-
hood phylogenetic analyses (Fig. 5h; data on Zenodo). We retrieved 135 
phylogenies, 107 of which indicate that the hubs are in gene families 
that were present in (or before) the last common ancestor of Zygnema-
tophyceae and land plants. Thus, they pre-date plant terrestrialization.

Conserved hubs: integration of plastid and cell physiology
Chloroplasts act as environmental sensors in land plant cells30. In con-
cert with this, many of the modules we identified were associated with 
plastid biology and/or physiology (Extended Data Fig. 3, Supplemen-
tary Figs. 4–7 and Supplementary Table 6). Module brown is enriched 
in GO terms related to plastids, general transcription and translation, 
and negatively correlates with temperature (r = −0.95, P = 7 × 10−65; 
Extended Data Fig. 3 and Supplementary Fig. 5). Among the top 20 hub 
genes in module brown, 12 are associated with translation and ribo-
somes (Supplementary Table 7). As expected, this cluster shows con-
servation in enriched functions of its related modules in the other four 
streptophytes, including shared high connectivity of hubs (Fig. 5f,h).  
The module light cyan positively correlates with increasing light 
(r = 0.93, P = 1 × 10−56; Supplementary Fig. 6) and negatively with Fv/Fm 
(r = −0.67, P = 5 × 10−18; Supplementary Fig. 4). It features not only hubs 
related to ROS homeostasis from the thioredoxin superfamily and 
other light-induced proteins, but also pigment and apocarotenoid 
metabolism (Extended Data Fig. 3); these are the source of important 
signals from the chloroplast that likely have deep evolutionary roots19 
and are also formed by light-dependent oxidative reactions31. The blue 
module negatively correlates with increasing light (r = −0.76, P = 10−25) 
and positively with Fv/Fm (r = 0.67, P = 2 × 10−18). Concomitantly, the 
blue module has a high number of enriched GO terms, many of which 
are plastid-related terms, cellular signalling and terms that tie the two 
together—that is, signalling processes emanating from the plastid 
(Extended Data Fig. 3 and Supplementary Table 6). Such responses 
align with similar clusters in other species (Fig. 5f), where the related 
Arabidopsis modules 2 and 10 show terms for light intensity and quality 
(Supplementary Fig. 14b).

The hubs of many modules, including those in blue, light cyan and 
yellow mentioned before, reflect an association with plastid-related 
processes. To highlight a few, the second most connected gene in 
module blue is a homologue of GOLDEN2-LIKE 1 (GLK1) (Supplementary 
Fig. 8). GLK1 is a transcription factor (TF) that regulates chloroplast 

Fig. 5 | Molecular programmes for environmental responses around 
recurrent plant hubs. a–e, Visualization of the co-expression networks 
clustered by WGCNA into the modules blue (3,101) (a), yellow (1,427) (b), 
green (1,220) (c), pink (718) (d) and purple (506 genes) (e). Nodes (circles) 
represent genes connected by edges whose weight (light to dark colour) is 
based on a weighted TOM. Brightly coloured nodes represent the 20 most 
connected genes (hubs) and are annotated based on homology; all other 
nodes are depicted in the corresponding paler colour. Around the clusters, 
different protein-coding hub genes are highlighted, giving information such as 
predicted domain structures or phylogenetic relationships; for fully labelled 
phylogenies, see Supplementary Fig. 26b. Circles in phylogenies give a scale of 
the ultrafast bootstrap support values; diamonds indicate high (>90%) support 
for branches separating highlighted clades. An alignment of GLK homologues 
can be found in Supplementary Fig. 8. f, Using WGCNA, co-expression 
networks were computed from 212 publicly available RNA-seq datasets from 
Z. circumcarinatum, M. polymorpha, P. patens and A. thaliana exposed to diverse 

abiotic challenges, yielding between 12 and 29 modules (labelled above the heat 
map), and orthogroups for all genes in the modules of these different species 
were determined. The heat map shows the similarity, based on Jaccard indices, 
between the modules of Mesotaenium (same colours as throughout the paper, 
see Fig. 4b) and the co-expression modules in the three land plants as well as 
Zygnema; red to blue colour gradients indicate high to low Jaccard similarity. 
g, Cnet plot of the enriched GO terms in the module ‘Arabidopsis 18’, which 
has high Jaccard similarity to the M. endlicherianum module yellow—note the 
recurrent terms of plastid operation and, especially, the Clp complex. h, Heat 
map of the connectivity ranks across all five species for homologues of hub 
genes of Mesotaenium, from orange (high) to green (low connectivity). Black 
boxes (top row) indicate if our phylogenies (see data on Zenodo) suggest that 
the hub genes fall into families that were present in the last common ancestor 
of Zygnematophyceae and land plants, and hence emerged before plant 
terrestrialization; white boxes signify the absence of such indication and grey 
boxes highlight ambiguous relationships.
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development and the activity of nuclear genes involved in photosyn-
thetic light reaction and chlorophyll biosynthesis32–34; indeed, genes 
in the GLK orthogroup are highly connected throughout the modules 
of land plants, and in the zygnematophyte, Zygnema a GLK homologue 
is the eighth most connected gene in its module (Fig. 5h). Blue also fea-
tures hydroxypyruvate reductase-coding gene, important in photores-
piration35, as the fourth most connected hub, which appeares in the 
top-five most connected genes in the bryophytes (Fig. 5h). A CYP450 
gene homologous to LUTEIN DEFICIENT 5 (LUT5), is the seventh most 
connected gene, suggesting the involvement of pigment-related sig-
nalling. Module 21 in P. patens is dominated by ABA signalling (Supple-
mentary Fig. 14d) and it is similar to Mesotaenium modules turquoise 
and blue (Fig. 5f), enriched in homologues of ABA-activated signalling 
(Extended Data Fig. 3), featuring a highly connected homologue of 
ABA-RESPONSIVE ELEMENT-BINDING FACTOR 2 (ABF2). Thus, parts of 
the ABA signalling module consist of ancient wires whose relevance 
in environmental response pre-date plant terrestrialization, and ABA 
dependency20,21,36.

Next to GLK1—the most connected TF-coding gene—other highly 
connected transcriptional regulators appear in module blue. These 
include homologues of photomorphogenesis-regulating genes such 
as CONSTANS-like 3 (COL3, the fourth most connected TF-coding 
gene) and CONSTITUTIVE PHOTOMORPHOGENIC 1 (COP1); CO/COL 
and GLKs are both degradation targets of COP1 (refs. 37–39). Fur-
ther, the circadian regulator40 BROTHER OF LUX ARRHYTHMO is 
the second most connected TF-coding gene in module blue. All of 
this aligns with the similarity to the Arabidopsis module 2 and the 
P. patens module 6, featuring, next to light quality, also photoperi-
odism (Fig. 5f and Supplementary Fig. 14e,f). Further, homologues of 
ETHYLENE-INSENSITIVE3-like 1 (the sixth most connected TF-coding 
gene) and several ETHYLENE RESPONSE FACTORs (ERFs) are among the 
most connected TF-coding genes. Previous investigations of the Zyg-
nematophyceae Spirogyra pratensis have shown that SpEIN3 can rescue 
Arabidopsis ein3-1 mutant plants41; exogenous application of ethylene 
on Spirogyra triggers stress-, plastid- and photosynthesis-associated 
gene expression responses similar to land plants22, which we recover, 
as outlined, across co-expression modules (Fig. 5f, Extended Data Fig. 3 
and Supplementary Fig. 14a–f) and shared differential patterns (Fig. 3b 
and Extended Data Fig. 2). This speaks for a conserved regulatory frame-
work that involves the plastid, photosynthesis, ethylene-associated fac-
tors, and maybe ethylene itself, in environmental signalling cascades 
in the common ancestor of land plants and their closest algal relatives.

Module yellow correlates positively with light intensity (r = 0.62, 
P = 10−14) and negatively with absorption and Fv/Fm (r = −0.79, P = 10−28 
and r = −0.81, P = 3 × 10−31; Fig. 4b); GO terms are associated with plastids 
and proteolytic enzymes42,43 (FtsH and ClpP), recapitulating well-known 
ties of protein homeostasis and plastid maintenance (Extended Data 
Fig. 3). Indeed, yellow features five hubs that are homologous to genes 
coding for CLP proteases, critical for chloroplast protein homeosta-
sis44,45, and hubs homologous to genes that orchestrate the coordina-
tion of transcriptional activity between chloroplasts and the nucleus 
(Fig. 5b); the latter includes homologues of (1) pTAC6, which is essential 
for plastid gene expression and thus chloroplast development in Arabi-
dopsis46, and (2) a homologue of GENOMES UNCOUPLED 2, one of the 
foremost genes in the classical plastid–nucleus communication path-
way47. Among the TF-coding genes in module yellow is a homologue of 
the bZIP light signalling master regulator ELONGATED HYPOCOTYL 5 
(ref. 48) (HY5). Module yellow is among those with the most consistency 
in similar modules across the analysed streptophyte co-expression 
networks and hubs (Fig. 5f,h), as exemplified by the GO term similari-
ties between yellow and Arabidopsis module 18 (compare Fig. 5g and 
Extended Data Fig. 3) and the consistency of the plastid operational 
genes as hubs (Fig. 5h). Hence, hallmark genes for plastid operation 
and its integration into molecular cell physiology probably acted in 
concert since before the dawn of embryophytes.

Of ancient signalling cascades and cell wall perturbance
Mitogen-activated protein kinases (MAPK) constitute environmental 
response pathways in all eukaryotes49. In land plants, several abiotic 
and biotic cues have been described to trigger MAPK-mediated sig-
nalling50–53. Genes coding for MAPK and phototropin kinases appear 
as hubs in module blue. Moreover, plant MAPK-based signalling is 
interwoven with wound response and brassinosteroid signalling50; 
the MAPK orthologue in Zygnema is also highly connected (Fig. 5h)  
and blue is similar to the kinase-rich module 17 of Arabidopsis (Fig. 5f).  
Stress often coincides with a perturbance of plant cell wall home-
ostasis. Module pink includes hubs for such wounding and cell 
wall-derived signals. This pairs with the GO term brassinosteroid 
signalling, which balances growth, cell wall homeostasis and stress 
in Arabidopsis54,55. Among the hubs in pink are homologues for (1) 
diverse receptor kinases known from Arabidopsis to sense alterations 
in cell wall integrity56 and (2) EXORDIUM-like (EXL; Mesotaenium has 
12 EXL homologues), which integrates growth with environmental 
signalling57 (Fig. 5d). This pairs with genes coding for the COBRA 
family proteins being the most and third most connected hubs in the 
module. COBRA proteins are known to be involved in cell expansion 
and balancing pathogen response with growth58–60. It appears that 
Mesotaenium bears parts of a loop that senses physico-chemical per-
turbance of cell wall homeostasis; in land plants, these loops include 
brassinosteroid signalling61 and wiring of the core genes mentioned 
here are ancient, evident by the recurrent high connectivity of EXL 
and COBL homologues (Fig. 5h) throughout 600 million years of 
streptophyte evolution.

LDs: a response pre-dating plant terrestrialization
In land plants, lipid droplet (LD) formation and triacylglycerol (TAG) 
accumulation are common to many stress responses, including heat, 
cold and drought62–66. We observed that cells of Mesotaenium accu-
mulated inclusions resembling LDs upon prolonged exposure to 
stress (Fig. 6a). Consistently, these globular structures were stained 
by BODIPY 493/503 (EM/EX), a common dye for lipid- and oil-rich 
compartments67,68. Under different temperature and light conditions, 
counts of LDs per cell showed significant differences (Fig. 6b and Sup-
plementary Table 8). A CGI-58 homologue is the tenth most connected 
hub in module green (Fig. 5c). CGI-58 is key to lipid homeostasis, caus-
ing, if perturbed, Chanarin–Dorfman syndrome in humans and LD 
overaccumulation in Arabidopsis69,70 (Fig. 5c); CGI-58 is the 22nd most 
connected gene in Arabidopsis module 5 (Fig. 5h). Further, differen-
tial gene expression profiles pinpointed elevation of transcripts for 
characteristic LD protein homologues such as steroleosin (HSD1) and 
oleosin (OLE7) under high temperature and moderate light conditions 
(29 °C, 21–130 µmol photons m−2 s−1) and LD-associated protein (LDAP) 
and PUX10 under high temperature and light conditions (21–29 °C, 
130–528 µmol photons m−2 s−1; Fig. 6c).

To scrutinize whether these structures are comparable to LDs 
of land plants, we performed subcellular fractionizations, obtained 
lipid-rich phases and subjected them to proteomics using liquid 
chromatography–mass spectrometry (LC–MS). We identified 739 
proteins in the putative LD fraction and 1,574 proteins in the total 
extract (TE) (Supplementary Table 9). Of these, 14 were significantly 
enriched in the putative LD fraction (Fig. 6d) including hallmark 
LD proteins71 such as OLE, caleosin (CLO), HSD and LDAP (Fig. 6e). 
We confirmed the localization to LDs for these four proteins by 
transiently expressing mCherry-tagged variants in tobacco pollen 
tubes; mCherry clearly overlapped with BODIPY 493/503 fluores-
cence (Fig. 6f). Resembling LDs of seeds71, we found predominantly 
TAG in the lipid content of the LDs (Fig. 6g and Supplementary  
Fig. 27b); the lipid profiles of Mesotaenium LDs varied with age of the 
cultures (Fig. 6h,i). Overall, Mesotaenium responds to stress condi-
tions by formation of LDs containing signature proteins typical of 
embryophytic LDs.
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Discussion
Owing to their plain morphology, Zygnematophyceae emerged as 
the unexpected closest algal relatives of land plants4–7. That said, the 
molecular programmes of Zygnematophyceae speak of their close 

relationship to land plants. These point to a conserved chassis that 
probably operated in the last common ancestor of land plants and 
algae, featuring the proposed action of various hallmark proteins (for 
example, PYL homologues20, GRAS family TFs8 and more) that were 
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conditions (abbreviations) of the gradient table for 89 h or 216 h. For confocal 
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structures and were stained with BODIPY (false-coloured green; 493 nm 
excitation, 503 nm emission); chlorophyll autofluorescence in false-coloured 
purple; for each condition, at least ten micrographs were taken, all showing 
similar phenotypes of the cells. b, Violin plots of LD quantification after 9 days 
of exposure to different environmental conditions; significance grouping 
(Mann–Whitney U) is based on P < 0.05; see also Supplementary Fig. 27. c, Heat 
map of row-scaled z scores of the expression of homologues for LD biogenesis 
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shown on the right. d,e, Proteomic investigation into lipid-enriched phases 

extracted from Mesotaenium; note the enrichment in hallmark proteins of LDs. 
Volcano plot showing significantly (false discovery rate (FDR) <0.05) enriched 
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with BODIPY 493/503; for each construct, the images are representative of at 
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bars, 10 µm. g,h, Lipid composition in M. endlicherianum LDs of 12- to 25-week-
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DAG via analytical TLC (g) and preparative TLC followed by GC for profiling (h).  
i, Full lipid profiles assessed via GC.
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once considered land plant innovations. During plant terrestrializa-
tion, challenges did not come in isolation. The aim of this work was to 
define stress responses to temperature and irradiance combinations 
in a close algal relative of land plants. In the approach we have chosen, 
we made sure to capture both tolerable ranges of cues and those that 
go beyond tipping points, to allow for robust definition of where stress 
starts and to pinpointing molecular programmes whose expression 
dynamics follow the kinetics of their environmental trigger (for exam-
ple, light intensity in the case of programmes for high light response); 
this included capturing the well-known double assault of low tempera-
ture and high light on the photosynthesis machinery. Building on the 
genomic resources for Mesotaenium, we have here delved into the 
molecular physiology and genetic programmes of this alga, revealing 
which programmes bear out when challenged with environmental cues.

Recent studies have proposed homology for the chassis of plas-
tid–nucleus communication upon adverse environmental condi-
tions between land plants and phragmoplastophytic streptophyte 
algae20,72,73. The GUN pathway probably has a conserved role in chloro-
plast transcription and streptophyte algal GUN1 homologues can res-
cue chloroplast retrograde signalling of Arabidopsis Atgun1 mutants74; 
the degree of evolutionary conservation in the retrograde signalling 
pathway across streptophytes remains obscure74. Signals from dam-
aged chloroplasts inhibit GLK1 expression in Arabidopsis75. The negative 
correlation of module blue (featuring MeGLK) with high light (leading 
to damaged chloroplasts) supports a role of MeGLK in operational 
retrograde signalling. Indeed, our comparative analyses revealed a con-
sistency in plastidial integration on the basis of similar networks in land 
plants and Zygnema (Fig. 5f) and with regard to highly connected hub 
genes associated with ROS and plastid protein homeostasis (Fig. 5g,h).  
Altogether, these insights point to operational processes of the plastid 
of the closest relatives of land plants, governed by nuclear gene expres-
sion for dealing with light regimes and adjustment of photosynthetic 
performance. On balance, our data underscore that the wires between 
components in plastid–nucleus communication are probably shared 
across more than 600 million years of streptophyte evolution.

In land plants, the formation of LDs is known to occur under a 
variety of adverse environmental conditions63,64,76. Stress-dependent 
formation of LDs probably evolved before land plants came to be24,77,78, 
but their molecular underpinnings outside of land plants remain 
unclear. Here, we confirmed the identity of these Mesotaenium LDs 
using confocal microscopy, LD-specific staining and proteomics. Our 
comprehensive transcriptomic data illuminate co-expressed modules 
that might constitute a homologous programme for stress-dependent 
LDs that acted before plants conquered land.

Methods
Algal culturing and gradient table setup
We used the axenic and genome-sequenced Mesotaenium endlicheri-
anum SAG 12.97 (ref. 79) from the Algal Culture Collection, Göttingen 
(SAG80). Mesotaenium was cultivated in C-medium81 for an average of 
12 days in an aerated culture glass flask (SCHOTT) at 80 µmol photons 
m−2 s−1 (12h/12h light/dark cycle (light from 6 am to 6 pm, Central Euro-
pean winter time) at 18 °C). Before the experiment, cell density was ana-
lysed using a LUNA Automated Cell Counter (Logos Biosystems) and set 
to 2.03 × 107 cells ml−1 (diluting with C-medium if needed; settings for 
cell counting: cell roundness, 60%; minimum size, 3 µm; maximum size, 
60 µm), corresponding to Abs680nm = 0.33 (Epoch Microplate reader, 
BioTek Instruments). For the gradient table setup, the algal suspension 
was distributed across 504 wells (42 12-well plates (tissue culture test-
plates 12 no. 92412, TPP); 2.5 ml of culture per well). Plates were sealed 
with surgical Micropore tape (3M) to minimize evaporation. The 42 
12-well plates were then placed on a table that generates a cross-gradient 
of temperature (8.6 ± 0.5 °C to 29.2 ± 0.5 °C on the x axis) and irra-
diance (21.0 ± 2.0 to 527.9 ± 14.0 µmol photons m−2 s−1 on the y axis)  
(Supplementary Table 1). The temperature gradient was generated 

using a custom-made table (Labio) equipped with true-daylight LEDs 
(sTube 2 W 120 ver 11:11, Snaggi) set to a 16 h/8 h light/dark cycle (light 
from 6 am to 10 pm, Central European winter time). Mesotaenium 
samples exposed to the 504 different conditions for 65 h (for sampling 
for RNA-seq and physiological measurements) and 89 h (for detailed 
light microscopy) on the gradient table. Condensed water at the top 
of the 12-well plates lids was removed three times in the 65 h by lightly 
tapping the lids twice.

Algal culturing and gradient table setup (pre-experiments 
n1(I), n 1,2(II))
To assess optimal, stress and lethal culture conditions for Mesotaenium 
endlicherianum SAG 12.97 three pre-experiments were performed 
(n1(I), performed once, and n1,2(II), performed twice). We assessed 
Mesotaenium performance in Woods Hole Medium (WHM)82,83 and 
C-medium81 for an average of 23.6 days in aerated culture glass flasks 
(SCHOTT) at 80 µmol photons m−2 s−1 (12h/12h light/dark cycle (light 
from 6 am to 6 pm, Central European winter time) at 18 °C). Before 
the experiment, different cell densities were analysed using a micro-
plate reader and adjusting the culture to Abs680nm 0.06 (n1(I) or 0.12 
(n1,2(II)) (Epoch Microplate reader, BioTek Instruments). For the gradi-
ent table setup, the algal suspension was distributed across 504 wells 
(42 12-well plates (tissue culture testplates 12 no. 92412, TPP); 2.5 ml 
of culture per well). Plates were sealed with surgical Micropore tape 
(3M) to minimize evaporation. The 42 12-well plates were then placed 
on a table that generates a cross-gradient of temperature (for n1(I): 
12.7 ± 1.0 °C to 34.0 ± 0.8 °C on the x axis; for n1,2(II): 8.6 ± 0.5 °C to 
29.2 ± 0.5 °C on the x axis) and irradiance (21.0 ± 2.0 to 527.9 ± 14.0 µmol 
photons m−2 s−1 on the y axis) (Supplementary Table 1 and Supple-
mentary Fig. 1a). The temperature gradient was generated using a 
custom-made table (Labio) equipped with true-daylight LEDs (sTube 
2 W 120 ver 11:11, Snaggi) set to a 16 h/8 h light/dark cycle (light from 
6 am to 10 pm, Central European winter time). Mesotaenium samples 
were exposed to the 504 different conditions either for 191 h (n1,2(II)) 
or 216 h (n1(I)) (for performing physiological measurements) and 216 h 
(n1,2(II)) (for absorption spectra measurements). Condensed water 
at the top of the 12-well plates lids was removed by lightly tapping the 
lids twice.

Plate reader
In vivo absorbance at 480, 680 and 750 nm of all 42 plates was meas-
ured after 65 h exposition (4–6 h after light on) with an absorbance 
microplate reader Epoch (BioTek Instruments). Nine data points per 
well were analysed and averaged using Gen5 2.0 software (Biotek), 
resulting in 108 measurements per 12-well plate per wavelength. For 
downstream analyses, these values were averaged resulting in one 
value per 12-well plate per wavelength (Supplementary Fig. 1). After 
89 h exposition, 16 plates were chosen from the prominent gradients 
(the four most extreme conditions in the corners and a cross of vibrant 
growth along the two gradients) for analysing a full absorption spec-
trum (300–900 nm) using the same setup (Supplementary Fig. 9 and 
Supplementary Table 10).

Photophysiological measurements
For maximum quantum yield measurements (Fv/Fm) the maxi version 
of the IMAGING-PAM (ImagMAX/L, M-series, Walz) with an IMAG-K5 
CCD camera, controlled with the ImagingWinGigE (V2.32) software, 
was used. The Mesotaenium cultures in the 12-well plates were dark 
adapted for 10–30 min before measuring. Before measurements, 
the lid was removed. For the Fv/Fm measurement, a short saturation 
pulse (intensity 3) was applied. The measurement settings on the 
IMAGING-PAM were as follows: measuring light 1, gain 3, damping 2 
and mean over area of interest was turned off. No special saturation 
pulse routine was applied to modify the signal-to-noise ratio of the 
chlorophyll fluorescence measurement.
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Statistical analysis of absorption and Fv/Fm values and 
temperature/light cluster analysis
Statistical analysis of the absorption and the Fv/Fm values was done 
using a Kruskal–Wallis test with a post hoc Fisher’s least significant 
difference test84 using R (version 4.1.3). P values were Bonferroni cor-
rected and grouped into significant groups using R packages ‘agricolae’ 
version 1.3–5 and ‘dplyr’ version 1.0.9. For heat map generation of physi-
ological values plotted against temperature or light, the R package 
‘pheatmap’ version 1.0.12 was used. For cluster analysis, the R package 
‘factoextra’ version 1.0.7 was used. Clusters were generated using the 
eclust function with clustering function ‘kmeans’ with the number of 
clusters set to six and for hierarchical clustering; ‘euclidean’ was used 
as the distance measure. Clusters were visualized with PCA in R.

RNA extraction and sequencing
After absorption measurements, the 12-well plates were put back on the 
table to let cells adjust to the table conditions again for a minimum of 
5 min before collecting them. For RNA extraction 0.4 ml was taken from 
every well of the 42 12-well plates on the table after pipetting the cells up 
and down twice to homogenize them. In total, 4.8 ml liquid culture was 
taken per condition on the table (that is, pooling 0.4 ml of each 12 wells 
per each of the 42 conditions). The samples were then centrifuged for 
5 min at 20 °C and 4,200g. The supernatant was removed and the pellet 
was frozen at −80 °C. To extract RNA, the Spectrum Plant Total RNA Kit 
(STRN250-1KT, Sigma-Aldrich) was used according to the manufactur-
er’s instructions. For cell disruption, samples in lysis buffer were ultra-
sonicated for 1 min and vortexed. RNA samples were treated with DNAse 
I (EN0521; Thermo Fisher) and shipped on dry ice to Novogene where 
they were quality checked with a Bioanalyzer (Agilent Technologies). 
Libraries were built on the basis of total RNA using poly-T oligo-attached 
magnetic beads. Following fragmentation, synthesis of the first-strand 
complementary DNA was carried out using random hexamer primers 
and second-strand cDNA using dUTP, instead of dTTP. A directional 
size-selected library was built that included PCR-based amplification. 
Sequencing adaptors were 5′ adaptor: 5′-AGATCGGAAGAGCGTCGT 
GTAGGGAAAGAGTGTAGATCTCGGTGGTCGCCGTATCATT-3′ and 3′  
adaptor: 5′-GATCGGAAGAGCACACGTCTGAACTCCAGTCACGGATGAC 
TATCTCGTATGCCGTCTTCTGCTTG-3′. The library was sequenced on  
an Illumina NovaSeq 6000 platform and data were downloaded using 
wget (GNU Wget 1.14).

Quality control of reads
We checked the quality of our raw reads via FastQC84 (v0.11.9) and 
summarized the results via MultiQC85 (v1.11). On the basis of these 
and the used adaptor sequence, we filtered and trimmed reads via 
Trimmomatic86 (v 0.36) with these parameters: (‘ILLUMINACLIP: novo-
gene_adapter_sequences_Trimmomatic.fa:2:30:10:2:True LEADING:26 
TRAILING:26 SLIDINGWINDOW:4:20 MINLEN:36′). We checked the 
quality of the trimmed reads with FastQC and MultiQC again.

Genome annotation
The original annotation of M. endlicherianum8 had a lower number of 
genes compared with other Zygnematophyceae algae. We took advan-
tage of our newly generated RNA-seq dataset to improve genome anno-
tation. Trimmed reads were mapped via HISAT2 (ref. 87) and assembled 
via StringTie87. The StringTie results showed many novel isoforms as 
well as novel transcripts. We also used BUSCO V5 (ref. 88) to measure 
the completeness of the gene models in annotation V1 independent 
of StringTie. Although the gene prediction method used by BUSCO at 
the genome level is very efficient, it is not unexpected if it misses some 
proteins that were annotated in a genome via experimental data, based 
on bioinformatic methods and next-generation sequencing data, or ab 
initio-based gene prediction methods. Therefore, we expect that the 
BUSCO score based on the proteins of a gene model should be equal to 
or greater than the BUSCO score of the genome. When we compared 

the BUSCO score between the genome and protein sequences for 
M. endlicherianum with ‘viridiplantae.odb.10-2020-09-10’, we noticed 
that they show similar numbers (Supplementary Fig. 2). Therefore, 
we decided to re-annotate the genome of M. endlicherianum with our 
comprehensive RNA-seq datasets as well as public protein and genome 
sequences published for its close relatives.

We annotated the M. endlicherianum genome using REAT (v0.6.1). 
Various gene models were predicted based on different types of evi-
dence and methods. The final gene models and annotation V2 were 
based on agreement with the experimental evidence. At the end, we 
tried to quantify ‘completeness’ and quality of the new annotation V2 
and the old V1.

First, we used RNA-seq evidence with REAT’s ‘Transcriptome Work-
flow’ with HISAT2 (v2.2.1), Scallop89 (v0.10.5) and StringTie (v2.1.5). We 
also used Portcullis90 (v1.2.4) to identify genuine junctions based on 
short reads alignments. This workflow uses Mikado91 (v2.3.4) to identify 
the ‘best’ set of transcripts from multiple transcript assemblies.

Then, we used gene homology information from representative 
streptophytes in REAT’s ‘Homology Workflow’. SPALN92,93 (v2.4.7) 
was used to align representative protein sequences onto the M. end-
licherianum genome. The representative dataset consisted on genome, 
gene models and protein sequences of Anthoceros agrestis94 (Oxford 
strain), Arabidopsis thaliana95, Azolla filiculoides96, Chara braunii72, 
Chlorokybus melkonianii97 (for naming, see ref. 98), Chlamydomonas 
reinhardtii99 (v5.6), Klebsormidium nitens100, Mesostigma viride101, 
Marchantia polymorpha102 (v6.1r1), Penium margaritaceum11, Phy-
scomitrium patens103 (v3.3), Selaginella moellendorffii104 and Spirogloea 
muscicola8. We also used the junction file produced by Portcullis. 
Since there were no close relatives of M. endlicherianum on the SPALN 
species-specific parameter set, we used three different closest pos-
sibilities (Angiosp, Chlospec and MossWorts) and built three mod-
els. These alignments are filtered using a predefined set of criteria 
(compare code on GitHub) including exon length, intron length and 
internal stop codon, among others. The final gene models of V2 were 
prepared by Mikado.

Afterwards, we used REAT’s ‘Prediction Workflow’ to predict gene 
models ab initio and based on RNA-seq and homology evidence. This 
uses Augustus105–107 (v 3.4.0), SNAP108 (version 2006-07-28), Glimmer109 
(v0.3.2) and CodingQuarry110 (v2.0), which generate different gene 
models as the raw material for EVidenceModeler111 (v1.1.1) that chooses 
the best set of exons and combine them in a gene model using weights 
(see GitHub) that could be adjusted for each sort of prediction and 
evidence. To include untranslated regions where possible, the EVi-
denceModeler output is then processed by Mikado using untranslated 
region-containing gene models from the transcriptome and homology 
workflows as inputs, as well as gene models classified by REAT as gold, 
silver and bronze based on their agreement with the set of protein 
sequences from other streptophyte genomes (streptophyte algae and 
land plants), transcriptome alignment, homology alignment and junc-
tions. To train ab initio predictors, a user-defined number of models are 
randomly chosen in a user-defined ratio between mono-exonic (10%) 
and multi-exonic (90%). These models were chosen from best-classified 
models (gold and silver). For Augustus, we performed meta parameter 
optimization and train a model with kfold of 8. Beside ab initio predic-
tions, we used Augustus to predict gene models with three different 
weights for each evidence type as suggested by REAT authors (compare 
code on GitHub).

At last, we used Minos112 (v1.8.0), which is gene model consolida-
tion pipeline and produces external metrics based on DIAMOND113 
(v0.9.34) ‘BLASTp/BLASTx’, Kallisto114 (v0.46.2) expression quantifica-
tion, coding potential calculator115 (CPC2 v0.1) and BUSCO assessments. 
These metrics pass through Mikado in combination with various gene 
models produced with different methods (as mentioned above); Minos 
determines the best gene model for each region based on user-defined 
criteria (for details, see GitHub) and external metrics. Minos also puts 
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a tag on each gene model to categorize them based on a user-defined 
threshold (we used default values) for sequence similarity coverage 
of homologues, BUSCO score, coding potential calculator score, tran-
script per million expression and transcript score into ‘high confi-
dence’, ‘low confidence’ and ‘predicted genes’.

Genome annotation assessment
We used two methods to compare the quality of the new gene model 
with the published one. We compared the BUSCO scores of the anno-
tated protein sequences as well as genome sequence using the refer-
ence ‘viridiplantae.odb.10-2020-09-10’ dataset. We also used maker116 
(v3.01.04) to calculate the AED117 to evaluate the agreement of the 
gene models with external evidences. Maker-P was used to build the 
M. endlicherianum gene model V1.

Further, we used the maker package to perform functional anno-
tation via InterProScan and BLAST using the agat118 package (v0.9.2). 
Additionally, we performed a BLAST (v2.11.0+) search against A. thali-
ana protein sequences (Araport11) and reported the best hit for each 
sequence (Supplementary Table 11) and used eggNOG-mapper119,120 
(v2.1.8) to perform functional annotation. We used DIAMOND113 
(v2.0.15) with ultra-sensitive mode, with e value cut-off of 1e−7 and in 
an iterative manner. We used the protein sequences as our inputs and 
Viridiplantae (33090) as our taxonomy scope.

RNA-seq analysis: pseudoalignment
To quantify gene expression, we used a Snakemake-managed pipeline 
(7.7.0) that hinged on Kallisto114 (v0.45.0). We indexed the transcriptome 
file with —kmer-size=31 parameter, and used —bootstrap-samples 100 
and —rf-stranded to quantify gene expression based on pseudo-aligned 
reads. We used MultiQC to obtain an overview of alignment for each 
condition.

Filtering, normalization, modelling mean–variance 
relationship and data exploration
Kallisto quantification files were imported into R (v4.2.0; tidyverse 
v1.3.1) with tximport121 (v1.24.0) to calculate the counts from abundance 
via ‘lengthScaledTPM’ based on our study design file (Supplementary 
Table 12). We used edgeR122 (v3.38.1) for filtering and trimmed mean of 
M-values normalization123 of the reads (genes with >1 count per million 
at log2 scale in at least three samples—the number of replicates—were 
kept). Then, we used the voom function from limma124–127 (v3.52.2) 
to model the mean–variance relationship. The normalized expres-
sion table on the log2 scale is available in Supplementary Table 13. We 
performed PCA based on the expression table output of voom and 
visualized the result with ggplot2 (ref. 128) (v3.3.6). We visualized the 
heat map of distance and Spearman correlation between all samples 
considering all genes via pheatmap (v1.0.12), and calculated clusters 
via the Euclidian method.

RNA-seq analysis: WGCNA
We used the WGCNA28,129 package (v1.71) with the expression table pro-
duced by limma. We checked for and filtered out outliers as suggested 
by WGCNA authors (Supplementary Fig. 10). Then, we visualized the 
scale-free topology model fit (R2) against the soft thresholds (β) to 
pick a β for our network construction (Supplementary Fig. 11). We used 
signed network type and ‘bicor’ as our correlation function for WGCNA. 
On the basis of these results, we picked 16 as our soft threshold ‘β’. We 
experimentally chose a merging threshold of 0.25 after exploring dif-
ferent values from 0.2 to 0.4 and investigating the relationship between 
eigengenes and temperature, light intensity, Fv/Fm and absorption 
(Supplementary Fig. 12). We built the gene co-expression network 
using a merging threshold of 0.25 for modules, maximum portion of 
outliers as 0.05 and minimum module size of 30. Then, we visualized 
the correlation between each module’s eigengene and temperature, 
light intensity, Fv/Fm and absorption to identify which modules are 

more related to each treatment (Fig. 4c). We provided a table for all 
genes, their module assignment, inter- and intramodular connectivity, 
gene significance for temperature and light intensity, correlation with 
temperature and light intensity, and their module membership (that 
is, signed eigengene-based connectivity) (Supplementary Table 5). We 
also visualized the graphical representation of the topological overlap 
matrix (TOM) of our samples (Supplementary Fig. 13). To have a visual 
representation of gene expression in each module, we drew heat maps 
for each module via pheatmap (using the Euclidean method for calcu-
lating the distance and complete method clustering) (Supplementary 
Fig. 14). GO enrichment analysis was performed via the clusterPro-
filer package130,131 (v4.4.4) using the output of eggNOG-mapper and 
adjusted P value cut-off of 0.05 and q value cut-off of 0.05, consider-
ing only genes that are present in our GO term-to-gene table, which 
was expressed and passed filtering as our background gene universe 
(Supplementary Table 6). Determining the proper background gene 
list has major importance in enrichment analysis132.

To see how A. thaliana’s well-known genes in stress-response 
mechanisms (downloaded from the TAIR database via keyword search) 
were distributed across different modules, we performed BLASTp 
searches against the new M. endlicherianum annotated proteins. We 
visualized the distribution of these IDs for different stress-related 
keywords (Supplementary Fig. 15) and the expression of these genes 
across different samples via pheatmap (Supplementary Fig. 16). We 
defined as module hubs the top 20 genes (nodes) with the highest 
connectivity within each module (Supplementary Tables 5 and 14).

Differential gene expression analysis
We performed differential gene expression analysis using the limma 
package. We divided samples into multiple groups as follows: low light 
intensity (21 and 39 µmol photons m−2 s−1), medium light intensity (72 
and 129 µmol photons m−2 s−1), high light intensity (329 and 527 µmol 
photons m−2 s−1), low temperature (8 and 12 °C), medium temperature 
(17, 20 and 23 °C) and high temperature (26 and 29 °C; see grid/coloured 
table layout in Fig. 2). We performed all-against-all comparisons and 
an additional comparison of those samples from an Fv/Fm < 0.5 versus 
low light intensity + medium temperature. We used duplicateCorrela-
tion as suggested by Smyth et al.133 to consider technical replicates. We 
used cluster Profiler for GO enrichment analysis131 with an adjusted P 
value and q value cut-off of 0.01 and only genes that were expressed 
and passed filtering as our background universe. The heat map of 
gene expression profiles, dot plot and cnetplot of enriched GO terms 
for each comparison is available in Supplementary Table 14 and Sup-
plementary Figs. 17–25).

Phylogenetic analyses
We assembled a protein database based on the protein releases from 
the genomes of: Anthoceros agrestis BONN94, Anthoceros puncta-
tus94, Amborella trichopoda134, Arabidopsis thaliana135, Azolla filicu-
loides96, Bathycoccus prasinos136, Brassica oleracea137, Brassica rapa138, 
Brachypodium distachyon139, Capsella grandiflora140, Chara braunii72, 
Chlorokybus melkonianii97 (for naming, see ref. 98), Chlamydomonas 
reinhardtii99, Coccomyxa subellipsoidea141, Gnetum montanum142, Kleb-
sormidium nitens100, Marchantia polymorpha143, Mesostigma viride97, 
Micromonas pusilla144, Micromonas sp.144, Oryza sativa145, Picea abies146, 
Physcomitrium patens103, Salvinia cucullata96, Selaginella moellen-
dorffii104, Solanum lycopersicum147, Theobroma cacao148, Mesotaenium 
endlicherianum8, Ostreococcus lucimarinus149, Penium margaritaceum11, 
Spirogloea muscicola8, Ulva mutabilis150, Volvox carteri151, Isoetes tai-
wanensis152 and Ceratopteris richardii153.

Homologues for proteins were detected using BLASTp with Arabi-
dopsis and Mesotaenium proteins as query against the aforementioned 
proteins as database. Alignments were computed using MAFFT v7.490 
(ref. 154). All phylogenies were computed with IQ-TREE155 multicore 
version 1.5.5; their respective best-fit model for protein evolution was 
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determined using ModelFinder156 (integrated in IQ-TREE multicore 
version 1.5.5 for Linux 64-bit built 2 June 2017) according to Bayesian 
Information Criterion; and 1,000 ultrafast bootstrap157 pseudorepli-
cates were carried out and 100 non-parametric bootstrap158 pseudor-
eplicates for the LDAP phylogeny. We coloured phylogeny trees via 
ggtree (v3.9.0).

DIC and confocal laser scanning microscopy
Differential interference contrast (DIC) imaging was done for all rep-
licates from the table with an Olympus BX-60 microscope (Olympus, 
Japan) with a ProgRes C14plus camera and the ProgRes CapturePro 
Software (version 2.9.01) ( JENOPTIK AG). The morphology of chosen 
conditions (Fig. 1, Extended Data Figs. 4–6 and Supplementary Fig. 1) 
of Mesotaenium cells that were 89 h on the table was analysed.

For algae that were used for quantifying the abundance of LD per 
cell, a ZEISS Axioscope 7 microscope (Carl Zeiss) was used including 
the Zen software (Carl Zeiss). The LD count was carried out in Fiji159. For 
statistical analysis of the LD count data, we first used a Shapiro–Wilk 
test160 to assess normality and used Mann–Whitney U tests161 with R 
(version 3.6.1) accordingly.

Confocal laser scanning microscope was done on a Zeiss LSM780 
(Carl Zeiss) set as in Müller et al.162. For the staining of the LD struc-
tures, we used the neutral lipid specific stain BODIPY 493/503 (EM/EX) 
(Merck). Mesotaenium cells were grown for 22 days on WHM medium at 
70–80 µmol photons m−2 s−1 and 22 °C. These cells were ultrasonicated 
for 1 min with 1:500 BODIPY and incubated on a shaker for 5 min before 
visualization.

LD isolation and proteomics
For LD isolation 23-day-old Mesotaenium cells grown on WHM medium 
at 70–80 µmol photons m−2 s−1 and 22 °C were homogenized using 
a Tenbroeck or potter homogenizer in LD isolation buffer (10 mM 
sodium phosphate buffer pH 7.5, 200 µM phenylmethylsulfonyl 
fluoride, 0.5 mM dithiobis(succinimidyl propionate) and 10 mM 
N-ethylmaleimide). The resulting centrifuged supernatant of a 100g 
spin for 1 min was considered as TE. After two further high-speed 
centrifugations (SW40 Ti for 1 h, 4 °C at 100,000g, TLA120 for 1 h at 
100,000g and 4 °C) the floating fat pad was precipitated at −20 °C 
using 100% ethanol overnight. The precipitated pellet was washed 
with 80% ethanol twice, dried and then suspended in 6 M urea. Protein 
concentration was determined using the bicinchoninic acid assay. An 
in-gel sodium dodecyl sulphate gel digestion was done with trypsin 
adapted from Shevchenko et al.163. C18 Stage tip purification was done 
according to Rappsilber et al.164,165. Protein samples were analysed using 
LC–MS. For this, peptide samples were reconstituted in 20 µl LC–MS 
sample buffer (2% acetonitrile and 0.1% formic acid). Then, 2 µl of 
each sample were subjected to reverse-phase liquid chromatography 
for peptide separation using an RSLCnano UltiMate 3000 system 
(Thermo Fisher Scientific). Peptides were loaded on an Acclaim Pep-
Map 100 pre-column (100 µm × 2 cm, C18, 5 µm, 100 Å; Thermo Fisher 
Scientific) with 0.07% trifluoroacetic acid at a flow rate of 20 µl min−1 
for 3 min. Analytical separation of peptides was done on an Acclaim 
PepMap RSLC column (75 µm × 50 cm, C18, 2 µm, 100 Å; Thermo Fisher 
Scientific) at a flow rate of 300 nl min−1. The solvent composition was 
gradually changed within 94 min from 96% solvent A (0.1% formic 
acid) and 4% solvent B (80% acetonitrile and 0.1% formic acid) to 10% 
solvent B within 2 min, to 30% solvent B within the next 58 min, to 45% 
solvent B within the following 22 min and to 90% solvent B within the 
last 12 min of the gradient. All solvents and acids had Optima grade 
for LC–MS (Thermo Fisher Scientific). Eluting peptides were on-line 
ionized by nano-electrospray using the Nanospray Flex Ion Source 
(Thermo Fisher Scientific) at 1.5 kV (liquid junction) and transferred 
into a Q Exactive HF mass spectrometer (Thermo Fisher Scientific). Full 
scans in a mass range of 300–1,650 m/z were recorded at a resolution of 
30,000 followed by data-dependent top ten higher energy collisional 

dissociation fragmentation at a resolution of 15,000 (dynamic exclu-
sion enabled). LC–MS method programming and data acquisition was 
performed with the XCalibur 4.0 software (Thermo Fisher Scientific). 
Afterwards, the raw proteome data were analysed using Max Quant 
software166 version 1.6.2.10. The database for this analysis was our 
new V2 gene model data. The data were then further processed by the 
Perseus (1.6.2.2) software166,167.

Lipid analysis of LDs
LDs (200–300 µl) were extracted with 10 ml of methanol/chloroform/
formic acid (20:10:1, vol/vol/vol), 5 ml of 0.2 M phosphoric acid and 
1 M potassium chloride168. After vortexing and centrifugation at 50g 
for 2 min, the lower chloroform phases were dried under streaming 
nitrogen and redissolved in chloroform/methanol (2:1, vol/vol). For 
analytical analysis, one-fifth of the lipid extracts were spotted on a thin 
layer chromatography (TLC) silica plate (TLC Silica gel 60, 20 × 20 cm, 
Merck KGaG) and separated with petroleum ether/diethyl ether/acetic 
acid (70:30:0.5, vol/vol/vol)169. The lipid composition was identified 
after incubation in copper sulphate solution (0.4 M CuSO4 in 6.8 % (vol/
vol) phosphoric acid) and heating at 180 °C. For preparative analysis, 
half of the lipid extracts were additionally separated by TLC. After 
development, the lipid spots were visualized after spraying with 0.05% 
(wt/vol) primuline in 80% (vol/vol) acetone. The silica gel spots contain-
ing TAG, diacylglycerol (DAG) and free fatty acids (FFA) were used for 
preparation of fatty acid methyl esters as already described170 with 
some modifications. For acidic hydrolysis, 1 ml of methanol/toluene 
(2:1, vol/vol) containing 2.75% (vol/vol) sulphuric acid (95–97%) and 2% 
(vol/vol) dimethoxypropane was added to the scraped silica gel. For 
quantification, 1 µg of tripentadecanoate was added and the samples 
were incubated for 1 h at 80 °C. To extract the resulting fatty acid methyl 
esters, 1.5 ml of saturated aqueous sodium chloride solution and 1.2 ml 
of hexane were added and centrifuged at 450g for 10 min. The hexane 
phase was dried under streaming nitrogen and redissolved in 10 µl 
acetonitrile. Gas chromatography (GC) analysis was performed with 
an Agilent (Waldbronn, Germany) 6890 gas chromatograph fitted with 
a capillary DB-23 column (30 m × 0.25 mm; 0.25 µm coating thickness; 
J&W Scientific, Agilent) modified from Hornung et al.171. Helium was 
used as carrier gas at a flow rate of 1 ml min−1. The temperature gradient 
was 150 °C for 1 min, 150–200 °C at 4 K min−1, 200–250 °C at 5 K min−1 
and 250 °C for 6 min. The peak area was collected with the ChemStation 
software (Agilent). From the absolute fatty acid contents, relative fatty 
acid profiles for TAG, DAG and FFA were calculated.

Pollen tube transformation and microscopy
Co d i n g  se q u e n ce s  f o r  M e s o t a e n i u m  h o m o l o g u e s  s a l i 
ent to LD biology were MeCaleosinf 5′-GGGGACAAGTTTG 
TAC A A A A A AG C AG G C TC ATGTCGA AG C TC AGTC T TG CC - 3 ′ ,  
MeCaleosinr 5′-GGGGACCACTTTGTACAAGAAAGCTGGGTCA 
GACTGCTTCTTCCTCTGCTT-3′, MeLDAPf 5′-GGGGACAAGTTT 
GTACA A A A A AGCAGGCTCATGGCCGA A AGTCAGGGCCC-3′,  
M e L DA P r  5 ′ - G G G G AC C AC T T TG TAC A AG A A AG C TG G G TC 
CGACTTCTTGAGGGCGTCGGC-3′, MeSteroleosinf 5′-GGGGACAA 
GTTTGTACAAAAAAGCAGGCTCATGGGGTTACTTAATGCCCTTGC-3′,  
MeSteroleosinr 5′-GGGGACCACTTTGTACAAGAAAGCTGGGTCGC 
CATTGGACTTGACGAGGG-3′, MeOleosinf 5′-GGGGACAAGTTTG 
TACAAAAAAGCAGGCTCATGCCTCAGGATCAGCAGCAAG-3′, and MeO 
leosinr 5′-GGGGACCACTTTGTACAAGAAAGCTGGGTCCTTCCTCTC 
CTTCTCAACCTTGT-3′. Constructs for expression in pollen tubes were  
cloned into the pLatMCC-GW vector using the fast Gateway method 
as described previously162. Pollen transformation, pollen tube growth 
and fixation were also performed according to this protocol. LDs were 
stained with BODIPY 493/503 at a final concentration of 1.3 µg ml−1. 
Microscopy images of transformed tobacco pollen tubes were acquired 
using an LSM 980 confocal laser scanning microscope using the objec-
tive C-Apochromat 40×/1.20 W Korr (both Carl Zeiss). mCherry was 
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excited at 561 nm and detected at 600–640 nm. BODIPY 493/503 was 
excited at 488 nm and detected at 490–535 nm. In both cases, the major 
beam splitter MBS 488/561 was used. Both channels were recorded 
independently using the line mode.

Comparative evolutionary analyses
To perform comparative evolutionary analyses among M. endlicheri-
anum, other streptophyte algae and embryophytes, we used two sepa-
rate workflows based on one criterion: the availability of at least 15 raw 
RNA-seq samples for a given species challenged with abiotic stresses 
and control conditions. This is the minimum requirement to build a 
co-expression network using the WGCNA package. If a species passed 
this criterion, we used them in two approaches; all results from the 
comparative analyses can be found in Supplementary Table 15.

Approach 1: to compare co-expression networks computed based 
on control and abiotic stress samples, we first used Orthofinder and 
protein sequences of A. agrestis94, A. filiculoides96, A. thaliana135, B. dis-
tachyon139, C. braunii72, Closterium sp. NIES 67 (ref. 10), C. melkonianii97, 
C. reinhardtii99, K. nitens100, M. endlicherianum8, M. polymorpha102, 
M. viride97, O. sativa145, P. margaritaceum11, P. patens103, S. lycopersi-
cum147, S. moellendorffii104, S. muscicola8, Z. mays172 and Zygnema circum-
carinatum9 as well as a species cladogram to find phylogenetic HOGs 
using these parameters: -S mmseqs -M msa -A mafft -s species_tree.
txt -y. For A. thaliana, we downloaded a gene-GO table from arabi-
dopsis.org. For P. patens, M. polymorpha and Zygnema 1b, we used 
eggNOG-mapper and their protein sequences to create a gene-GO 
table using these parameters: -m diamond -dmnd_iterate yes -evalue 
1e-10 -sensmode ultra-sensitive -tax_scope 33090. We downloaded 
raw RNA-seq reads for A. thaliana173–177, P. patens178 and accessions 
PRJNA277025 and PRJNA192876, M. polymorpha179–181 and Zygnema 
1b (ref. 9) from the National Center for Biotechnology Information 
(NCBI). We followed the same quantification as Mesotaenium for each 
species here. In short, we used FastQC, MultiQC and Trimmomatic to 
check the quality of each read and filter and trim the raw reads. Then, 
we used Kallisto to pseudoalign the reads to the transcriptome of that 
species. Then, we imported gene counts for each species into R and 
performed similar exploratory analyses to Mesotaenium for each spe-
cies. An additional layer of analysis here was to check for batch effect 
when we looked at all samples from different sources for a species. 
We used hierarchical clustering and PCA to pick the best expression 
profile from (i) uncorrected, (ii) batch-corrected as a covariate using 
limma, and (iii) batch-corrected using ComBat-seq182 to adjust for 
batch effects (if there were any). There is a debate in the community 
about which method is the best practice; therefore, we did all for every 
species and picked the best (less confounding effect between batches 
and maximum similarity between similar conditions) for each species. 
Then, we used the expression profile and built a signed co-expression 
network using the WGCNA package for each species. We followed the 
same procedure as Mesotaenium. We performed a GO enrichment 
analysis for each module in the co-expression networks. Then, we 
used the Orthofinder-based orthogroups to find genes that have a 
counterpart in Mesotaenium for each species and then we calculated 
the Jaccard similarity and dissimilarity between each Mesotaenium 
modules and each module of A. thaliana, P. patens, M. polymorpha 
and Zygnema circumcarinatum SAG698-1b. For each module in these 
co-expression networks, we looked for the connectivity of genes that 
share a HOG with Mesotaenium hubs.

Approach 2: to determine the shared DEGs under abiotic stresses 
across streptophyte algae, we first downloaded raw RNA-seq reads 
from NCBI as follows: (1) Mougeotia24,25 sp. MZCH240 and S. pratensis 
MZCH10213 (ref. 24), (2) M. viride, C. cerffii, K. flaccidum, C. globula-
ris, C. scutata, Zygnema ‘cylindricum’20 SAG698-1a, (3) Zygnema sp.23 
SAG2419, (4) S. pratensis22 UTEX92 and (5) Z. circumcarinatum9. If it 
was possible, we also obtained the transcriptome or genome file for 
each species. Then, we used Orthofinder and protein sequences of 

Mesotaenium and the protein sequences of these species as well as 
a species cladogram to find phylogenetic hierarchical orthogroups 
using these parameters: -S mmseqs -M msa -A mafft -s species_tree.
txt -y. For species for which only the transcriptome was available, 
we used TransDecoder (v5.7.0) using TransDecoder.LongOrfs and 
TransDecoder.Predict scripts to get a protein-coding sequence for 
our Orthofinder run. For those that we did not have a transcriptome, 
we built one using Trinity (v2.15.1) (ref. 183) and the settings -seqType 
fq –trimmomatic. We followed the same quantification steps as for 
Mesotaenium and workflow A to pseudoalign reads to the transcrip-
tome. Then, we followed similar steps to Mesotaenium to calculate 
DEGs for each species. Finally, we compared these DEGs with DEGs in 
Mesotaenium using HOGs from Orthofinder run in this workflow. We 
used BioNERO package184 to aggregate log2(fold change) values for 
each gene in each species to the corresponding HOGs and then used 
cluster Profiler to perform GO enrichment analyses and visualized the 
heat maps. In all comparisons, we considered adjusted P values <0.05 
as significant enrichment.

TEs
We used InterProScan185 (v5.59-91.0) on all predicted proteins 
in Mesotaenium endlicherianum V2 and filtered the results for 
transposon-related domains. This resulted in 6,186 entries in 1,748 
unique gene IDs, among which only 96 were expressed in our RNA-seq 
data (that is, passing an expression cut-off of at least 1 count per million 
in at least three samples); all results are presented in Supplementary 
Table 4b).

Reporting summary
Further information on research design is available in the Nature Port-
folio Reporting Summary linked to this article.

Data availability
All RNA-seq reads have been uploaded to the NCBI Sequence Read 
Archive and can be accessed under BioProject PRJNA832564 and 
Sequence Read Archive accessions SRR18936040 to SRR18936170. Fur-
thermore, data can be interactively explored at https://mesotaenium. 
uni-goettingen.de and proteomic data have been uploaded to EMBL- 
EBI PRIDE (accession PXD037847). On Zenodo, we have deposited (1)  
raw light and confocal micrographs generated, for example, for LD  
assessment in Mesotaenium and pollen tubes https://doi.org/10.5281/ 
zenodo.7921367 and (2) raw and visualized phylogenetic data https:// 
doi.org/10.5281/zenodo.7950653. The additional previously published  
RNA-seq datasets that were used for comparisons are: (1) A. thaliana:  
SRR2302908 to SRR2302919, ERR754084, ERR754066, ERR754077,  
ERR754069, ERR754087, ERR754064, ERR754059, SRR7659142,  
SRR7659143, SRR7659144, SRR7659145 to SRR7659150, SRR5197904,  
to SRR5197909; (2) M. polymorpha: SRR12076853, SRR12076855,  
SRR12076857, SRR12076859, SRR12076861, SRR12076863,  
SRR12076865, SRR12076867, SRR12076869, SRR12076871,  
SRR12076873, SRR12076875, SRR12076877, SRR12076879, SRR12076917  
to SRR12076925, SRR15186078 to SRR15186125, DRR093991 to  
DRR093996; (3) P. patens: SRR1824306 to SRR1824320, SRR10235460  
to SRR10235483, SRR787291, SRR787292, SRR787293, SRR787294,  
SRR787295; (4) Z. circumcarinatum SAG698-1b: SRR24939299,  
SRR24940177, SRR24909175, SRR24757807, SRR24757829,  
SRR24757830, SRR24757831, SRR24205691 to SRR24205702,  
SRR24286545 to SRR24286562, SRR24576622, SRR24576623,  
SRR24385702, SRR24450996, SRR24450997, SRR24451196,  
SRR24480449, SRR24707416, SRR24707417, SRR24952091,  
SRR21891679 to SRR21891705; (5) C. cerffii (at the time, C. atmophyticus,  
see ref. 98): SRR5949009, SRR5949013 to SRR5949016, SRR5949027 to  
SRR5949030; (6) C. scutata: SRR5948993, SRR5948995 to SRR5948998,  
SRR5949001, SRR5949004, SRR5949005, SRR5949007; (7) K. flac 
cidum: SRR5949010, SRR5949011, SRR5949012, SRR5990072 to  
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SRR5990080; (8) M. viride: SRR5949021 to SRR5949026; (9) Mougeotia  
sp. MZCH240: SRR9083681, SRR9083682, SRR9083688, SRR9083692  
to SRR9083701; (10) S. pratensis MZCH10213: SRR9083685,  
SRR9083686, SRR9083687, SRR9083689, SRR9083690, SRR9083696;  
(11) S. pratensis UTEX928: SRR4018077 to SRR4018100; (12) Z. cir 
cumcarinatum SAG698-1a: SRR5948999, SRR5949000, SRR5949002,  
SRR5949003, SRR5949006, SRR5949008, SRR5949017, SRR5949018;  
and (13) Z. circumcarinatum SAG2419: SRR6047298, SRR6047299,  
SRR6047302 to SRR6047305. Source data are provided with this paper.

Code availability
Codes and data used for genome re-annotation, WGCNA and differen-
tial gene expression analysis are available on our GitHub page https:// 
github.com/deVries-lab/Response_to_a_gradient_of_environmen 
tal_cues_in_mesotaenium_endlicherianum.

References
1.	 Bar-On, Y. M., Phillips, R. & Milo, R. The biomass distribution on 

Earth. Proc. Natl Acad. Sci. USA 115, 6506–6511 (2018).
2.	 Lenton, T. M. et al. Earliest land plants created modern levels of 

atmospheric oxygen. Proc. Natl Acad. Sci. USA 113, 9704–9709 
(2016).

3.	 Wodniok, S. et al. Origin of land plants: do conjugating green 
algae hold the key? BMC Evol. Biol. 11, 104 (2011).

4.	 Wickett, N. J. et al. Phylotranscriptomic analysis of the origin and 
early diversification of land plants. Proc. Natl Acad. Sci. USA 111, 
E4859–E4868 (2014).

5.	 Puttick, M. N. et al. The interrelationships of land plants and the 
nature of the ancestral embryophyte. Curr. Biol. 28, 733–745 (2018).

6.	 One Thousand Plant Transcriptomes Initiative. One thousand 
plant transcriptomes and the phylogenomics of green plants. 
Nature 574, 679–685 (2019).

7.	 Hess, S. et al. A phylogenomically informed five-order system 
for the closest relatives of land plants. Curr. Biol. 32, 4473–4482 
(2022).

8.	 Cheng, S. et al. Genomes of subaerial Zygnematophyceae 
provide insights into land plant evolution. Cell 179, 1057–1067.e14 
(2019).

9.	 Feng, X. et al. Chromosome-level genomes of multicellular algal 
sisters to land plants illuminate signaling network evolution. 
Preprint at bioRxiv https://doi.org/10.1101/2023.01.31.526407  
(2023).

10.	 Sekimoto, H. et al. A divergent RWP‐RK transcription factor 
determines mating type in heterothallic Closterium. N. Phytol. 
https://doi.org/10.1111/nph.18662 (2023).

11.	 Jiao, C. et al. The Penium margaritaceum genome: hallmarks of 
the origins of land plants. Cell 181, 1097–1111.e12 (2020).

12.	 Golicz, A. A., Batley, J. & Edwards, D. Towards plant pangenomics. 
Plant Biotechnol. J. 14, 1099–1105 (2016).

13.	 Gordon, S. P. et al. Extensive gene content variation in the 
Brachypodium distachyon pan-genome correlates with 
population structure. Nat. Commun. 8, 2184 (2017).

14.	 Bayer, P. E., Golicz, A. A., Scheben, A., Batley, J. & Edwards, D. 
Plant pan-genomes are the new reference. Nat. Plants 6, 914–920 
(2020).

15.	 Umezawa, T. et al. Molecular basis of the core regulatory network 
in ABA responses: sensing, signaling and transport. Plant Cell 
Physiol. 51, 1821–1839 (2010).

16.	 Bowman, J. L., Briginshaw, L. N., Fisher, T. J. & Flores-Sandoval, E. 
Something ancient and something neofunctionalized—evolution 
of land plant hormone signaling pathways. Curr. Opin. Plant Biol. 
47, 64–72 (2019).

17.	 Hundertmark, M. & Hincha, D. K. LEA (Late Embryogenesis 
Abundant) proteins and their encoding genes in Arabidopsis 
thaliana. BMC Genomics 9, 118–122 (2008).

18.	 Carella, P. et al. Conserved biochemical defenses underpin host 
responses to oomycete infection in an early-divergent land plant 
lineage. Curr. Biol. 29, 2282–2294.e5 (2019).

19.	 Rieseberg, T. P. et al. Crossroads in the evolution of plant 
specialized metabolism. Sem. Cell Dev. Biol. 134, 37–58 (2023).

20.	 de Vries, J., Curtis, B. A., Gould, S. B. & Archibald, J. M. 
Embryophyte stress signaling evolved in the algal progenitors of 
land plants. Proc. Natl Acad. Sci. USA 115, E3471–E3480 (2018).

21.	 Sun, Y. et al. A ligand-independent origin of abscisic acid 
perception. Proc. Natl Acad. Sci. USA 116, 24892–24899 (2019).

22.	 Van de Poel, B., Cooper, E. D., Van Der Straeten, D., Chang, C. 
& Delwiche, C. F. Transcriptome profiling of the green alga 
Spirogyra pratensis (Charophyta) suggests an ancestral role for 
ethylene in cell wall metabolism, photosynthesis, and abiotic 
stress responses. Plant Physiol. 172, 533–545 (2016).

23.	 Rippin, M., Becker, B. & Holzinger, A. Enhanced desiccation 
tolerance in mature cultures of the streptophytic green alga 
Zygnema circumcarinatum revealed by transcriptomics. Plant Cell 
Physiol. 58, 2067–2084 (2017).

24.	 de Vries, J. et al. Heat stress response in the closest algal relatives 
of land plants reveals conserved stress signaling circuits. Plant J. 
103, 1025–1048 (2020).

25.	 Fürst-Jansen, J. M. R. et al. Submergence of the filamentous 
Zygnematophyceae Mougeotia induces differential gene 
expression patterns associated with core metabolism and 
photosynthesis. Protoplasma 259, 1157–1174 (2022).

26.	 Emms, D. M. & Kelly, S. OrthoFinder: phylogenetic orthology 
inference for comparative genomics. Genome Biol. 20, 238 
(2019).

27.	 Edel, K. H., Marchadier, E., Brownlee, C., Kudla, J. & Hetherington, 
A. M. The evolution of calcium-based signalling in plants. Curr. 
Biol. 27, R667–R679 (2017).

28.	 Langfelder, P. & Horvath, S. WGCNA: an R package for weighted 
correlation network analysis. BMC Bioinformatics 9, 559 (2008).

29.	 Song, J.-Y., Leung, T., Ehler, L. K., Wang, C. & Liu, Z. Regulation of 
meristem organization and cell division by TSO1, an Arabidopsis 
gene with cysteine-rich repeats. Development 127, 2207–2217 
(2000).

30.	 Kleine, T. et al. Acclimation in plants—the Green Hub consortium. 
Plant J. 106, 23–40 (2021).

31.	 Moreno, J. C., Mi, J., Alagoz, Y. & Al‐Babili, S. Plant apocarotenoids: 
from retrograde signaling to interspecific communication. Plant J. 
105, 351–375 (2021).

32.	 Rossini, L., Cribb, L., Martin, D. J. & Langdale, J. A. The maize 
Golden2 gene defines a novel class of transcriptional regulators 
in plants. Plant Cell 13, 1231–1244 (2001).

33.	 Yasumura, Y., Moylan, E. C. & Langdale, J. A. A conserved 
transcription factor mediates nuclear control of organelle 
biogenesis in anciently diverged land plants. Plant Cell 17, 
1894–1907 (2005).

34.	 Waters, M. T. et al. GLK transcription factors coordinate 
expression of the photosynthetic apparatus in Arabidopsis. Plant 
Cell 21, 1109–1128 (2009).

35.	 Timm, S. et al. A cytosolic pathway for the conversion of 
hydroxypyruvate to glycerate during photorespiration in 
Arabidopsis. Plant Cell 20, 2848–2859 (2008).

36.	 Fürst-Jansen, J. M. R., de Vries, S. & de Vries, J. Evo-physio: on 
stress responses and the earliest land plants. J. Exp. Bot. 71, 
3254–3269 (2020).

37.	 Liu, L.-J. et al. COP1-mediated ubiquitination of CONSTANS 
is implicated in cryptochrome regulation of flowering in 
Arabidopsis. Plant Cell 20, 292–306 (2008).

38.	 Sarid-Krebs, L. et al. Phosphorylation of CONSTANS and its COP 
1‐dependent degradation during photoperiodic flowering of 
Arabidopsis. Plant J. 84, 451–463 (2015).

http://www.nature.com/natureplants
https://www.ncbi.nlm.nih.gov/sra/?term=SRR5990080
https://www.ncbi.nlm.nih.gov/sra/?term=SRR5949021
https://www.ncbi.nlm.nih.gov/sra/?term=SRR5949026
https://www.ncbi.nlm.nih.gov/sra/?term=SRR9083681
https://www.ncbi.nlm.nih.gov/sra/?term=SRR9083682
https://www.ncbi.nlm.nih.gov/sra/?term=SRR9083688
https://www.ncbi.nlm.nih.gov/sra/?term=SRR9083692
https://www.ncbi.nlm.nih.gov/sra/?term=SRR9083701
https://www.ncbi.nlm.nih.gov/sra/?term=SRR9083685
https://www.ncbi.nlm.nih.gov/sra/?term=SRR9083686
https://www.ncbi.nlm.nih.gov/sra/?term=SRR9083687
https://www.ncbi.nlm.nih.gov/sra/?term=SRR9083689
https://www.ncbi.nlm.nih.gov/sra/?term=SRR9083690
https://www.ncbi.nlm.nih.gov/sra/?term=SRR9083696
https://www.ncbi.nlm.nih.gov/sra/?term=SRR4018077
https://www.ncbi.nlm.nih.gov/sra/?term=SRR4018100
https://www.ncbi.nlm.nih.gov/sra/?term=SRR5948999
https://www.ncbi.nlm.nih.gov/sra/?term=SRR5949000
https://www.ncbi.nlm.nih.gov/sra/?term=SRR5949002
https://www.ncbi.nlm.nih.gov/sra/?term=SRR5949003
https://www.ncbi.nlm.nih.gov/sra/?term=SRR5949006
https://www.ncbi.nlm.nih.gov/sra/?term=SRR5949008
https://www.ncbi.nlm.nih.gov/sra/?term=SRR5949017
https://www.ncbi.nlm.nih.gov/sra/?term=SRR5949018
https://www.ncbi.nlm.nih.gov/sra/?term=SRR6047298
https://www.ncbi.nlm.nih.gov/sra/?term=SRR6047299
https://www.ncbi.nlm.nih.gov/sra/?term=SRR6047302
https://www.ncbi.nlm.nih.gov/sra/?term=SRR6047305
https://github.com/deVries-lab/Response_to_a_gradient_of_environmental_cues_in_mesotaenium_endlicherianum
https://github.com/deVries-lab/Response_to_a_gradient_of_environmental_cues_in_mesotaenium_endlicherianum
https://github.com/deVries-lab/Response_to_a_gradient_of_environmental_cues_in_mesotaenium_endlicherianum
https://doi.org/10.1101/2023.01.31.526407
https://doi.org/10.1111/nph.18662


Nature Plants | Volume 9 | September 2023 | 1419–1438 1435

Article https://doi.org/10.1038/s41477-023-01491-0

39.	 Ordoñez-Herrera, N. et al. The transcription factor COL12 is a 
substrate of the COP1/SPA E3 ligase and regulates flowering time 
and plant architecture. Plant Physiol. 176, 1327–1340 (2018).

40.	 Dai, S. et al. BROTHER OF LUX ARRHYTHMO is a component of the 
Arabidopsis circadian clock. Plant Cell 23, 961–972 (2011).

41.	 Ju, C. et al. Conservation of ethylene as a plant hormone over 450 
million years of evolution. Nat. Plants 1, 14004 (2015).

42.	 Kato, Y. & Sakamoto, W. Protein quality control in chloroplasts: 
a current model of D1 protein degradation in the photosystem II 
repair cycle. J. Biochem. 146, 463–469 (2009).

43.	 Kato, Y., Sun, X., Zhang, L. & Sakamoto, W. Cooperative 
D1 degradation in the photosystem II repair mediated by 
chloroplastic proteases in Arabidopsis. Plant Physiol. 159, 
1428–1439 (2012).

44.	 Sjögren, L. L. E., Stanne, T. M., Zheng, B., Sutinen, S. & Clarke, 
A. K. Structural and functional insights into the chloroplast 
ATP-dependent Clp protease in Arabidopsis. Plant Cell 18, 
2635–2649 (2006).

45.	 Nishimura, K., Kato, Y. & Sakamoto, W. Chloroplast proteases: 
updates on proteolysis within and across suborganellar 
compartments. Plant Physiol. 171, 2280–2293 (2016).

46.	 Pfalz, J., Liere, K., Kandlbinder, A., Dietz, K.-J. & Oelmüller, R. 
pTAC2, -6, and -12 are components of the transcriptionally 
active plastid chromosome that are required for plastid gene 
expression. Plant Cell 18, 176–197 (2006).

47.	 Susek, R. E., Ausubel, F. M. & Chory, J. Signal transduction mutants 
of arabidopsis uncouple nuclear CAB and RBCS gene expression 
from chloroplast development. Cell 74, 787–799 (1993).

48.	 Jiao, Y., Lau, O. S. & Deng, X. W. Light-regulated transcriptional 
networks in higher plants. Nat. Rev. Genet. 8, 217–230 (2007).

49.	 Chen, R. E. & Thorner, J. Function and regulation in MAPK signaling 
pathways: lessons learned from the yeast Saccharomyces 
cerevisiae. Biochim. Biophys. Acta. 1773, 1311–1340 (2007).

50.	 Nakagami, H., Pitzschke, A. & Hirt, H. Emerging MAP kinase 
pathways in plant stress signalling. Trends Plant Sci. 10, 339–346 
(2005).

51.	 Rodriguez, M. C. S., Petersen, M. & Mundy, J. Mitogen-activated 
protein kinase signaling in plants. Annu. Rev. Plant Biol. 61, 
621–649 (2010).

52.	 Meng, X. & Zhang, S. MAPK cascades in plant disease resistance 
signaling. Annu. Rev. Phytopathol. 51, 245–266 (2013).

53.	 Chen, X. et al. Protein kinases in plant responses to drought, salt, 
and cold stress. J. Integr. Plant Biol. 63, 53–78 (2021).

54.	 Sun, Y. et al. Integration of brassinosteroid signal transduction 
with the transcription network for plant growth regulation in 
Arabidopsis. Dev. Cell 19, 765–777 (2010).

55.	 Planas-Riverola, A. et al. Brassinosteroid signaling in plant 
development and adaptation to stress. Development 146, 
dev151894 (2019).

56.	 Hématy, K. et al. A receptor-like kinase mediates the response of 
Arabidopsis cells to the inhibition of cellulose synthesis. Curr. Biol. 
17, 922–931 (2007).

57.	 Schröder, F., Lisso, J., Lange, P. & Müssig, C. The extracellular EXO 
protein mediates cell expansion in Arabidopsis leaves. BMC Plant 
Biol. 9, 20 (2009).

58.	 Schindelman, G. et al. COBRA encodes a putative GPI-anchored 
protein, which is polarly localized and necessary for oriented cell 
expansion in Arabidopsis. Genes Dev. 15, 1115–1127 (2001).

59.	 Roudier, F., Schindelman, G., DeSalle, R. & Benfey, P. N. The 
COBRA family of putative GPI-anchored proteins in Arabidopsis. A 
new fellowship in expansion. Plant Physiol. 130, 538–548 (2002).

60.	 Ko, J.-H., Kim, J. H., Jayanty, S. S., Howe, G. A. & Han, K.-H. Loss 
of function of COBRA, a determinant of oriented cell expansion, 
invokes cellular defence responses in Arabidopsis thaliana. J. Exp. 
Bot. 57, 2923–2936 (2006).

61.	 Wolf, S. et al. A receptor-like protein mediates the response to 
pectin modification by activating brassinosteroid signaling. Proc. 
Natl Acad. Sci. USA 111, 15261–15266 (2014).

62.	 Higashi, Y., Okazaki, Y., Myouga, F., Shinozaki, K. & Saito, K. 
Landscape of the lipidome and transcriptome under heat stress in 
Arabidopsis thaliana. Sci. Rep. 5, 10533 (2015).

63.	 Mueller, S. P., Krause, D. M., Mueller, M. J. & Fekete, A. 
Accumulation of extra-chloroplastic triacylglycerols in 
Arabidopsis seedlings during heat acclimation. J. Exp. Bot. 66, 
4517–4526 (2015).

64.	 Gidda, S. K. et al. Lipid droplet-associated proteins (LDAPs) are 
required for the dynamic regulation of neutral lipid compart
mentation in plant cells. Plant Physiol. 170, 2052–2071 (2016).

65.	 Doner, N. M. et al. Arabidopsis thaliana EARLY RESPONSIVE TO 
DEHYDRATION 7 localizes to lipid droplets via its senescence 
domain. Front. Plant Sci. 12, 658961 (2021).

66.	 Krawczyk, H. E. et al. Heat stress leads to rapid lipid remodeling 
and transcriptional adaptations in Nicotiana tabacum pollen 
tubes. Plant Physiol. 189, 490–515 (2022).

67.	 Listenberger, L. L. & Brown, D. A. Fluorescent detection of lipid 
droplets and associated proteins. Curr. Protoc. Cell Biol. 35, 
24.2.1–24.2.11 (2007).

68.	 Kretzschmar, F. K. et al. Identification of low-abundance lipid 
droplet proteins in seeds and seedlings. Plant Physiol. 182, 
1326–1345 (2020).

69.	 Lass, A. et al. Adipose triglyceride lipase-mediated lipolysis 
of cellular fat stores is activated by CGI-58 and defective in 
Chanarin–Dorfman syndrome. Cell Metab. 3, 309–319 (2006).

70.	 James, C. N. et al. Disruption of the Arabidopsis CGI-58 
homologue produces Chanarin–Dorfman-like lipid droplet 
accumulation in plants. Proc. Natl Acad. Sci. USA 107, 17833–
17838 (2010).

71.	 Guzha, A., Whitehead, P., Ischebeck, T. & Chapman, K. D. Lipid 
droplets: packing hydrophobic molecules within the aqueous 
cytoplasm. Annu. Rev. Plant Biol. 74, 195–223 (2023).

72.	 Nishiyama, T. et al. The Chara genome: secondary complexity and 
implications for plant terrestrialization. Cell 174, 448–464.e24 (2018).

73.	 Zhao, C. et al. Evolution of chloroplast retrograde signaling 
facilitates green plant adaptation to land. Proc. Natl Acad. Sci. 
USA 116, 5015–5020 (2019).

74.	 Honkanen, S. & Small, I. The GENOMES UNCOUPLED1 protein has 
an ancient, highly conserved role but not in retrograde signalling. 
New Phytol. 236, 99–113 (2022).

75.	 Martín, G. et al. Phytochrome and retrograde signalling 
pathways converge to antagonistically regulate a light-induced 
transcriptional network. Nat. Commun. 7, 11431 (2016).

76.	 Gasulla, F. et al. The response of Asterochloris erici (Ahmadjian) 
Skaloud et Peksa to desiccation: a proteomic approach. Plant Cell 
Environ. 36, 1363–1378 (2013).

77.	 Li-Beisson, Y., Thelen, J. J., Fedosejevs, E. & Harwood, J. L. The 
lipid biochemistry of eukaryotic algae. Prog. Lipid Res. 74, 31–68 
(2019).

78.	 de Vries, J. & Ischebeck, T. Ties between stress and lipid droplets 
pre-date seeds. Trends Plant Sci. 25, 1203–1214 (2020).

79.	 The Culture Collection of Algae at the University of Göttingen, 
Germany (SAG) (The University of Göttingen); https://sagdb.uni- 
goettingen.de/detailedList.php?str_number=12.97

80.	 Friedl, T. & Lorenz, M. The Culture Collection of Algae 
at Göttingen University (SAG): a biological resource for 
biotechnological and biodiversity research. Procedia Environ. Sci. 
15, 110–117 (2012).

81.	 Ichimura, T. Sexual cell division and conjugation-papilla formation 
in sexual reproduction of Closterium strigosum. In Proc. 7th 
International Seaweed Symposium 208–214 (Univ. of Tokyo Press, 
1971).

http://www.nature.com/natureplants
https://sagdb.uni-goettingen.de/detailedList.php?str_number=12.97
https://sagdb.uni-goettingen.de/detailedList.php?str_number=12.97


Nature Plants | Volume 9 | September 2023 | 1419–1438 1436

Article https://doi.org/10.1038/s41477-023-01491-0

82.	 Nichols, H. W. in Handbook of Phycological Methods (ed. Stein J. R.) 
p. 16–17 (Cambridge Univ. Press, 1973).

83.	 Conover, W. J. Practical Nonparametric Statistics 3rd edn  
(John Wiley & Sons, 1999).

84.	 Simon, A. FastQC: a quality control tool for high throughput 
sequence data (Babraham Bioinformatics, Babraham Institute, 
2010); https://www.bioinformatics.babraham.ac.uk/projects/ 
fastqc/

85.	 Ewels, P., Magnusson, M., Lundin, S. & Käller, M. MultiQC: 
summarize analysis results for multiple tools and samples in a 
single report. Bioinformatics 32, 3047–3048 (2016).

86.	 Bolger, A. M., Lohse, M. & Usadel, B. Trimmomatic: a flexible 
trimmer for Illumina sequence data. Bioinformatics 30, 2114–2120 
(2014).

87.	 Pertea, M., Kim, D., Pertea, G. M., Leek, J. T. & Salzberg, S. L. 
Transcript-level expression analysis of RNA-seq experiments with 
HISAT, StringTie and Ballgown. Nat. Protoc. 11, 1650–1667 (2016).

88.	 Manni, M., Berkeley, M. R., Seppey, M., Simão, F. A. & Zdobnov, 
E. M. BUSCO update: novel and streamlined workflows along 
with broader and deeper phylogenetic coverage for scoring of 
eukaryotic, prokaryotic, and viral genomes. Mol. Biol. Evol. 38, 
4647–4654 (2021).

89.	 Shao, M. & Kingsford, C. Accurate assembly of transcripts through 
phase-preserving graph decomposition. Nat. Biotechnol. 35, 
1167–1169 (2017).

90.	 Mapleson, D., Venturini, L., Kaithakottil, G. & Swarbreck, D. 
Efficient and accurate detection of splice junctions from RNA-seq 
with Portcullis. Gigascience 7, giy131 (2018).

91.	 Venturini, L., Caim, S., Kaithakottil, G. G., Mapleson, D. L. & 
Swarbreck, D. Leveraging multiple transcriptome assembly 
methods for improved gene structure annotation. GigaScience 7, 
giy093 (2018).

92.	 Gotoh, O. Direct mapping and alignment of protein sequences 
onto genomic sequence. Bioinformatics 24, 2438–2444 (2008).

93.	 Gotoh, O. A space-efficient and accurate method for mapping 
and aligning cDNA sequences onto genomic sequence. Nucleic 
Acids Res. 36, 2630–2638 (2008).

94.	 Li, F.-W. et al. Anthoceros genomes illuminate the origin of 
land plants and the unique biology of hornworts. Nat. Plants 6, 
259–272 (2020).

95.	 Cheng, C.-Y. et al. Araport11: a complete reannotation of the 
Arabidopsis thaliana reference genome. Plant J. 89, 789–804 
(2017).

96.	 Li, F.-W. et al. Fern genomes elucidate land plant evolution and 
cyanobacterial symbioses. Nat. Plants 4, 460–472 (2018).

97.	 Wang, S. et al. Genomes of early-diverging streptophyte algae 
shed light on plant terrestrialization. Nat. Plants 6, 95–106 (2020).

98.	 Irisarri, I. et al. Unexpected cryptic species among streptophyte 
algae most distant to land plants. Proc. Biol. Sci. 288, 20212168 
(2021).

99.	 Merchant, S. S. et al. The Chlamydomonas genome reveals 
the evolution of key animal and plant functions. Science 318, 
245–250 (2007).

100.	Hori, K. et al. Klebsormidium flaccidum genome reveals primary 
factors for plant terrestrial adaptation. Nat. Commun. 5, 3978 (2014).

101.	 Liang, Z. et al. Mesostigma viride genome and transcriptome 
provide insights into the origin and evolution of Streptophyta. 
Adv. Sci. 7, 1901850 (2019).

102.	Montgomery, S. A. et al. Chromatin organization in early land 
plants reveals an ancestral association between H3K27me3, 
transposons, and constitutive heterochromatin. Curr. Biol. 30, 
573–588.e7 (2020).

103.	Lang, D. et al. The Physcomitrella patens chromosome-scale 
assembly reveals moss genome structure and evolution. Plant J. 
93, 515–533 (2018).

104.	Banks, J. A. et al. The Selaginella genome identifies genetic 
changes associated with the evolution of vascular plants. Science 
332, 960–963 (2011).

105.	Stanke, M. et al. AUGUSTUS: ab initio prediction of alternative 
transcripts. Nucleic Acids Res. 34, W435–W439 (2006).

106.	Stanke, M., Tzvetkova, A. & Morgenstern, B. AUGUSTUS at EGASP: 
using EST, protein and genomic alignments for improved gene 
prediction in the human genome. Genome Biol. 7, S11 (2006).

107.	 Hoff, K. J. & Stanke, M. Predicting genes in single genomes with 
AUGUSTUS. Curr. Protoc. Bioinformatics 65, e57 (2019).

108.	Korf, I. Gene finding in novel genomes. BMC Bioinformatics 5,  
59 (2004).

109.	Kelley, D. R., Liu, B., Delcher, A. L., Pop, M. & Salzberg, S. L. Gene 
prediction with glimmer for metagenomic sequences augmented 
by classification and clustering. Nucleic Acids Res. 40, e9 (2012).

110.	 Testa, A. C., Hane, J. K., Ellwood, S. R. & Oliver, R. P. CodingQuarry: 
highly accurate hidden Markov model gene prediction in fungal 
genomes using RNA-seq transcripts. BMC Genomics 16, 170 (2015).

111.	 Haas, B. J. et al. Automated eukaryotic gene structure annotation 
using EVidenceModeler and the program to assemble spliced 
alignments. Genome Biol. 9, R7 (2008).

112.	 Minos—a gene model consolidation pipeline for genome annotation 
projects. GitHub https://github.com/EI-CoreBioinformatics/minos 
(2019).

113.	 Buchfink, B., Xie, C. & Huson, D. H. Fast and sensitive protein 
alignment using DIAMOND. Nat. Methods 12, 59–60 (2015).

114.	 Bray, N. L., Pimentel, H., Melsted, P. & Pachter, L. Near-optimal 
probabilistic RNA-seq quantification. Nat. Biotechnol. 34, 525–527 
(2016).

115.	 Kang, Y.-J. et al. CPC2: a fast and accurate coding potential 
calculator based on sequence intrinsic features. Nucleic Acids 
Res. 45, W12–W16 (2017).

116.	 Campbell, M. S., Holt, C., Moore, B. & Yandell, M. Genome 
annotation and curation using MAKER and MAKER-P. Curr. Protoc. 
Bioinformatics 48, 4.11.1–4.11.39 (2014).

117.	 Eilbeck, K., Moore, B., Holt, C. & Yandell, M. Quantitative measures 
for the management and comparison of annotated genomes. 
BMC Bioinformatics 10, 67 (2009).

118.	 Dainat, J. et al. AGAT: another gff analysis toolkit to handle 
annotations in any gtf/gff format. (Version v0.9.2). Zenodo https://
www.doi.org/10.5281/zenodo.6621429 (2022).

119.	 Huerta-Cepas, J. et al. Fast genome-wide functional annotation 
through orthology assignment by eggNOG-mapper. Mol. Biol. 
Evol. 34, 2115–2122 (2017).

120.	Huerta-Cepas, J. et al. eggNOG 5.0: a hierarchical, functionally 
and phylogenetically annotated orthology resource based on 
5090 organisms and 2502 viruses. Nucleic Acids Res. 47, D309–
D314 (2019).

121.	 Soneson, C., Love, M. I. & Robinson, M. D. Differential analyses 
for RNA-seq: transcript-level estimates improve gene-level 
inferences. F1000Research https://doi.org/10.12688/ 
f1000research.7563.2 (2016).

122.	 Robinson, M. D., McCarthy, D. J. & Smyth, G. K. edgeR: a 
Bioconductor package for differential expression analysis of 
digital gene expression data. Bioinformatics 26, 139–140 (2010).

123.	Robinson, M. D. & Oshlack, A. A scaling normalization method for 
differential expression analysis of RNA-seq data. Genome Biol. 11, 
R25 (2010).

124.	Ritchie, M. E. et al. limma powers differential expression analyses 
for RNA-sequencing and microarray studies. Nucleic Acids Res. 
43, e47 (2015).

125.	Phipson, B., Lee, S., Majewski, I. J., Alexander, W. S. & Smyth, G. K. 
Robust hyperparameter estimation protects against hypervariable 
genes and improves power to detect differential expression. Ann. 
Appl. Stat. 10, 946–963 (2016).

http://www.nature.com/natureplants
https://www.bioinformatics.babraham.ac.uk/projects/fastqc/
https://www.bioinformatics.babraham.ac.uk/projects/fastqc/
https://github.com/EI-CoreBioinformatics/minos
https://doi.org/10.5281/zenodo.6621429
https://doi.org/10.5281/zenodo.6621429
https://doi.org/10.12688/f1000research.7563.2
https://doi.org/10.12688/f1000research.7563.2


Nature Plants | Volume 9 | September 2023 | 1419–1438 1437

Article https://doi.org/10.1038/s41477-023-01491-0

126.	Law, C. W., Chen, Y., Shi, W. & Smyth, G. K.voom: precision weights 
unlock linear model analysis tools for RNA-seq read counts. 
Genome Biol. 15, R29 (2014).

127.	 Liu, R. et al. Why weight? Modelling sample and observational 
level variability improves power in RNA-seq analyses. Nucleic 
Acids Res. 43, e97 (2015).

128.	Wickham, H. ggplot2: Elegant Graphics for Data Analysis (Springer, 
2022).

129.	Langfelder, P. & Horvath, S. Fast R functions for robust 
correlations and hierarchical clustering. J. Stat. Softw. 46, 1–17 
(2012).

130.	Yu, G., Wang, L.-G., Han, Y. & He, Q. Y. clusterProfiler: an R package 
for comparing biological themes among gene clusters. OMICS 
16, 284–287 (2012).

131.	 Wu, T. et al. clusterProfiler 4.0: a universal enrichment tool for 
interpreting omics data. Innovation 2, 100141 (2021).

132.	Wijesooriya, K., Jadaan, S. A., Perera, K. L., Kaur, T. & Ziemann, M. 
Urgent need for consistent standards in functional enrichment 
analysis. PLoS Comput. Biol. 18, e1009935 (2022).

133.	Smyth, G. K., Michaud, J. & Scott, H. S. Use of within-array 
replicate spots for assessing differential expression in microarray 
experiments. Bioinformatics 21, 2067–2075 (2005).

134.	Amborella Genome Project. et al. The Amborella genome and the 
evolution of flowering plants. Science 342, 1241089 (2013).

135.	Lamesch, P. et al. The Arabidopsis Information Resource (TAIR): 
improved gene annotation and new tools. Nucleic Acids Res. 40, 
D1202–D1210 (2012).

136.	Moreau, H. et al. Gene functionalities and genome structure in 
Bathycoccus prasinos reflect cellular specializations at the base of 
the green lineage. Genome Biol. 13, R74 (2012).

137.	 Liu, S. et al. The Brassica oleracea genome reveals the 
asymmetrical evolution of polyploid genomes. Nat. Commun. 5, 
3930 (2014).

138.	Wang, X. et al. The genome of the mesopolyploid crop species 
Brassica rapa. Nat. Genet. 43, 1035–1039 (2011).

139.	The International Brachypodium Initiative.Genome sequencing 
and analysis of the model grass Brachypodium distachyon. Nature 
463, 763–768 (2010).

140.	Slotte, T. et al. The Capsella rubella genome and the genomic 
consequences of rapid mating system evolution. Nat. Genet. 45, 
831–835 (2013).

141.	 Blanc, G. et al. The genome of the polar eukaryotic microalga 
Coccomyxa subellipsoidea reveals traits of cold adaptation. 
Genome Biol. 13, R39 (2012).

142.	Wan, T. et al. A genome for gnetophytes and early evolution of 
seed plants. Nat. Plants 4, 82–89 (2018).

143.	Bowman, J. L. et al. Insights into land plant evolution garnered 
from the Marchantia polymorpha genome . Cell 171, 287–304.e15 
(2017).

144.	Worden, A. Z. et al. Green evolution and dynamic adaptations 
revealed by genomes of the marine picoeukaryotes Micromonas. 
Science 324, 268–272 (2009).

145.	Ouyang, S. et al. The TIGR Rice Genome Annotation Resource: 
improvements and new features. Nucleic Acids Res. 35,  
D883–D887 (2007).

146.	Nystedt, B. et al. The Norway spruce genome sequence and 
conifer genome evolution. Nature 497, 579–584 (2013).

147.	 The Tomato Genome Consortium.The tomato genome sequence 
provides insights into fleshy fruit evolution. Nature 485, 635–641 
(2012).

148.	Argout, X. et al. The genome of Theobroma cacao. Nat. Genet. 43, 
101–108 (2011).

149.	Palenik, B. et al. The tiny eukaryote Ostreococcus provides 
genomic insights into the paradox of plankton speciation. Proc. 
Natl Acad. Sci. USA 104, 7705–7710 (2007).

150.	De Clerck, O. et al. Insights into the evolution of multicellularity 
from the sea lettuce genome. Curr. Biol. 28, 2921–2933.e5 (2018).

151.	 Prochnik, S. E. et al. Genomic analysis of organismal complexity in 
the multicellular green alga Volvox carteri. Science 329, 223–226 
(2010).

152.	Wickell, D. et al. Underwater CAM photosynthesis elucidated by 
Isoetes genome. Nat. Commun. 12, 6348 (2021).

153.	Marchant, D. B. et al. Dynamic genome evolution in a model fern. 
Nat. Plants 8, 1038–1051 (2022).

154.	Katoh, K. & Standley, D. M. MAFFT multiple sequence alignment 
software version 7: improvements in performance and usability. 
Mol. Biol. Evol. 30, 772–780 (2013).

155.	Nguyen, L.-T., Schmidt, H. A., von Haeseler, A. & Minh, B. Q. 
IQ-TREE: a fast and effective stochastic algorithm for estimating 
maximum-likelihood phylogenies. Mol. Biol. Evol. 32, 268–274 
(2015).

156.	Kalyaanamoorthy, S., Minh, B. Q., Wong, T. K. F., von Haeseler, A. 
& Jermiin, L. S. ModelFinder: fast model selection for accurate 
phylogenetic estimates. Nat. Methods 14, 587–589 (2017).

157.	 Hoang, D. T., Chernomor, O., von Haeseler, A., Minh, B. Q. & Vinh, 
L. S. UFBoot2: improving the ultrafast bootstrap approximation. 
Mol. Biol. Evol. 35, 518–522 (2018).

158.	Felsenstein, J. Confidence limits on phylogenies: an approach 
using the bootstrap. Evolution 39, 783–791 (1985).

159.	Schindelin, J. et al. Fiji: an open-source platform for 
biological-image analysis. Nat. Methods 9, 676–682 (2012).

160.	Shapiro, S. S. & Wilk, M. B. An analysis of variance test for 
normality (complete samples). Biometrika 52, 591–611 (1965).

161.	 Mann, H. B. & Whitney, D. R. On a test of whether one of two 
random variables is stochastically larger than the other. Ann. 
Math. Stat. 1, 50–60 (1947).

162.	Müller, A. O., Blersch, K. F., Gippert, A. L. & Ischebeck, T. Tobacco 
pollen tubes—a fast and easy tool for studying lipid droplet 
association of plant proteins. Plant J. 89, 1055–1064 (2017).

163.	Shevchenko, A., Wilm, M., Vorm, O. & Mann, M. Mass 
spectrometric sequencing of proteins from silver-stained 
polyacrylamide gels. Anal. Chem. 68, 850–858 (1996).

164.	Rappsilber, J., Ishihama, Y. & Mann, M. Stop and go extraction tips 
for matrix-assisted laser desorption/ionization, nanoelectrospray, 
and LC/MS sample pretreatment in proteomics. Anal. Chem. 75, 
663–670 (2003).

165.	Rappsilber, J., Mann, M. & Ishihama, Y. Protocol for 
micro-purification, enrichment, pre-fractionation and storage of 
peptides for proteomics using StageTips. Nat. Protoc. 2, 1896–
1906 (2007).

166.	Cox, J. & Mann, M. MaxQuant enables high peptide identification 
rates, individualized p.p.b.-range mass accuracies and 
proteome-wide protein quantification. Nat. Biotechnol. 26, 
1367–1372 (2008).

167.	 Tyanova, S. et al. The Perseus computational platform for 
comprehensive analysis of (prote)omics data. Nat. Methods 13, 
731–740 (2016).

168.	Wang, Z. & Benning, C. Arabidopsis thaliana polar glycerolipid 
profiling by thin layer chromatography (TLC) coupled with 
gas-liquid chromatography (GLC). J. Vis. Exp. https://doi. 
org/10.3791/2518 (2011).

169.	Reich, M. et al. Fatty acid metabolism in the ectomycorrhizal 
fungus Laccaria bicolor. New Phytol. 182, 950–964 (2009).

170.	Miquel, M. & Browse, J. Arabidopsis mutants deficient in 
polyunsaturated fatty acid synthesis. Biochemical and genetic 
characterization of a plant oleoyl-phosphatidylcholine 
desaturase. J. Biol. Chem. 267, 1502–1509 (1992).

171.	 Hornung, E. et al. Production of (10E,12Z)-conjugated linoleic acid 
in yeast and tobacco seeds. Biochim. Biophys. Acta 1738, 105–114 
(2005).

http://www.nature.com/natureplants
https://doi.org/10.3791/2518
https://doi.org/10.3791/2518


Nature Plants | Volume 9 | September 2023 | 1419–1438 1438

Article https://doi.org/10.1038/s41477-023-01491-0

172.	 Jiao, Y. et al. Improved maize reference genome with 
single-molecule technologies. Nature 546, 524–527 (2017).

173.	Clauw, P. et al. Leaf responses to mild drought stress in natural 
variants of Arabidopsis. Plant Physiol. 167, 800–816 (2015).

174.	 Lu, Z. et al. Genome-wide DNA mutations in Arabidopsis plants 
after multigenerational exposure to high temperatures. Genome 
Biol. 22, 160 (2021).

175.	 Suzuki, N. et al. ABA is required for plant acclimation to a 
combination of salt and heat stress. PLoS ONE 11, e0147625 
(2016).

176.	Wang, L. et al. Differential physiological, transcriptomic and 
metabolomic responses of Arabidopsis leaves under prolonged 
warming and heat shock. BMC Plant Biol. 20, 86 (2020).

177.	 Zhang, S.-S. et al. Tissue-specific transcriptomics reveals an 
important role of the unfolded protein response in maintaining 
fertility upon heat stress in Arabidopsis. Plant Cell 29, 1007–1023 
(2017).

178.	 Elzanati, O., Mouzeyar, S. & Roche, J. Dynamics of the 
transcriptome response to heat in the moss, Physcomitrella 
patens. IJMS 21, 1512 (2020).

179.	 Jahan, A. et al. Archetypal roles of an abscisic acid receptor in 
drought and sugar responses in liverworts. Plant Physiol. 179, 
317–328 (2019).

180.	Lagercrantz, U. et al. DE‐ETIOLATED1 has a role in the circadian 
clock of the liverwort Marchantia polymorpha. New Phytol. 232, 
595–609 (2021).

181.	 Wu, T.-Y. et al. Evolutionarily conserved hierarchical gene 
regulatory networks for plant salt stress response. Nat. Plants 7, 
787–799 (2021).

182.	Zhang, Y., Parmigiani, G. & Johnson, W. E. ComBat-seq: batch 
effect adjustment for RNA-seq count data. NAR Genom. Bioinform. 
2, lqaa078 (2020).

183.	Grabherr, M. G. et al. Full-length transcriptome assembly from 
RNA-seq data without a reference genome. Nat. Biotechnol. 29, 
644–652 (2011).

184.	Almeida-Silva, F. & Venancio, T. M. cageminer: an R/Bioconductor 
package to prioritize candidate genes by integrating 
genome-wide association studies and gene coexpression 
networks. In Silico Plants 4, diac018 (2022).

185.	Jones, P. et al. InterProScan 5: genome-scale protein function 
classification. Bioinformatics 30, 1236–1240 (2014).

Acknowledgements
We thank R. Heise for excellent technical support. J.d.V. thanks the 
European Research Council for funding under the European Union’s 
Horizon 2020 research and innovation programme (grant agreement 
no. 852725; ERC-StG ‘TerreStriAL’). J.d.V., U.H., I.F. and H.B. are grateful 
for support through the German Research Foundation (DFG), on the 
grant SHOAL (514060973; VR132/11-1) and within the framework of the 
Priority Programme ‘MAdLand – Molecular Adaptation to Land: Plant 
Evolution to Change’ (SPP 2237; 440231723 VR 132/4-1; BU 2301/6-1; 
HO 2793/5-1; FE 446/14-1), in which T.P.R. and M.H. are PhD students 
and A.D., J.M.R.F.-J and I.I. partake as associate members. A.D. is 
grateful for being supported through the International Max Planck 
Research School (IMPRS) for Genome Science. J.M.R.F.-J. and T.P.R. 
gratefully acknowledge support by the PhD programme ‘Microbiology 
and Biochemistry’ within the framework of the ‘Göttingen Graduate 
Center for Neurosciences, Biophysics, and Molecular Biosciences’ 
(GGNB) at the University of Goettingen. P.S. was supported by the 
GGNB in frame of the PRoTECT programme at the University of 
Goettingen. T.I. acknowledges funding from DFG (GRK 2172-PRoTECT). 
M.M. is supported by Singaporean Ministry of Education grant 

T2EP30122-0001. P.S. is grateful for support from the Studienstiftung 
des Deutschen Volkes. This work was further supported by the DFG 
through the infrastructure grant INST 211/903-1 FUGG for the used 
confocal microscope as operated by the Imaging Network of the 
University of Münster (RI_00497). We thank C. Gatz and G. Kriete 
for giving us access to the ImagMAX/L PAM in the Department of 
Plant Molecular Biology and Physiology. We are grateful to T. Friedl 
for supporting us with access to the facilities of the Department 
of Experimental Phycology and SAG Culture Collection of Algae, 
including cultivation facilities, the Olympus BX-60 microscope and 
the absorbance microplate reader Epoch (BioTek Instruments).

Author contributions
J.d.V. and M.L. conceived the project. J.d.V. coordinated the project 
with M.M. M.L. provided the plant material. J.M.R.F.-J., T.D., S.S., 
M.L., and T.P.R. performed the experimental work. A.D. carried out 
the computational analysis. O.V., J.M.R.F.-J., P.S., T.I., D.K. and G.H.B. 
performed the proteomics. D.K., C.H. and I.F. performed the lipid 
profiling. H.B. investigated the cell division patterns. M.H. and U.H. 
investigated the photomorphogenesis patterns. A.D. and R.S. built the 
web resources. J.d.V., A.D. and J.M.R.F.-J. contributed to writing the 
manuscript. J.d.V. organized the manuscript. All authors commented, 
discussed and provided input on the final manuscript.

Competing interests
The authors declare no competing interests.

Additional information
Extended data is available for this paper at  
https://doi.org/10.1038/s41477-023-01491-0.

Supplementary information The online version  
contains supplementary material available at  
https://doi.org/10.1038/s41477-023-01491-0.

Correspondence and requests for materials should be addressed to 
Jan de Vries.

Peer review information Nature Plants thanks Xin Liu, Mingbing Zhou 
and Haim Treves for their contribution to the peer review of this work.

Reprints and permissions information is available at  
www.nature.com/reprints.

Publisher’s note Springer Nature remains neutral with regard to 
jurisdictional claims in published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons 
Attribution 4.0 International License, which permits use, sharing, 
adaptation, distribution and reproduction in any medium or format, 
as long as you give appropriate credit to the original author(s) and the 
source, provide a link to the Creative Commons license, and indicate 
if changes were made. The images or other third party material in this 
article are included in the article’s Creative Commons license, unless 
indicated otherwise in a credit line to the material. If material is not 
included in the article’s Creative Commons license and your intended 
use is not permitted by statutory regulation or exceeds the permitted 
use, you will need to obtain permission directly from the copyright 
holder. To view a copy of this license, visit http://creativecommons. 
org/licenses/by/4.0/.

© The Author(s) 2023

http://www.nature.com/natureplants
https://doi.org/10.1038/s41477-023-01491-0
https://doi.org/10.1038/s41477-023-01491-0
http://www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/


Nature Plants

Article https://doi.org/10.1038/s41477-023-01491-0

chloroplast thylakoid
membrane

carbohydrate
transmembrane
transporter activity

carbohydrate
transmembrane

transport

response to toxic
substance

leucine
metabolic
process

branched−chain amino
acid catabolic process

branched−chain amino
acidmetabolic process

leucine
catabolic
process

organic acid
catabolic
process

carboxylic acid
catabolic process

mitochondrial
transport

mitochondrial
matrix

lipid
catabolic
process

metal ion
binding

apoplast

transmembrane
transport

transmembrane
transporter activity

plastid thylakoid
membrane

photosynthetic
membrane

thylakoid
membrane obsolete thylakoid part

chloroplast thylakoid
plastid
thylakoid

thylakoid

photosynthesis, light harvesting in photosystem I
pigment
binding response to far

red light

chlorophyll
binding

plastid
envelope

chloroplast
envelope

plastoglobule

chloroplast thylakoid
membrane protein complex

response to high light
intensity

photosynthesis,
light harvesting

response
to red light

photosystem

tetrapyrrole
binding

response to
blue light

response to
light stimulus

response to
light intensity

photosynthesis,
light reaction

protein domain specific binding photosystem II

photosystem I

response to
radiation

photosynthesis
response to red
or far red light

thylakoid
light−harvesting

complex

response toUV−B

response towater
deprivation

response
towater

response to
temperature
stimulus

cellular response to
abscisic acid stimulus

cellular
response to
alcohol

response
to cold

generation of precursor
metabolites and energy

cellular response to high light intensity

cellular
response
to far red
light

cellular response
to red light

response to
acid chemical

cellular
response to
light intensity

response to
UV−A

cellular response toUV−A

cellular
response to

lipid

photoprotection

positive regulation of seed germination
regulation of chlorophyll metabolic process

positive regulation of ROSmetabolic
regulation of chlorophyll biosynthetic process

regulation of tetrapyrrole
biosynthetic process

response to
abscisic acid

response
to alcohol

response
to karrikin

obsolete
oxidation−reduction

process

oxidoreductase
activity

cellular
response to
blue light

cellular response to heat

response to
lipid

abscisic
acid−activated

signaling pathway

calmodulin
binding

10
3961
242

Cluster
Fv/Fm < 0.5
LLI_LT
MLI_LT
HLI_LT
MLI_MT
HLI_MT
LLI_HT
MLI_HT
HLI_HT

vs.
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Extended Data Fig. 2 | Heat maps of average differential gene expression 
in log2(fold change) per HOG. From the strongest upregulation in red to the 
strongest downregulation in blue; black means that no HOG was found. The heat 

maps were sorted by phylogeny (see the cladogram on the left) and treatment 
(written on the right); light teal highlights the data on Zygnematophyceae,  
dark teal on Mesotaenium endlicherianum.
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Extended Data Fig. 3 | Enriched GO-terms for eight of the 26 modules; each 
inset shows the gene expression profiles of all genes in a given module. (a–i) 
Arabidopsis homologs for key processes were mined based on keywords; they 
were retrieved from a look-up table of BLASTp hits in a search of Mesotaenium 
V2 against A. thaliana representative protein sequences. Bar charts show the 
percentage of detected Mesotaenium homologs across the modules relative to 

the number of all Arabidopsis IDs assigned to the terms. No BLAST hit was not 
depicted. Abbreviations: proc. = process; reg. = regulation; biogen. = biogenesis; 
develop. = development; pos. = positive; neg. = negative; init. = initiation; 
GEP = Gene expression profile; med. = mediated; dep. = dependent; modif. = 
modification; conjug. = conjugation; anneal. = annealing; compl. = complex; 
synth. = synthesis; resp. = response; transf. = transferring.
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Extended Data Fig. 4 | Pre-experimental setups: temperature conditions 
comparison, light intensities, and light spectra. (a) Temperature conditions 
for the first experimental setup (n1(I)) depicted by a blue to red color gradient 
(see also supplementary table ST 1.4). (b) Temperature conditions for the second 
and the final experimental setup (n1(II), n2(II), n1(III), n2(III), and n3(III)) depicted 
by a blue to red color gradient (see also supplementary table ST 1.2). (c) Light 
intensity/irradiance values depicted by a green to yellow color gradient (see also 

supplementary table ST 1.1). (d) Average light spectra of the gradient table (blue) 
assessed using SpectraPen (PSI, Brno, CZ) compared to a spectra assessed of 
natural sunlight (orange). (e) Light spectra of various plates of the gradient table 
(see overview) in various shades of blue assessed using SpectraPen (PSI, Brno, 
CZ) compared to a light spectrum assessed of natural sunlight (orange) and a 
light spectrum from a growth lamp used for flowering plants.
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Extended Data Fig. 5 | Pre-experimental setup II: Fv/Fm, absorption, and 
morphology. (a) Fv/Fm values (blue gradient) and absorption values (orange, 
green, grey color gradient, Colors indicate measured wavelength: orange 
gradients = Absorption measured at λ 480 nm, green gradients = Absorption 
measured at λ 680 nm, grey gradients = Absorption measured at λ 750 nm) of the 
first pre-experimental setup (n1(I)) with temperature settings ranging from 12.7–
34 °C. (b) Fv/Fm and absorption values of second pre- experimental setup (n1(II) 
and n2(II)) and averaged values (n1-2 Av.) with new temperature settings ranging 
from 8.6 -29.0 °C. (c) Photographs of the pre-experimental setups n1(I) with 

temperature conditions ranging from 12.7–34 °C and n2(II) with temperature 
conditions ranging from 8.6 to 29.0 °C after incubation on the table for 216 h 
(n1(I)) or 191 h (n2(II)) respectively. The photograph of pre-experiment n2(I) 
is not shown. (d) Differential interference contrast (DIC) micrographs of SAG 
12.97 cells (pre-experimental setup n1(II)) under most extreme environmental 
conditions (four corners: samples 1, 6, 37, and 42) as well as under high irradiance 
527.8 µmol photons m-2 s-1 at 20.5 °C; for each well, at least 10 micrographs were 
taken, all showing similar phenotypes of the cells.
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Extended Data Fig. 6 | Main-experimental setup (n1,2,3 (III)): Morphology 
and growth. (a) Photographs of the main experimental setups n1, n2, and n3 (III) 
with temperature conditions ranging from 8.6 to 29.0 °C after incubation on the 
table for 65 h. (b) Fm measurements (maximal fluorescence) using IMAGING-
PAM in various table conditions, legend on the right is a false color gradient 
indicating fluorescence intensity. (c) Differential interference contrast (DIC) 
micrographs of SAG12.97 cells grown on C-Medium (growth conditions see 
methods: growth conditions prior to exposure to environmental conditions); 

at least 10 micrographs were taken, all showing similar phenotypes of the cells. 
(d) Differential interference contrast (DIC) micrographs of SAG12.97 under most 
extreme environmental conditions (four corners: samples 1, 6, 37, and 42) as 
well as along an irradiance gradient at 21 °C (samples 19–24) and a temperature 
gradient at 130 µmol photons m-2 s-1 (samples 3, 9, 15, 21, 27, 33, and 39); for each 
well, at least 10 micrographs were taken, all showing similar phenotypes of  
the cells.
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Extended Data Fig. 7 | Differential gene expression comparisons highlight 
plastid-related responses. (a) Biological theme comparison of GO terms 
enriched in differential gene expression analyses in which one factor was always 
kept constant; the top 10 different connected graphs are shown. (b) Wordle of the 

124 genes that showed significant regulation across multiple comparisons shown 
in main Fig. 2f,g and Extended Data Fig. 1; word size correspond to the number 
of comparisons in which a gene appeared. Color serves to increase the contrast 
between words.
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