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Abstract

The widespread bacterial second messenger c-di-GMP is responsible for regulating many important physiological functions such as
biofilm formation, motility, cell differentiation, and virulence. The synthesis and degradation of c-di-GMP in bacterial cells depend,
respectively, on diguanylate cyclases and c-di-GMP-specific phosphodiesterases. Since c-di-GMP metabolic enzymes (CMEs) are often
fused to sensory domains, their activities are likely controlled by environmental signals, thereby altering cellular c-di-GMP levels and
regulating bacterial adaptive behaviors. Previous studies on c-di-GMP-mediated regulation mainly focused on downstream signaling
pathways, including the identification of CMEs, cellular c-di-GMP receptors, and c-di-GMP-regulated processes. The mechanisms of
CME regulation by upstream signaling modules received less attention, resulting in a limited understanding of the c-di-GMP regulatory
networks. We review here the diversity of sensory domains related to bacterial CME regulation. We specifically discuss those domains
that are capable of sensing gaseous or light signals and the mechanisms they use for regulating cellular c-di-GMP levels. It is hoped
that this review would help refine the complete c-di-GMP regulatory networks and improve our understanding of bacterial behaviors
in changing environments. In practical terms, this may eventually provide a way to control c-di-GMP-mediated bacterial biofilm

formation and pathogenesis in general.
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Introduction

Unlike intracellular bacteria that inhabit stable ecological niches,
most free-living bacteria face complex and rapidly changing eco-
logical environments. To survive, these bacteria need to be able
to monitor changes in various physical or chemical parameters
around them and respond quickly to adapt to various environ-
ments (Mascher et al. 2006). As a result, they have evolved com-
plex signal transduction systems. Research in this field allowed
discovering several different bacterial signal transduction sys-
tems, including, among others, the two-component signal trans-
duction systems (Stock et al. 2000), one-component transcrip-
tional regulators (Ulrich et al. 2005), the alternative sigma factor
regulatory systems (Mascher 2013), methyl-accepting chemotaxis
receptor protein (MCP)-based chemosensory systems (Miller et al.
2009, Ortega et al. 2017), and protein kinase cascades (Shi et al.
1998, Pereira et al. 2011). However, most of these signal transduc-
tion pathways act in a relatively straightforward way and typi-
cally regulate only certain classes of downstream targets. In con-
trast to these systems, second messenger signaling pathways are
characterized by a multitude of potential receptors, comprising a
new and constantly expanding field of bacterial signaling path-
ways (Romling et al. 2013, He et al. 2020, Lowey et al. 2020, Stiilke
and Kriiger 2020).

The second messenger systems are important components
of the signal transduction networks. In eukaryotes, they can be
roughly divided into four categories: nucleotides, lipids, gases, and
free radicals or ions (Newton et al. 2016). In bacteria, there are

mostly nucleotide second messengers, specific nucleotide deriva-
tives that are not used in cellular nucleic acid synthesis (Stilke
and Kriiger 2020). Nucleotide second messengers found in bac-
teria include guanosine-(penta- or tetra-)phosphate ((p)ppGpp),
cyclic adenosine monophosphate (cAMP), cyclic di-adenosine
monophosphate (c-di-AMP), cyclic di-guanosine monophosphate
(c-di-GMP), cyclic GMP-AMP (cGAMP), and some others (Lau et al.
2020, Lowey et al. 2020). They act to bridge bacterial signal per-
ception with cellular response(s). When the cell surface recep-
tors (or receptor domains) receive extracellular signals (first mes-
sengers), they can affect the catalytic activities of various intra-
cellular enzymes, including cyclic nucleotide synthases and hy-
drolases, resulting in changes in the concentrations of certain
nucleotide molecules, which serve as the “second messengers.”
Alterations of the second messenger levels affect their binding to
downstream receptors, which regulate specific physiological func-
tions of bacteria.

Signal transduction systems that rely on nucleotide second
messengers have distinct advantages. First, the concentrations
of nucleotide second messengers are directly controlled by their
metabolic enzymes, which, upon receiving a specific signal, can
rapidly change the cellular concentrations of the respective sec-
ond messenger, which, in turn, would alter the properties (ac-
tivity, conformation, and/or oligomeric state) of their receptor(s).
Second, cellular receptors of nucleotide second messengers in
bacteria are typically abundant and diverse, enabling them to
regulate downstream pathways in multiple ways (expression,
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enzymatic activity, and binding properties). Such a signal trans-
duction system allows the bacteria to participate in continu-
ous sensing and/or coordinated regulation of a single biologi-
cal process (Orr et al. 2016, Stilke and Kriiger 2020). Therefore,
bacteria can rely on the nucleotide second messenger-mediated
signal transduction systems to enhance their environmental
adaptability.

c-di-GMP is a cyclic dinucleotide present in a wide variety of
bacteria (Romling et al. 2013). Its synthesis and degradation are
regulated by diguanylate cyclases (DGCs) containing the GGDEF
domain (which typically contains the Gly-Gly-Asp/Glu-Glu-Phe
sequence motif) and c-di-GMP specific phosphodiesterases (PDEs)
containing either EAL or HD-GYP domains, so named after their
conserved sequence motifs, Glu-Ala-Leu in case of the EAL do-
main and His-Asp and Gly-Tyr-Pro motifs in case of the HD-GYP
domain. DGCs and PDEs are collectively referred to as c-di-GMP
metabolic enzymes (CMEs) (Dahlstrom and O’Toole 2017, Jenal
et al. 2017).

CMEs typically act as mediators that transform environmental
signals into c-di-GMP concentration changes, thereby participat-
ing in signal transduction and regulating bacterial behaviors. Sig-
naling CMEs can be divided into two categories based on the way
they sense signals.

(1) Many signaling CMEs combine sensory domains and an en-
zymatic domain in a single protein, and can directly re-
spond to various signal stimuli including gases, light, redox
state, temperature, and chemical compounds; these CMEs
can be referred to as one-component systems (Ulrich et al.
2005). They are thought to be the predominant mode of
sensing in bacteria, and this type of CMEs is also the most
easily recognized by bioinformatics.

(2) However, some CMEs can still respond to stimuli despite
having no sensory domains themselves. This usually hap-
pens in one of two ways. First, part of the CMEs receive
signals through protein-protein interactions with proteins
containing the sensory domains. Second, other CMEs act
as downstream response regulators in two-component sys-
tems or more complex multicomponent phosphorelay sys-
tems (e.g. chemosensory cascades) and alter their enzy-
matic activities in response to the transfer of the phospho-
ryl group to upstream phosphoacceptor domains.

Although the specific mechanisms of signal sensing in signal-
ing CMEs are different, the common feature is that after receiving
signals, these CMEs adjust their catalytic activities through con-
formational changes, thereby altering the concentrations of c-di-
GMP in bacteria. Concentration fluctuations are then sensed by
specific downstream receptors, which in turn regulate multiple
bacterial physiological functions (Wang et al. 2016, Valentini and
Filloux 2019), including biofilm formation (Ha and O’Toole 2015,
Teschler et al. 2022), motility (Sun et al. 2020), cell differentia-
tion (Lori et al. 2015, Kaczmarczyk et al. 2020), phage resistance
(Junkermeier and Hengge 2021, Sellner et al. 2021), and virulence
factors expression (Fu et al. 2018, Hall and Lee 2018).

Because of the rich regulatory functions of c-di-GMP, the down-
stream components of c-di-GMP-dependent signaling pathways,
such as the nature of c-di-GMP receptors and the organization
of c-di-GMP-regulated networks, have been studied in detail for
more than 35 years. However, studies of the upstream signals
that the CMEs respond to are relatively limited, and relevant re-
views are even rarer. The lack of comprehensive information on
the kinds of signals modulating the c-di-GMP levels affects our
understanding of the c-di-GMP regulatory networks and hinders
the studies of the environmental adaptability of bacteria.

Considering the variety of the sensing capabilities of signaling
CMEs and the paucity of comprehensive reviews of this subject,
we believe that there is a need for a focused and in-depth anal-
ysis of the upstream signaling pathways that control bacterial c-
di-GMP levels. Here, we have focused on the sensory domains ca-
pable of sensing gas and light to modulate the activity of CMEs.
We discuss their various types, structures, and regulatory mecha-
nisms, hoping to promote further research in this important area
of signal transduction.

Diversity of sensory domains in bacterial
CMEs

CMEs, which catalyze synthesis and hydrolysis of c-di-GMP, are
widespread in the microbial world. While the presence of such
enzymes in archaea and eukaryotes is limited to just a few
cases, such as Methanocella arvoryzae MRE50 and Dictyostelium
discoideum, respectively (Chen and Schaap 2012), CME genes
are found in the genomes of all bacterial phyla sampled so far
(Galperin 2005, Rémling et al. 2013). These enzymes are encoded
by most free-living bacteria and even by obligately intracellu-
lar vector-borne pathogens of the order Rickettsiales that have
genome sizes under 900 kb and cause such diseases as human
ehrlichiosis and Potomac horse fever. Remarkably, most of these
enzymes combine the enzymatic (DGC or PDE) domains with
N-terminal regions that in many cases have been recognized as
ligand-binding sensory domains.

In fact, the early discovery of c-di-GMP as a component of the
signal transduction machinery was partly due to the presence of
the PAS domain in the Komagataeibacter xylinus CMEs (Tal et al.
1998, Chang et al. 2001). Indeed, a great majority of CMEs are cou-
pled to such signaling domains as PAS (named after Per, ARNT,
and Sim proteins) (Huang et al. 1993), GAF (the common domain
in cGMP-specific and cGMP-stimulated PDEs, adenylate cyclases,
and Escherichia coli FhlA) (Hurley 2003), and REC (the receiver do-
main of two-component response regulators). Interestingly, the
PAS and GAF domains adopt similar topologies (Ho et al. 2000), and
ligand-binding pockets of both can accommodate cofactors such
as heme and flavin (Gilles-Gonzalez and Gonzalez 2004). These co-
factors endow sensing specificity to the sensory domains, allowing
proteins containing these domains to sense diatomic gases, light,
redox state, and other signals (Taylor and Zhulin 1999).

In the past several years, a wide variety of other sensory
domains have been identified in CMEs. These include, among
others, the globin-coupled sensor (GCS) domains (Wan et al.
2009, Patterson et al. 2021), periplasmic calcium channel and
chemotaxis (CACHE) domains (Upadhyay et al. 2016, Giacalone
et al. 2018), periplasmic (extracytoplasmic) cyclases/histidine
kinases-associated sensory extracellular (CHASE) domain and
gamma-proteobacterial periplasmic sensor (GAPES) domain se-
ries, CHASE1 through CHASES and GAPES1 through GAPES4
(Hengge et al. 2015), as well as a dozen of membrane-associated
sensor (MASE) integral membrane domains, from MASE1 (Nikol-
skaya et al. 2003, Phiffer et al. 2019) to MASE12 (Galperin and Chou
2022, Martin-Rodriguez et al. 2022). A given CME may contain a
single sensory domain that would sense a specific signal (or a
group of related ligands), or multiple sensory domains for signal
amplification, attenuation, or integration of multiple environmen-
tal signals. The diverse combinations of various sensory domains
in CMEs can be expected to help the cells to specifically and pre-
cisely regulate the c-di-GMP concentrations, thus conferring upon
the bacteria high adaptability to environmental changes.

Table 1 shows the distribution of 112 sensory domains, which
include 96 distinct domains and several sequence models for
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PAS, GAF, and tetratricopeptide repeat (TPR) domains [Table S1
(Supporting Information) contains actual domain counts but they
are variable]. As sensor domains are often promiscuous, being
shared by CMEs, MCPs, sensor histidine kinases, and other bac-
terial receptors such as adenylate cyclases and serine/threonine
protein kinases (Zhulin et al. 2003), this list shows a signifi-
cant overlap with the one that was compiled recently for sensor
kinases, chemoreceptors and transcriptional regulators (Matilla
et al. 2022). Analysis of the sensory domain composition of the
signaling CMEs reveals that their distribution is quite uneven.

First, the number of signal sensory domains coupled to c-di-
GMP metabolic domains is found to vary widely in different bac-
teria. CMEs are widely distributed in Proteobacteria, especially in
y-Proteobacteria. The number of CMEs encoded by each genome of
these bacteria often reaches dozens, and most of them contain
CMEs with signal sensory domains. As an example, the genome
of Pseudomonas aeruginosa PAO1 encodes 43 CMEs, of which 16
CMEs contain PAS or GAF domains (Valentini and Filloux 2016).
In contrast, bacteria from the phyla Firmicutes and Actinobacte-
ria generally encode only a few CMEs. The number and type of
signaling proteins contained in bacteria usually depend on the
phylogenetic position, lifestyle, and environment of the bacterium
(Galperin 2005). Thus, a wide diversity of signaling CMEs has been
frequently seen in some opportunistic pathogens that face com-
plex environments (Randall et al. 2022).

In addition to the differences in the number of CMEs encoded
in different bacteria, many CMEs differ in the number of sen-
sory domains per molecule. The composition of the sensory do-
mains in a given CME appears to determine their specific role(s)
in the bacterium. Table 1 clearly shows that the EAL- and HD-GYP-
containing PDEs usually contain fewer sensory domains com-
pared to their numbers in the GGDEF domain-containing DGCs
and the GGDEF-EAL hybrid proteins. The relative paucity of sen-
sory domains in EAL-only PDEs, as well as the typically lesser
number of EAL-only protein-encoding genes in most genomes
compared to the number of the GGDEF domain proteins (Galperin
2005), may indicate that EAL-containing PDEs serve primarily as
a sink for the c-di-GMP molecules, non-specifically lowering its
cellular levels. Likewise, HD-GYP-containing PDEs rarely contain
multiple sensory domains (Galperin and Chou 2022). In contrast,
the complex sensory domain network of GGDEF-EAL hybrid pro-
teins may allow them to quickly respond to extracellular or in-
tracellular signals by switching their enzymatic activities (DGC
to PDE and back) and thereby control the c-di-GMP levels and
c-di-GMP-mediated responses. The fountain model proposed by
Sarenko et al. (2017) can well explain these results, in which some
of these CMEs form cellular c-di-GMP pools while others perform
specific local functions.

In conclusion, the distribution of sensory domains in CMEs is
related to the complexity of the environment and specific func-
tional characteristics of related proteins, which fully reflects the
important role of signaling CMEs in bacterial signal transduction
and environmental adaptation.

Regulation of c-di-GMP levels via
heme-based gas-sensing domains

Gaseous molecules are ubiquitous in the environment and have
high cell membrane permeability. They can serve as nutrients [e.g.
carbon dioxide (CO,)], terminal electron acceptors [e.g. oxygen
(0)], or just act as signal molecules [e.g. nitric oxide (NO)] to reg-
ulate physiological processes in bacteria. Gas-sensing proteins in

bacteria usually rely on cofactors such as heme, iron-sulfur clus-
ter, or nonheme iron to capture gaseous molecules; heme-based
regulators appear to predominate (Aono 2008).

Heme-based gas-sensing proteins typically use the iron-bound
form of heme b (protoporphyrin IX) as a cofactor in their active
site to exploit the redox-switching properties of iron for signal
transduction. The iron atom present at the center of the heme
porphyrin is able to coordinate six ligands: four nitrogen atoms
at the center of the heme porphyrin ring, side chain of a His or
Cys residue of the protein, and, finally, an exogenous ligand or
another amino acid side chain (Farhana et al. 2012). When the
gaseous molecule acting as an exogenous ligand associates with
(or dissociates from) the sixth binding site of the heme-Fe com-
plex, the coordination structure of the heme iron changes, causing
accompanying changes in the surrounding protein. These struc-
tural changes generate a signal that can be transduced to the
functional domain, ultimately enabling various crucial physiolog-
ical functions to be switched on or off (Shimizu et al. 2015). The
ability to switch between the coordination states of heme iron is
essentially the basis for the signal transduction of heme-based
gas-sensing proteins. Meanwhile, the gaseous molecules recogni-
tion specificity of heme-based gas-sensing proteins depends on
the interaction of the amino acid residues around the heme group
with ligands (Jain and Chan 2003).

A variety of CMEs with heme-based gas-sensing domains have
been identified in bacteria that regulate cellular c-di-GMP con-
centrations in response to the presence of certain gases. Here, we
mainly discuss the gas-sensing domains in CMEs that are sensi-
tive to O, and NO, both of which are of physiological significance
in bacteria. We have chosen not to discuss the effects of carbon
monoxide (CO) binding since (i) CO is not a physiological axial lig-
and in bacteria, and (ii) CO-specific sensory domains are typically
found in transcription regulators, such as CooA from Rhodospiril-
lum rubrum or RcoM from Burkholderia xenonorans, and do not in-
clude any known CMEs (Shimizu et al. 2015).

0,-sensing domains

O, is one of the most abundant gases in the environment and
has important effects on many physiological processes of bacte-
ria, including biofilm formation (Mashruwala et al. 2017), motil-
ity (Taylor et al. 1999), respiration, chemotaxis (Muok et al. 2019),
and virulence. The ability to sense changes in O, availability is
essential for many bacteria to carry out physiological switching
and to counteract oxidative stress induced by reactive oxygen
species (ROS). This is especially true for pathogens because many
niches inside the host are hypoxic compared to the natural envi-
ronment. Monitoring O, concentrations enables these bacteria to
respond quickly by readjusting gene expression programs in the
face of environmental changes, thereby facilitating the switch be-
tween aerobic and anaerobic metabolism. Some CMEs containing
0O,-sensing domains have been identified in bacteria, and these
enzymes help bacteria sense the O, concentrations in the en-
vironment and convert it into a c-di-GMP concentration signal,
thereby inducing bacterial behavioral responses and enhancing
their environmental adaptability (Wan et al. 2009, Burns et al.
2017).

Currently, the reported O,-sensing domains in bacterial CMEs
can be divided into two categories—one is the heme-containing
PAS domain (heme-PAS domain), and the other is the heme-
containing GCS domain (heme-GCS domain). There are some dif-
ferences between the two O,-sensing mechanisms in bacteria as
described below.



Heme-PAS domains

PAS domains are important signaling modules that are widely dis-
tributed in prokaryotes and eukaryotes (Taylor and Zhulin 1999).
The core structure of the PAS domain is well-conserved across
species and consists of five antiparallel g-strands (Ag, Bg, Gg, Hp,
and Iz) and four a-helices (Cq, Dq, Eq, and F,) (Fig. 1A) (Moglich
et al. 2009). Some PAS domains rely on cofactors to directly sense
environmental signals such as light, gases, and redox state and
subsequently transmit the signal to the functional domain; while
the other PAS domains do not bind any ligands, but indirectly re-
spond to signals through the mediation of protein-protein inter-
action (Huang et al. 1993).

The heme-PAS domain belongs to the former group and can
accomplish ligand-dependent switching of a variety of functional
domains, including histidine kinases (HKs), MCPs, CMEs, and ba-
sic helix-loop-helix DNA-binding modules (Dioum et al. 2002).
Among identified signaling CMEs, the heme-PAS domains were
mostly reported in bacterial PDEs.

As early as 2000, the PDE EcDosP from E. coli was found to func-
tion as an O, sensor (Delgado-Nixon et al. 2000). It contains two
N-terminal PAS domains, but only the first PAS domain can bind
heme. The unliganded heme Fe complex in EcDosP inhibits cat-
alytic activity, while ligand binding to the heme-Fe(II) complex can
alleviate this inhibition (Tanaka and Shimizu 2008). In the absence
of any external ligands, both the heme-Fe(III) and Fe(II) complexes
of EcDosP are in a six-coordinated low-spin state (Tomita et al.
2002). In the ferric form, heme iron is attached to the side chain
His77 (proximal ligand) and a water molecule (distal ligand); when
reduced to the ferrous form, the distal axial ligand is changed
from a water molecule to Met95 on the FG-loop (encompassing
residues 86-97 between the F,-helix and Gg-strand) (Fig. 2). Bind-
ing of exogenous axial ligand O, molecules to the heme Fe(II) com-
plex is dependent on the dissociation of Met95 from the heme
plane (Kurokawa et al. 2004, Park et al. 2004). Thus, the ligand
binding process is accompanied by a change in protein confor-
mation, which relieves inhibition through intramolecular signal
transduction to enhance the PDE activity (Shimizu 2013).

KxPDEA1 from K. xylinus is also a PDE containing a heme-PAS
domain, although quite different from EcDosP in terms of struc-
ture and enzymatic properties. For example, the heme-free form
of apo-KxPDEA1 does not retain high catalytic activity like apo-
EcDosP but completely loses its activity. This suggests that the
presence of the heme-Fe complex in this protein is critical for
maintaining an active site structure suitable for optimal catalysis
and that the PDE activity of KxPDEAlcan be activated only when
the ligand dissociates from the heme-Fe(II) complex, rather than
binds it. In addition, the heme-Fe(Il) complex of KxPDEA1 is not in
the six-coordinated state; rather, it is in the five-coordinated state,
i.e. more common in heme-PAS proteins. This allows O, molecules
to bind to the vacant distal site of the complex without any ligand
exchange (Tomita et al. 2002). The above differences illustrate the
diversity of the signal transduction mechanisms that rely on bind-
ing O, molecules.

Heme-GCS domain

Heme-GCS domain was first discovered in Bacillus subtilis and
Halobacterium salinarium as a heme sensor that controls aerotaxis
and is widely distributed in bacteria, archaea, fungi, and even
some protozoa (Hou et al. 2000, Vinogradov et al. 2005). The crystal
structures of GCS proteins show that the GCS domain is usually
in a dimer form with a canonical a-helical rich globin fold and a
heme cofactor in a hydrophobic cavity formed by the fold (Fig. 1B)
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(Keppner et al. 2020). Compared to myoglobin and hemoglobin,
GCS has a shortened globin fold that lacks a complete D-helix and
partial E-helix, these changes appear to favor O, sensing, as op-
posed to O, transport (Martinkova et al. 2013, Walker et al. 2017).

The heme-GCS domain is usually located at the N-terminus of
the proteins and is fused to the C-terminal domains with activ-
ities such as MCPs, HKs, or CMEs. However, although the proxi-
mal histidine linked to the heme is absolutely conserved, the se-
quence similarity of proteins containing the heme-GCS domain
is generally not very high. The currently characterized signal-
ing CMEs with a heme-GCS domain are mainly DGCs, including
EcDosC from E. coli (Fig. 2) (Tuckerman et al. 2009), DpDGC from
Desulfotalea psychrophila (Sawai et al. 2010), BpGReg from Borde-
tella pertussis, and PcGCS from Pectobacterium carotovorum (Burns
et al. 2017). These enzymes need to be in the form of multimers
to exhibit catalytic activities. Some GCSs possess a middle do-
main that was demonstrated to adopt a four-helix bundle struc-
ture containing a short n-helix and form a dimer in the crystal
structure. These GCSs transmit the ligand-binding signals sensed
by the N-terminal GCS domain to the C-terminal DGC domain
through this unique middle domain and orientate the three do-
mains through the rx-helix of the middle domain, resulting in a
compact structure with the DGC activity (Walker et al. 2020). Like
in the heme-PAS domain, the redox state and linkage of heme
in the heme-GCS domain can also modulate the catalytic activ-
ities of the downstream domains. GCS proteins with a heme-
Fe(Il) complex (Fig. 1B) typically have some basal DGC activity,
which gets enhanced by the binding of the O, ligand. Binding
of O, to the heme causes subtle rearrangements of the heme
pockets, changes in the helix flexibility, and rotation around the
globin-dimer interface, and even changes in the oligomerization
state of the protein, thereby regulating the DGC activity (Burns et
al. 2016). Furthermore, some distal globin residues, like residues
Phe42, Tyr43, Ala68 (EcGReg)/Ser68 (BpGReg), and Met69 in the dis-
tal heme pockets of EcGReg and BpGReg, exhibit certain effects on
the DGC activities of GCS proteins (Wan et al. 2017).

Bacteria exploit differences in O,-sensing domains

Except for the differences in the coupling of functional domains,
there are also some differences in the O, binding properties of the
heme-PAS domain and the heme-GCS domain. These are mainly
manifested in (1) different binding sites. Most PAS sensors use Arg
residues on the FG-loop to bind O,, while GCS sensor binds O,
mainly through Tyr residues in helix B (Martinkova et al. 2013);
(2) different binding affinities. The PAS sensor has a weaker bind-
ing affinity for O, than the GCS sensor. The dissociation constants
of the heme-Fe(Il) complexes in the PAS sensors and GCS sen-
sors are 12-340 pM and 0.077-14 pM, respectively (Kitanishi et
al. 2010, Nakajima et al. 2012); and (3) different catalytic effects
on the functional domains. Binding of O, to the heme of the PAS
domain usually reduces the PDE activity of the CME (except for
EcDosP), while binding of O, to the heme of the GCS domain can
greatly enhance the DGC activity of the respective enzyme.
Based on the above characteristics, these heme-based sensors
are able to carry out corresponding functions in different environ-
ments. PAS sensors can discern the presence of O, and activate
genes related to aerobic metabolism; while the GCS sensors can
respond to hypoxia and activate associated genes (Martinkovéa et
al. 2013). The EcDosCP regulatory system serves as a very inter-
esting model to explain how bacteria use these differences in O,
sensors to adapt to local O, concentrations and maintain c-di-
GMP homeostasis (Fig. 3). The genes encoding EcDosC and EcDosP
are normally coexpressed during stationary phase by the dosCP
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Figure 1. Crystal structures of two types of heme-based O, sensors. (A) Crystal structure of the heme-containing PAS domain from Escherichia coli
EcDosP (PDB entry: 1V9Z) (Kurokawa et al. 2004). Its five B-strands (Ag, Bg, G4, Hg, and Ig) and four flanking a-helices (C,, Dy, Eo, and F,) are labeled as
indicated. (B) Crystal structure of the heme-containing GCS domain from Escherichia coli EcDosC (PDB entry: 4ZVB) (Tarnawski et al. 2015). Each
monomer contains eight a-helices, which are named Z,, A, By, Cq, Eo, Fo, Go, and H, according to the classical globin nomenclature. The heme ligand

in each domain is indicated by arrows.

Ferric form

+ e

B Ferrous Form

Figure 2. Redox-induced changes at the distal heme site of EcDosP. EcDosP is O,-dependent and its activity is regulated by the transition between the
ferric form (PDB entry:1V9Y) (Kurokawa et al. 2004) and ferrous form (PDB entry:1V9Z) (Kurokawa et al. 2004) of the heme-PAS domain, a process
accompanied by the change of distal axial ligands. When the heme-PAS domain is in the ferric form, the distal axial ligand of its complex is a water
molecule W1, stabilized by another water molecule W2 (marked by the magenta dashed box); when it is reduced to the ferrous form, the distal axial
ligand of its complex is changed to Met95 (marked by the blue dashed box) of the FG-loop (shown in yellow). Also indicated is the iron-binding His77.

operon (Tuckerman et al. 2009). Both EcDosC and EcDosP are heme
proteins with O,-sensing domains and c-di-GMP metabolic do-
mains. EcDosC is a DGC that fuses an N-terminal GCS domain
to a C-terminal GGDEF domain, whereas EcDosP is a PDE with
two PAS domains, a degenerated GGDEF domain with an EGTQF
active site motif, and an EAL domain (Fig. 3A). EcDosC, EcDosP,
ribonuclease E (RNase E), polynucleotide phosphorylase (PNPase),
and some other components, including several degradosome-
associated proteins and RNAs, were reported to form an oxy-
degradosome (Gilles-Gonzalez and Sousa 2019). Bacteria selec-
tively activate EcDosC or EcDosP according to the O, concentra-
tions to regulate cellular c-di-GMP levels. Changes in c-di-GMP
levels affect the activity of PNPase, the receptor for c-di-GMP in
this large enzyme complex, which in turn affects the processing
or degradation of associated RNAs to control the effects at the
post-transcriptional level (Fig.3B) (Tuckerman et al. 2011).

A similar regulatory mechanism may take place in bifunc-
tional CMEs. The enzymatic activities of these proteins are deter-
mined by the ligands binding to their sensory domains. For exam-
ple, PADcpG from Paenibacillus dendritiformis possesses GCS, GGDEF,
and EAL domains and exhibits dual functions of DGC and PDE
(Patterson et al. 2021). PdDcpG relies on the GCS domain to bind
different gaseous molecules to achieve differential regulation of
downstream PDE/DGC activity: when the GCS domain is in the
Fe(II)-NO state, its DGC activity is activated; whereas when the
GCS domain is in the Fe(II)-O, state, the PDE activity is activated,
allowing bacteria to control biofilm formation in response to dif-
ferent gaseous environments (Patterson et al. 2021). Bifunctional
CMEs like PdDcpG containing multiple sensory domains are abun-
dant in bacteria, but the signal transduction mechanisms behind
them remain obscure. It is tempting to speculate that similar reg-
ulatory mechanisms might function in other bifunctional CMEs.
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Figure 3. O, sensors EcDosC and EcDosP mediate c-di-GMP-dependent RNA processing in Escherichia coli. (A) Domain organization of EcDosC and
EcDosP. EcDosP contains a degenerate GGDEF domain with the EGTQF motif at its active site. (B) Possible scheme for O,-dependent RNA degradation in
the EcDosCP complex (based on Tuckerman et al. 2011). Under anaerobic conditions (upper panel), EcDosP and EcDosC are unliganded (deoxygenated),
and the DGC activity of EcDosC is activated (marked with an asterisk), producing c-di-GMP to activate the receptor PNPase in the RNA degradation
complex. Under aerobic conditions (lower panel), EcDosP and EcDosC are liganded (oxygenated) and the PDE activity of EcDosP is induced (marked with
an asterisk). EcDosP hydrolyzes c-di-GMP to pGpG, which drastically decreases PNPase activity. mRNAs that depend on O, for preservation and
degradation may be selected by a mechanism involving sRNAs and Hfg, where sRNAs serve as mediators to recognize target mRNAs, and the RNA

chaperone Hfq catalyzes this hybridization.

Sensing O, through changes in the redox state

While heme-containing proteins discussed above sense O,
through direct binding of O, molecules, some proteins can moni-
tor the change in the environmental O, concentrations indirectly,
by sensing the change of the redox state of the electron transport
chains.

KxDGC2 from K. xylinus (Qi et al. 2009), AuNifL from Azotobacter
vinelandii (Hill et al. 1996), and EcAer from E. coli (Taylor 2007) are all
capable of sensing O, concentrations indirectly by utilizing a PAS
domain that binds a redox-sensitive flavin adenine dinucleotide
(FAD) cofactor. The redox state of FAD determines the signaling
output of these PAS sensors. In addition to the FAD-binding PAS
domains, there are other domains that can help bacteria sense
changes in O, concentrations, such as the bacterial hemerythrin
domain that may be present in either DGCs (Schaller et al. 2012)
or PDEs (Kitanishi et al. 2020).

Hemerythrin domains typically have characteristic sequence
motifs that provide ligand residues for the nonheme diiron site
that binds O, molecules and undergoes autoxidation. The diiron
site is capable of cycling between diferric and diferrous forms
depending on the O, concentrations, thereby affecting the cat-
alytic activities of the downstream domains. Existing research
data show that such CMEs generally have higher catalytic activ-
ities in the reduced ferrous form compared to the oxidized ferric
form (Kitanishi 2022).

Several years ago, a new class of PDEs that can respond to re-
dox state has been described. These proteins combine the EAL do-
main with the periplasmic Cys-Ser-Ser (CSS)-motif domain that
contains two highly conserved Cys residues flanked by two trans-
membrane segments. Such PDEs appear to use the disulfide—
dithiol transition in the CSS domain as a redox switch that reg-
ulates the PDE activity of the EAL domain (Herbst et al. 2018). The
CSS-EAL domain combination is encoded in five copies in both E.
coli and Salmonella enterica and in three copies in P. aeruginosa. A
recently described variant of the CSS-motif domain, referred to
as the CSS_CxxC domain, contains two extra Cys residues. PDEs
combining this domain with the EAL domain are encoded in a
single copy in Shewanella, Vibrio, and some other species (Martin-
Rodriguez et al. 2022). The discovery of such signaling CMEs illus-
trates the complexity of bacterial signal transduction pathways
and suggests that there might be additional sensors of O, and/or
redox state.

NO-sensing domains

NO has been previously referred to as a double-edged sword in
many physiological and pathological processes in a variety of or-
ganisms (Mocellin et al. 2007). That characterization is even more
true for bacteria, so their ability to sense NO has a clear physiolog-
ical significance. On the one hand, as a toxic gas, NO can diffuse
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freely and has a wide range of sources. It may come from bacteria,
e.g. as an intermediate in the denitrification process of bacterial
reduction of nitrate and nitrite, or from the oxidation of L-arginine
by bacterial NO synthases; at the same time, NO may be produced
by host macrophages as a line of defense against bacterial infec-
tion (Spiro 2007, Crane et al. 2010). This requires some bacteria,
especially pathogens facing chronic exposure to high concentra-
tions of NO, to have a mechanism to monitor and eliminate NO
(Williams et al. 2018). On the other hand, low concentrations of
NO have been demonstrated to act as a signaling molecule to reg-
ulate bacterial community behaviors, such as biofilm formation
(Hossain et al. 2017), quorum sensing (Urbano et al. 2018), and
symbiotic relationships (Wang et al. 2010).

C-di-GMP has been shown to be involved in regulating NO-
responsive bacterial behaviors through some heme-based NO
sensors (Rinaldo et al. 2018). These NO sensors can sense NO con-
centrations to regulate the catalytic activity of signaling CMEs.
They are mainly divided into two categories: the heme-nitric ox-
ide/oxygen (H-NOX) protein family, which has been intensively
studied, and the NO-sensing protein (NosP) family that has been
discovered in recent years (Bacon et al. 2017, Williams and Boon
2019). They are described in detail below.

H-NOX domain

The H-NOX protein, a heme-protein identified in bacteria, is ho-
mologous to the eukaryotic NO sensor soluble guanylyl cyclase
and can bind diatomic gaseous molecules (Cary et al. 2006). Its
crystal structure was first solved in Caldanaerobacter subterraneus,
which showed that the H-NOX family possesses a novel fold com-
prising an N-terminal helical subdomain and a C-terminal sub-
domain. Among them, the N-terminal subdomain is composed
of five helices (A,-D, and K,), the C-terminal subdomain is com-
posed of a four-stranded antiparallel g-sheet and two helices (E,
and F,) (Fig. 4), with the heme cofactor buried deep between
the two subdomains and stabilized by a conserved His residue
(His102) and three highly conserved residues (Tyr131, Ser133, and
Arg135) in the YxSxR motif of F, (Nioche et al. 2004, Pellicena et al.
2004).

H-NOX can appear as a domain in signaling proteins or as a free
protein adjacent to other signaling partners. In the obligate anaer-
obic bacteria, H-NOX with a distal pocket hydrogen-bonding net-
work often appears as a domain at the C-terminus of MCPs, which
can not only bind to NO and CO molecules but also has the ability
to bind to O, tightly. In aerobic or facultative anaerobic bacteria,
H-NOX is often used as an independent protein associated with
HKs or CMEs, which can only stably bind NO and CO, but not O,
(Bacon et al. 2017, Guo and Marletta 2019). This strict discrimi-
nation against O, ligands is necessary for a selective NO sensor
because under aerobic conditions, O, concentrations in cells typ-
ically far exceed the NO concentrations (Boon and Marletta 2005,
Plate and Marletta 2013a). Differences in ligand-binding capacity
also provide the basis for bacteria to selectively transmit signals
in cells. It is worth mentioning that all currently identified bacte-
rial H-NOXs have high affinity for NO at nanomolar to femtomolar
levels, and most of the known physiological functions are related
to NO sensing, highlighting their important role as NO sensors in
signal transduction (Table 2).

A possible mechanism by which NO activates H-NOX proteins
can be described as follows: due to the special interaction of some
amino acid residues of H-NOX with heme, the heme cofactor of
H-NOX is in a severely distorted conformation before binding the
NO molecules. Upon binding NO, the Fe-His bond between the
heme-Fe(ll) complex and the histidine ligand is broken, followed

by relaxation of the heme cofactor and conformational rearrange-
ment, ultimately causing activity changes of the functional do-
main or a partner protein (Olea et al. 2010, Herzik et al. 2014,
Hespen et al. 2016). As common signaling partners of H-NOX,
some CMEs are, therefore, also regulated by NO, and we refer to
these CMEs as H-NOX-associated c-di-GMP metabolic enzymes
(HaCMEs). The genes encoding HaCMEs are mostly found in the
genomes of y-Proteobacteria. Some HaCME-encoding genes are ad-
jacent to hnoX, and the two genes are cotranscribed in the same
operon; some HaCME-encoding genes are not in the hnoX operons,
but their encoded products serve as response regulators that form
two-component systems with H-NOX-associated histidine kinase
(HaHK), whose geneis adjacent to hnoX (Plate and Marletta 2013a).
Due to the different composition of the hnoX operons, there are
certain differences in the specific mechanisms of how NO/H-NOX
regulates c-di-GMP, so they can be divided into the following two
categories (Fig. 5):

1) When the hnoX gene is adjacent to the gene encoding
HaCME, binding of NO to the H-NOX protein can directly
affect the protein—protein interaction between H-NOX and
HaCME to either inhibit the DGC activity of HaCME or stim-
ulate its PDE activity, causing the down-regulation of the cel-
lular c-di-GMP concentrations, eventually leading to biofilm
dispersal (Fig. 5A).

When the hnoX gene is adjacent to the gene encoding Hahk,
binding of NO to the H-NOX protein first inhibits the au-
tophosphorylation activity of HaHK, and then blocks the
downstream transfer of the phosphoryl group (the process
in a hybrid two-component system is also dependent on his-
tidine phosphotransfer protein (Hpt) as a mediator), chang-
ing the phosphorylation state of the downstream HaCME,
thereby inhibiting the PDE activity of HaCME or activating
its DGC activity, which results in increased cellular c-di-GMP
concentrations in bacteria and promotes biofilm formation
(Fig. 5B). Since many hnoX operons contain a hahK gene,
this multicomponent signaling system has been reported
in a variety of bacteria (Table 3). In addition, HaHK may
also have other phosphate transfer acceptors than HaCME
in some bacteria. Taking Shewanella oneidensis as an exam-
ple, its H-NOX/HaHK system has two other phosphotrans-
fer acceptors besides SoHnoB (HaCME), namely SoHnoD and
SoHnoC. SoHnoD contains a degenerated HD-GYP domain
and does not itself have the ability to hydrolyze c-di-GMP.
However, it can fine-tune the catalytic activity of SoHnoB
through allosteric effects in different phosphorylation states
to control the cellular concentrations of c-di-GMP; SoHnoC
is a transcriptional regulator that controls the expression
of some genes in the NO-signaling network, thus creating
a transcriptional feedback loop, which could further mod-
ulate NO-response dynamics (some bacteria, such as Vib-
rio cholerae, have this multicomponent signaling network,
except for the HnoC homolog) (Plate and Marletta 2013b).
Compared with the classical H-NOX/HaHK system contain-
ing a unique response regulator HaCME, the proteins men-
tioned above form a more complex multicomponent phos-
photransfer regulatory network for NO signaling (Fig. SB)
(Plate and Marletta 2012).

N
—

From the available data, NO seems to mediate the dispersion
of bacterial biofilm through the simpler H-NOX system, while
the multilevel regulation of the more complicated H-NOX system
helps bacteria increase adhesion and biofilm formation (Table 3).
However, considering that the H-NOX system model is still in its
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Figure 4. Crystal structures of two classes of heme-based NO sensors. (A) Crystal structure of the H-NOX domain from Caldanaerobacter subterraneus
(PDB entry: 5JRU) (Hespen et al. 2016). The H-NOX fold consists of seven a-helices (A,~F., and K,) and a four-stranded antiparallel g-sheet (Gg, Hg, I,
and Jg). Located on the «-helix F,, His102 is the proximal axial ligand for heme iron and is highly conserved across all H-NOX domains. Tyr131, Ser133,
and Arg135 are strictly conserved residues in the YXSXR motif. The heme ligand is also indicated by arrows. (B) Predicted structure of Pseudomonas
aeruginosa NosP (PA1975), obtained from the AlphaFold website (https://alphafold.ebi.ac.uk/entry/Q9I12DO0). This model contains 10 a-helices and 21

B-sheets.

Table 2. NO dissociation rate constants for H-NOX and NosP proteins

Protein Species Rot (NO) (x 10~% s71) Reference
TtH-NOX Thermoanaerobacter 5.6 = 0.5 Boon et al. (2005)
tengcongensis
LpH-NOX1 Legionella pneumophila 103 £ 1.4 Boon et al. (2006)
LpH-NOX2 Legionella pneumophila 21.8 £ 0.5 Boon et al. (2006)
VfH-NOX Vibrio fischeri 21 + 0.6 Wang et al. (2010)
SwH-NOX Shewanella woodyi 15.2 + 3.5 Liu et al. (2012)
PaH-NOX Pseudoalteromonas atlantica 89 + 36 Arora and Boon (2012)
VhH-NOX Vibrio harveyi 4.6 + 0.9 Henares et al. (2012)
VpH-NOX Vibrio parahaemolyticus 43 +£05 Ueno et al. (2019)
SdH-NOX1 (Sde_3804) Saccharophagus degradans 97.0 £ 1.8 Guo et al. (2018)
SdH-NOX2 (Sde_3557) Saccharophagus degradans 33 £ 06 Guo et al. (2018)
PaNosP Pseudomonas aeruginosa 1.8 £ 0.5 Hossain and Boon (2017)
LpNosP Legionella pneumophila <2 Bacon et al. (2018)
VcNosP Vibrio cholerae 46 + 0.1 Hossain et al. (2018)
Soluble guanylyl cyclase Bovine lung 36 +£0.38 Stone and Marletta (1994)

early stage, and some experiments were also performed extracel-
lularly or under conditions of excessive NO, whether this is true
in bacterial physiological settings remains to be further explored.
Furthermore, with the discovery of orphan H-NOX, bifunctional
H-NOX, and other NO sensors, there is a growing realization that
the NO regulatory networks in bacteria might be quite compli-
cated (Mukhopadyay et al. 2016, Guo et al. 2018).

Orphan H-NOXs whose genes are not adjacent to any partner
genes, found in a few bacteria, also have the potential to regulate
the activities of the components in another typical H-NOX sys-
tem in the same bacteria. For example, in addition to the typical
H-NOX/HaHK pair, the genome of the marine bacterium Saccha-
rophagus degradans encodes an orphan H-NOX protein SdH-NOX2,
which also has the function of binding gaseous molecules and in-
hibiting HaHK activities, but compared with the conventional H-
NOX (SdH-NOX1), this protein has a smaller NO dissociation rate
and a weaker binding to the kinase (Guo et al. 2018). This property
may help increase the duration of intracellular NO-induced sig-
naling and prolong kinase inhibition. Therefore, S. degradans may
use the dual H-NOX system to help bacteria more flexibly regu-
late downstream responses in the face of complex environments.
Since this type of orphan H-NOX can affect the autophosphoryla-
tion activity of HaHK in the H-NOX/HaHK pair, it may also affect
the activities of the downstream response regulators (presumably

HaCMEs) in this signaling system. In conclusion, some bacteria
encoding both an orphan H-NOX and an H-NOX/HaHK pair may
have more complex mechanisms of NO-responsive regulation of
the c-di-GMP concentrations.

In recent years, some H-NOX proteins have also been found to
act as both heme-dependent NO sensors and heme-independent
redox sensors, realizing the regulation of downstream signaling
protein activity under the dual conditions of NO binding and cys-
teine oxidation (Mukhopadyay et al. 2016, Mukhopadhyay et al.
2020). For example, in the genomes of y-Proteobacteria, which in-
clude many well-known pathogens, some conserved Cys residues
are present in about half of the H-NOX domains, although such H-
NOXs still remain to be experimentally characterized (Bacon et al.
2017). Considering that the partners of these bifunctional H-NOXs
may be HaCMEs, further research would be required to figure out
whether their bifunctionality affects the concentrations of bacte-
rial c-di-GMP and exhibits physiological significance in regulating
bacterial biofilm formation.

NosP (FIST) domain

Although H-NOX is the primary NO sensor for many bacteria,
there are still many bacteria that lack the H-NOX domain but
are still able to respond to low concentrations of NO. There-
fore, there appear to be other, additional NO sensors in these
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Figure 5. Mechanisms of NO-induced biofilm dispersal or formation via H-NOX domain. CMEs in bacteria function normally in the absence of NO.
However, when bacteria are exposed to a certain concentration of NO, it would affect the activities of some CMEs, changing the cellular c-di-GMP
concentrations and affecting the formation of bacterial biofilm. (A) NO may directly affect the protein-protein interaction between H-NOX proteins
and HaCMEs, thereby altering their catalytic activities. When such HaCME has only a separate GGDEF domain (in some bacteria, it may have an
additional degenerated EAL domain), the binding of NO to H-NOX inhibits the DGC activity of such HaCME. When the HaCME contains both GGDEF
and EAL domains, binding of NO to H-NOX will maintain or even down-regulate the DGC activity of this HaCME, or activate its PDE activity. These
signal events would reduce the cellular c-di-GMP concentrations in bacteria, ultimately leading to biofilm dispersal. (B) NO may also affect the
interaction of H-NOX protein with HaHK, thereby affecting the transfer of the phosphoryl group to indirectly regulate the activity of response
regulator HaCME. Such HaCME proteins usually fuse the phospho-signaling receptor REC domain and the GGDEF/EAL domain. Binding of NO to
H-NOX protein inhibits the autophosphorylation of HaHK, hindering the downstream transmission of the phosphoryl group, and changes the
phosphorylation state of HaCME, thereby inhibiting the PDE activity or activating the DGC, resulting in an elevated c-di-GMP level, which ultimately
promotes the formation of bacterial biofilms. * indicates domain degeneration and a lack of catalytic activity. The arrows on the c-di-GMP metabolic
domains represent an increase or decrease in activities of the corresponding enzymes. The protein shown in the dashed box in Fig. 5(B) is HnoC, which

may not be present in the signaling networks of some bacteria.

bacteria. P. aeruginosa belongs to this group of bacteria, which does
not encode any H-NOX protein, but still responds to NO for reg-
ulating biofilm formation (Barraud et al. 2006, Cutruzzola and
Frankenberg-Dinkel 2016).

In the past, a variety of proteins, including MCPs such as PaBdlA
(Morgan et al. 2006, Barraud et al. 2009) and some CMEs such
as PaDipA (Roy et al. 2012), PaNbdA (Li et al. 2013), and PaGcbA
(Petrova et al. 2015) among others, have been identified in P. aerug-
inosa that were implicated in NO-mediated biofilm dispersal; how-
ever, none of them was confirmed as the primary NO sensor.
Later, a new NO-sensing heme protein, named NosP, was identi-
fied. Upon mutating the relevant components of the NosP signal-
ing pathway in P. aeruginosa, the biofilms formed by the mutant
were found to no longer disperse in response to NO, confirming
that NosP is a bacterial NO sensor (Hossain and Boon 2017).

The NosP protein is currently annotated as the F-box intracel-
lular signal transduction (FIST) protein (Borziak and Zhulin 2007),
and its predicted structure consists of more than 20 g-strands and
several a-helices) (Fig. 4B). Compared to H-NOX, which often oc-
curs in eukaryotes, NosP has been seen almost exclusively in bac-
teria (Williams and Boon 2019). Most NosPs are encoded as stand-
alone proteins, although some NosPs appear as domains that
are coupled to well-known MCP, HK, and CME signaling domains

(Bacon et al. 2017, Hughes et al. 2022). The binding characteristics
of NosP domains are currently not well-known, although previous
studies have shown that the ligand-binding properties of NosP are
consistent with it being a dedicated NO sensor, which can bind NO
and CO molecules but cannot form stable ferrous-oxy complexes
(Hossain and Boon 2017, Hossain et al. 2018).

The NO-sensing mechanism of NosP is similar to that of H-NOX
to a certain extent: when bound to NO, it replaces the original his-
tidine ligand with a NO molecule as an axial ligand to form a five-
coordinated heme complex (Olea et al. 2010, Bacon et al. 2018).
The dissociation rate of NO from NosP is usually much slower
than that from H-NOX (Table 2). This difference indicates that H-
NOX and NosP may be sensitive to different concentrations of NO
or may play different roles in bacterial physiology.

The NO/NosP system can also regulate cellular c-di-GMP con-
centrations in a manner similar to the second mode of regulation
of NO/H-NOX/c-di-GMP: as a component of a multicomponent
signaling system, NosP binding of NO molecules affects the ki-
nase activity of NosP-associated histidine kinase (NaHK), thereby
controlling the phosphate flux of related signaling pathways, ul-
timately regulating the activities of NaCMEs (NosP-associated c-
di-GMP metabolic enzymes) and affect cellular c-di-GMP con-
centrations (Williams et al. 2018, Fischer et al. 2019). But unlike
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Figure 6. Mechanisms of NO-induced biofilm dispersal via the NosP
domain. Possible NosP signaling pathway in Legionella pneumophila (left,
based on Fischer et al. 2019). Binding of NO to LpNosP weakens the
interaction between LpNosP and LpNahK and diminishes the inhibitory
effect of LpNosP on the autophosphorylation of LpNaHK. LpNaHK can
thus transfer the phosphoryl group to the downstream bifunctional
LpNaCME, which exhibits reduced DGC activity and increased PDE
activity, causing a decrease in the cellular c-di-GMP concentrations, and
ultimately leading to biofilm dispersal. SoNosP is a master regulator of
the multicomponent No/c-di-GMP signaling network in Shewanella
oneidensis (right, based on Nisbett et al. 2019). When the bacteria are not
exposed to NO, iron-free SoNosP strongly inhibits the
autophosphorylation activity of SONaHK and SoHaHK, thereby
preventing downstream components of the phosphate transport chain
from being phosphorylated. However, when NO is present, SoNosP
attenuates the inhibitory effect on SoHaHK, enabling the transfer of the
phosphoryl group to SoHaCME and enhancing the PDE activity of
SoHaCME to induce biofilm dispersion. x indicates that the domain is
degraded and lacks catalytic activity. The arrows on the c-di-GMP
metabolic domains represent an increase or decrease in activities of the
corresponding enzymes.

H-NOX, iron-free NosP has a strong inhibitory effect on NaHK (Rao
etal. 2017, Fischer et al. 2019). When NO binds to NosP, it weakens
the original inhibition of NaHK'’s autophosphorylation activity by
NosP, allowing the phosphoryl group to be delivered to the down-
stream components (Fig. 6) (Price et al. 2007, Nisbett et al. 2019). It
is worth noting that the current research on the NO/NosP system
is limited, so this conclusion may be revised or expanded when
more cases appear in the future.

Cross-talk between H-NOX and NosP systems

Although studies of H-NOX and NosP systems are still limited
to only a few bacteria, they already detected a cross-talk be-
tween the H-NOX and NosP systems. For example, the NosP sys-
tem was found to add regulation upstream of the H-NOX sys-
tem in S. oneidensis (Nisbett et al. 2019). When bacteria were not
exposed to NO, SoNosP without the linking ferrous ion was able
to bind to SoNaHK or even SoHaHK, thereby strongly inhibiting
their autophosphorylation activities and resulting in the inabil-
ity of downstream components of the phosphate transport sys-

tem to be phosphorylated. When SoHnoB cannot be phosphory-
lated, its PDE activity cannot be activated, and unphosphorylated
SoHnoD will simultaneously inhibit the activity of SoHnoB, re-
sulting in an increase in the cellular concentrations of c-di-GMP.
In contrast, when bacteria are exposed to NO, although SoNosP
still maintains its inhibitory effect on SoNaHK and SoHaHK af-
ter binding NO, the addition of NO would weaken the control ef-
fect of SoNosP on SoHaHK. Moreover, SoH-NOX does not signifi-
cantly inhibit the autophosphorylation activity of SoHaHK in the
absence of a significant stoichiometric excess of NO-bound SoH-
NOX (Price et al. 2007). Therefore, this achieves a certain degree
of relief of SoHaHK inhibition compared to the absence of NO, re-
sulting in increased phosphate flux to downstream targets of the
H-NOX signaling pathway, such as SoHnoD and SoHnoB, and pro-
moting the SoHnoB PDE activity to reduce the cellular c-di-GMP
levels (Fig. 6) (Plate and Marletta 2012). As a master regulator in
the multicomponent signaling system, SoNosP can not only reg-
ulate the NosP/NaHK signaling pathway but also exert a regula-
tory effect upstream of the H-NOX/HaHK signaling pathway, en-
abling the two systems to establish an antagonistic relationship
in a push-pull mechanism (Nisbett et al. 2019). Based on these
results, the existing NO/H-NOX model of S. oneidensis was revised
and a new NO/NosP/H-NOX pathway was established (Plate and
Marletta 2012, Nisbett et al. 2019). However, considering that the
reports of NosP regulating the H-NOX pathway are still limited,
it could be only a single case. Besides S. oneidensis, other bac-
teria also have H-NOX, HnoB, HnoD, and HnoC homologs, but a
complete NO signaling network has not been demonstrated in
these bacteria, so we still retain the original regulatory model in
Table 3.

Bioinformatic analysis of the distribution of H-NOX and NosP
revealed that, in addition to S. oneidensis, many bacteria, espe-
cially Gram-positive ones, possess both H-NOX and NosP sys-
tems. Whether there is a regulatory relationship between the
H-NOX and NosP systems in these bacteria as well, deserves
further exploration. Beyond that, there are many questions to
be answered. For example, the H-NOX of some bacteria can si-
multaneously act as a NO sensor and redox sensor. Does NosP
affect the NO signaling pathway mediated by this type of H-
NOX? Also, a subset of bacteria encodes neither H-NOX nor
NosP. Do these bacteria sense NO, and, if so, how? In conclu-
sion, the puzzle of the bacterial NO-sensing signaling pathways
has not been fully resolved, and more research is needed in this
field.

Regulation of c-di-GMP levels via
light-sensing domains

Response to light was previously thought to be exclusive to pho-
tosynthetic bacteria, but recent studies have found that genes en-
coding photoreceptor proteins are also common in the genomes
of nonphotosynthetic bacteria (van der Horst et al. 2007, Elias-
Arnanz et al. 2011). Light is essential for photosynthetic bacteria
to conserve energy but for other bacteria, light can also serve as a
cue for optimal orientation and direction. In addition, light sens-
ing is especially important for some pathogens. Because light can
affect host immune responses and susceptibility by regulating cir-
cadian rhythms, pathogenic bacteria might benefit from the abil-
ity to adjust their behaviors in response to light signals in order to
better infect the host (Verma et al. 2020).

A total of seven photoreceptor families have been found in bac-
teria (Table 4), namely phytochromes (Phys), light oxygen voltage
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Type Chromophore Spectral sensitivity Reference
Phy Linear tetrapyrrole bilin Mainly red/far-red light Kraiselburd et al. (2017)
photoreceptors
(Cyanobacteriochromes have a
broader spectrum)
LoV FMN/FAD/riboflavin Blue light Herrou and Crosson (2011)
BLUF FAD Blue light Kraiselburd et al. (2017)
PYP p-coumaric acid Blue/UV-A light Haker et al. (2003), Purcell and
Crosson (2008)
Rhodopsin Retinal Visible region (400-700 nm) Ernst et al. (2014)
Cryptochrome FAD/pterin/flavin antenna Blue/UV-A light Geisselbrecht et al. (2012)
OCP Carotenoid Blue-green light Muzzopappa and Kirilovsky (2020)

Table 5. Characteristics and distribution of selected photosensory DGC/PDEs from bacteria.

Sensor Light dependence
type Protein name Species Domains (in vitro) Reference
Phy RsBphG1 (Bph) Rhodobacter sphaeroides ~ PAS-GAF-PHY-GGDEF- DGC activity is red Tarutina et al. (2006)
EAL light-dependent
IdPadC (Bph) Idiomarina sp. A28L PAS-GAF-PHY-GGDEF DGC activity is red Gourinchas et al.
light-dependent (2017)
XoBphP (Bph) Xanthomonas oryzae PAS-EAL-GAF-PHY-PAS PDE activity is red Verma et al. (2020)
pV. oryzae light-dependent
SyCph2 (Cph) Synechocystis sp. PCC GAF-GAF-GGDEF-EAL- PDE activity is red Savakis et al. (2012)
6803 GAF-GGDEF light-dependent;
DGC activity is blue
light-dependent
TeSesA/TeSesB/ Thermosynechococcus SesA: PAS-GAF-GGDEF DGC activity of SesA/SesC is Enomoto et al. (2015)
TeSesC (Cphs) elongatus SesB: GAF-GGDEF-EAL blue light-dependent;
SesC:PAS-PAS-PAS-PAS- PDE activity of SesB is teal
GAF-PAS-GGDEF-EAL light-dependent;
PDE activity of SesC is green
light-dependent
LoV SeSL2 Synechococcus elongatus ~ REC-PAS-PAC-LOV- PDE activity is blue Cao et al. (2010)
GGDEF-EAL light-dependent
BLUF KpBlrP1 Klebsiella pneumoniae BLUF-EAL PDE activity is blue Barends et al. (2009)
light-dependent
MmBIdP Magnetococcus marinus BLUF-EAL PDE activity is blue Ryu et al. (2017a)
light-dependent
RpPapA-RpPapB Rhodopseudomonas PapA: EAL PapA interacts with PapB; Kanazawa et al. (2010)
complex palustris PapB: BLUF PDE activity of PapA is blue

light-dependent via PapB
BLUF domain

(LOV) proteins, blue light sensing using flavin (BLUF) proteins, pho-
toactive yellow proteins (PYPs), rhodopsins, cryptochromes, and
orange carotenoid proteins (OCPs) (van der Horst and Hellingwerf
2004). Among them, the most studied families are PYPs, Phys, LOV,
and BLUF proteins, which all participate in the signal transduc-
tion from light signals to c-di-GMP concentration change signals
(Table 5).

Phys—more than simple red photoreceptors

Phys are photoreceptors that utilize a linear bilin tetrapyrrole as a
chromophore and are mainly present in plants, algae, fungi, and
bacteria (Davis et al. 1999, Yu and Fischer 2019). The classic Phy
photosensory core usually contains a conservative PAS-GAF-PHY
light sensor module (the PHY domain is a phytochrome-specific
domain likely belonging to the GAF family). Among them, GAF do-
main is the core, that binds chromophores to form biliary adducts
(Aravind and Ponting 1997). The PAS and PHY domains are in-

volved in biliary lyase activity and reversible photoconversion, re-
spectively (Nagano 2016). In addition, some special structures are
formed between the three domains, such as a figure-eight knot, a
tongue-like structure, and a long centrally located e-helix, which
further helps the transduction of light signals (Auldridge and For-
est 2011, Fischer et al. 2020).

Considering the special taxonomic status of cyanobacteria,
we further divided the bacterial Phys into bacteriophytochromes
(Bphs) and cyanobacterial Phys (Cphs). The former are usually
linked to biliverdin IX« as a chromophore through a conserved Cys
residue upstream of the PAS domain, while the latter are mainly
linked to phycocyanobilin (PCB) through a Cys residue in the GAF
domain (Rockwell and Lagarias 2010).

Bphs use the PAS-GAF-PHY core structure to sense red light

Bphs typically act as photoswitches through reversible light
conversion between the red-absorbing state (P,) and far-red-
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Figure 7. Light-driven changes in the structure and spectral properties of Deinococcus radiodurans Bph. The biliverdin chromophore contains four
pyrrole rings, named A, B, C, and D rings. Under the irradiation by red and far-red light, biliverdin undergoes reversible Z/E isomerization around the
C15/C16 double bond in the methine bridge between the C ring and the D ring, resulting in the rotation of the D ring and causing atomic
rearrangements in the chromophore-binding pocket, which in turn leads to repositioning of the PHY domain and refolding of the tongue-like structure
therein. In the P, state, the tongue-like region appears as a g-sheet (PDB entry:400P) (Takala et al. 2014), while in the Py state, it transforms into an

a-helix (PDB entry:4001) (Kurokawa et al. 2004).

absorbing state (Pg) in cells (Fig. 7) (Takala et al. 2014). Their N-
terminus conform to the classical Phy model, with complete PAS,
GAF, and PHY domains. The C-termini of some Bphs also contain
a domain related to c-di-GMP metabolism that helps bacteria reg-
ulate c-di-GMP levels in response to light signals. Such Bphs are
present in both photosynthetic and nonphotosynthetic bacteria
(Table 5).

RsBphG1 was the first Bph with a nonkinase photoactivated
enzymatic activity and also the first potentially bifunctional en-
zyme involved in c-di-GMP synthesis and hydrolysis. It is a pho-
toreceptor protein from the photosynthetic bacterium Rhodobac-
ter sphaeroides (recently renamed Cereibacter sphaeroides) that con-
tains both GGDEF and EAL domains (Fig. 8A). When expressed
at full length, the protein exhibited only light-independent PDE
activity (Tarutina et al. 2006). In addition, RsBphG1 expressed in
E. coli was found to be partially cleaved into two species; the
smaller species was identified as an EAL domain with PDE ac-
tivity, while the larger species lacking an EAL domain exhib-
ited biliverdin-dependent and light-activated DGC activity. The
authors speculated that the bifunctional CME RsBphG1 utilizes
an “EAL lock” and a corresponding special unlocking mecha-
nism to help bacteria decide whether DGC activity is required
to be activated under specific conditions (Fig. 8B) (Tarutina
et al. 2006). As previously mentioned, sensory domains are
more widely distributed in GGDEF-EAL hybrid proteins, and this
model can help us better understand the role of bifunctional
GGDEF-EAL proteins in the dynamic regulation of the c-di-GMP
levels.

Cphs use simpler photoreceptor domains

Cyanobacteria, as photosynthetic prokaryotes, regulate their
motility behaviors in response to light signals in order to grow un-
der optimal conditions (Yang et al. 2018). This process may also in-
volve the participation of c-di-GMP whose levels are regulated by
cyanobacterial photoreceptor CMEs (Fig. 9A) (Savakis et al. 2012).

The photoreceptor domain composition of Cphs appears to
be more diverse than that of Bphs. Canonical Cphs (e.g. Cph1),
like Bphs, have a complete PAS-GAF-PHY architecture at the N-
terminus, and in some cases, Cphs are knotless Phys that dif-
fer from the classical model. Knotless Phys do not have a typical
figure-eight knot structure due to the lack of a PAS domain, but
they retain the ability to sense light, such as Cph2-like Phys and
cyanobacteriochromes (CBCRs) (Fushimi and Narikawa 2019).

Cph2-like Phys do not have a PAS domain but usually have mul-
tiple GAF domains. Some of these GAF domains contain conserved
Cysresidues that can covalently bind the chromophore, while oth-
ers contain no such Cys residues and are homologous to the PHY
domain. They utilize these domains to form a conserved GAF-PHY
structure for P,/Pg, photoconversion (Montgomery and Lagarias
2002). Compared to Cph2-like Phys, CBCRs, the main cyanobac-
terial photoreceptors, have simpler domain components for light
sensing. They lack the PAS and PHY domains and only require the
GAF domains to sense various light qualities covering the entire
ultraviolet (UV)-to-visible spectrum (Fushimi and Narikawa 2019,
Villafani et al. 2020).

Both classes of knotless Phys have been shown to convert light
signals into c-di-GMP concentration change signals, which are
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Figure 8. The photoreceptor protein RsBphG1 from Rhodobacter sphaeroides is involved in regulating c-di-GMP levels in bacteria. (A) Schematic
representation of the domain composition of RsBphG1 that includes the classic PAS-GAF-PHY photosensory module and the GGDEF-EAL functional
modules. Green stars represent the biliverdin chromophore. (B) An “EAL lock” model can be applied to explain how RsBphG1 modulates its catalytic
activity in response to light signals (based on Tarutina et al. 2006). The EAL domain and the linker between GGDEF and EAL of RsBphG1 tend to
homodimerize, although dimerization of the EAL domains is not required for PDE activity. Protein-protein interaction between the EAL domains can
form an “EAL lock” to restrict the mobility of the upstream GGDEF domains. In this process, homodimer formation of GGDEF domains is necessary to
receive signals from the sensory domain to undergo a conformational change and complete the transition from a nonproductive state with low or no
enzymatic activity to a productive state with high activity. When “EAL lock” is present, the GGDEF domain cannot obtain enough mobility to change
conformation, so DGC activity is inhibited; in other words, RsBphG1 gets locked in PDE mode. However, bacteria may use a cleavage mechanism to
unlock this “EAL lock,” eventually splitting full-length RsBphG1 into two proteins. The smaller species was identified as the EAL domain and the linker
with PDE activity, while the larger species was the rest of RsBphG1. When the unlocked RsBphG1 is not activated by light, its GGDEF domain is in a
nonproductive state; when activated by light, the conformation of its GGDEF domain will shift to a productive mode, increasing the cellular c-di-GMP
concentrations. RsBphG1 usually exists as a tetramer or a higher-order oligomer, but was drawn as a dimer in this figure for ease of presentation.

involved in regulating cyanobacterial motility behaviors (Blain-
Hartung et al. 2021, Nakane et al. 2022). In Thermosynechococ-
cus elongatus, multiple CBCRs form a color-sensitive and highly
specific c-di-GMP signaling network to synergistically induce
cyanobacterial aggregation or dispersal (Enomoto et al. 2015).
They can even appear as two modules in a single protein for dif-
ferent light signals to help cyanobacteria achieve flexible regu-
lation of cellular c-di-GMP concentrations, such as SyCph2 from
Synechocystis, which contains six domains in the order GAF-GAF-
GGDEF-EAL-GAF-GGDEF. The first GGDEF domain is degenerated
and loses its ability to synthesize c-di-GMP, but the remaining
c-di-GMP metabolic domains can function accordingly (Fig. 9B).
SyCph2 is a hybrid photoreceptor with an N-terminal module for
receiving red/far-red light and a C-terminal module with CBCR
functionality sufficient for photoconversion between green and

blue absorbing states. When irradiated with blue light, the down-
stream GGDEF domain can be activated to promote c-di-GMP
synthesis, resulting in hindered cyanobacterial motility (Fig. 9C)
(Wallner et al. 2020); but when irradiated with white light, the
long wavelength contribution of white light absorbed by the N-
terminal GAF module abolishes blue light-induced motility in-
hibition, resulting in induced cyanobacterial motility (Savakis et
al. 2012). Moreover, SySlr1143, an interaction partner of SyCph2,
was also shown to regulate cyanobacterial motility. It is a highly
active DGC containing a nonphotoactive GAF domain and a
GGDEF domain, where the GGDEF domain can interact with
the EAL domain of SyCph?2 independently of light, and muta-
tion of slr1143 affects the motility behavior of Synechocystis un-
der red light. Since SySlr1143 itself is not photosensitive, it likely
forms a photochemically active protein complex with SyCph2 and
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Figure 9. c-di-GMP is involved in regulating Synechocystis motility. (A) Motility behaviors of Synechocystis sp. Its phototaxis is spectrally dependent, and
the phototaxis behaviors have a transition point at a wavelength of about 470 nm. When the wavelength is higher than 470 nm, the cells show positive
phototaxis, while when the wavelength is lower than 470 nm, the cells either do not move (e.g. under blue light) or exhibit negative phototaxis (e.g.
from ultraviolet light) (Fiedler et al. 2005, Chau et al. 2017). This process may involve c-di-GMP, since artificial degradation of c-di-GMP in Synechocystis
activates bacterial motility, while synthetic c-di-GMP inhibits phototaxis (Savakis et al. 2012, Wallner et al. 2020). (B) Schematic illustration of the
domain composition of SyCph2 and its interaction partners that regulate phototaxis in Synechocystis. The PCB chromophore (purple star) and
tetrapyrrole chromophore (cyan star) are covalently bound to the GAF1 and GAF3 domains of SyCph2, respectively, conferring SyCph2 light-sensing
capabilities. (C) SyCph2-dependent model of Synechocystis blue light avoidance behaviors (based on Wallner et al. 2020). SyCph2, SySlr1143, and
SySlr1142 may be able to form a protein complex that can flexibly adjust cellular c-di-GMP concentrations in response to different light signals. Under
blue light irradiation, the C-terminal GGEDF domain of SyCph2 is activated to synthesize c-di-GMP. Elevated levels of c-di-GMP affect the expression of
minor pilin operon (pilA5-pilA6 and pilA9-slr2019) and chemotaxis gene operon (tax2), in particular, up-regulated expression of pilA9-slr2019
significantly induces flocculation of Synechocystis, and this operon has also been shown to play an important role in the phototaxis motility of
Synechocystis. Besides, the c-di-GMP receptor CdgR has been recently identified in cyanobacteria and demonstrated to control the cell size (Zeng et al.
2023). The possible existence of yet unknown c-di-GMP receptors that could regulate cyanobacterial motility remains to be investigated. Furthermore,
this c-di-GMP-dependent signaling network also appears to crosstalk with the cAMP signal transduction system and the Hfq regulatory system due to
the involvement of two CRP-like transcription factors, SyCRP1 (a cAMP receptor protein) and SyCRP2 (a potential c-di-GMP-dependent transcription
factor lacking the key amino acids for binding cAMP) (Fu et al. 2021). The dotted lines represent mechanisms that have yet to be studied.

SySlr1142 (consisting of a single GAF domain encoded by a gene research is required (Angerer et al. 2017a). These cases reflect the
in the same operon as slr1143), to help cyanobacteria regulate c- complexity of regulatory networks of cyanobacterial photorecep-
di-GMP concentrations in response to different light signals. How- tor proteins, and it is because of them that cyanobacteria can im-
ever, the exact mechanism behind it remains unknown and more prove their ability to adapt to different depths in the water.



Bacteria have more blue light than red light
photoreceptors

In addition to red light-responsive systems, there are four ma-
jor classes of blue-light photoreceptors that rely on flavins as
chromophores in bacteria: LOV proteins, BLUF proteins, PYPs, and
cryptochromes (Fig. 10). They can mediate bacterial responses to
blue light, including photosynthesis (Metz et al. 2012), motility
(Yang et al. 1995), DNA repair, stress response (Avila-Pérez et al.
2006), and regulation of development. Blue light usually inhibits
the growth of bacteria. Therefore, exposure to blue light can trig-
ger the dispersion of bacterial biofilms, helping bacteria migrate
to a more favorable environment to survive (Halstead et al. 2016,
Kahl et al. 2020). c-di-GMP has also been found to play an impor-
tant role in the regulation of blue light signals in the first three
types of photoreceptors.

LOV domains

Proteins containing LOV domains are the most widely distributed
blue light-sensitive proteins in bacteria, fungi, and plants (Losi et
al. 2002). The LOV domain belongs to the PAS domain superfam-
ily, and its core domain consists of a five-stranded antiparallel
B-sheet (Ag, Bg, Gg, Hg, and I;) with helical linker elements (C,,
Dy, E4, and F,), which are flanked by variable and often helical
N- and/or C-terminal extensions (Ncap or Ccap) (Fig. 10A) (Henry
and Crosson 2011, Hart and Gardner 2021). The core domain of
the LOV is capable of forming an internal pocket for noncovalent
binding of flavin [most commonly flavin mononucleotide (FMN),
occasionally FAD (He et al. 2002) or riboflavin (Rivera-Cancel et al.
2014)] as a chromophore. The form of flavin chromophore appears
to depend on the expression system, expression conditions, and
the characteristics of the domain itself (Dorn et al. 2013)). There
is a conserved GXNCRFLQ motif that binds flavin on the E, of LOV,
and the Cys residue in this motif can form a covalent flavin-Cys
thiol adduct with the flavin C4, atom when irradiated by blue light.
This is the only criterion for the LOV domain to be photosensitive,
and itis also the basis for participating in photocycling and signal
transduction. At this point, the protein isin a “light state” that dif-
fers from the “dark state” in terms of spatial and electronic proper-
ties (strain, degrees of freedom, and intramolecular interactions),
resulting in a rearrangement of the protein structure, accompa-
nied by changes in protein dynamics, ultimately enabling regula-
tion of downstream functional domain activity (Seifert and Brak-
mann 2018). Among them, antiparallel g-sheets and helical ends
flanking the core domain play a major role in this process (Moglich
and Moffat 2007).

Similar to the domain organization described in other bacterial
signaling proteins, LOV proteins typically have a sensory domain
at the N-terminus and a functional domain at the C-terminus.
About half of the functional domains of LOV proteins are HK do-
mains. In addition, the c-di-GMP metabolic domains occupy the
second place, accounting for about 20%, which also means that
some LOV proteins can sense blue light signals to regulate cellu-
lar c-di-GMP levels (Crosson et al. 2003, Herrou and Crosson 2011).
One such LOV protein, SeSL2, was identified in Synechococcus elon-
gatus. In addition to the LOV domain, SeSL2 contains a GGDEF and
an EAL domain and exhibits blue light-induced PDE activity in vitro
(Cao et al. 2010). It is worth emphasizing that the LOV-GGDEF-
EAL construct is one of the most common domain organizations
in bacterial LOV proteins, suggesting that regulation of cellular c-
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di-GMP concentrations by light may be a general regulatory mech-
anism in bacteria.

BLUF domain

Another class of blue-light sensing domains is the BLUF domain
which utilizes FAD as a chromophore and is present in unicellu-
lar eukaryotes and about 10% of prokaryotes (Losi and Gartner
2008). BLUF domains are small, compact photosensitive modules
that form a ferredoxin-like protein fold with two a-helices aligned
parallel to a five-stranded mixed g-sheet (Fig. 10B) (Anderson et
al. 2005, Jung et al. 2006). Furthermore, a more variable helical C-
cap is often stacked against the g-sheet on the side opposite the
N-terminal helices (Conrad et al. 2014). In addition to the prefer-
ential noncovalent binding of the FAD chromophore, the BLUF do-
main, like LOV, can also bind other types of natural flavins under
certain conditions (Laan et al. 2004). The uniqueness of the photo-
chemical reaction of the BLUF domain is that its photoactivation
process is not accompanied by a major structural change of the
chromophore but merely rearranges the hydrogen bonds around
the chromophore, resulting in a reversible red shift of the absorp-
tion spectrum of the BLUF domain (Kennis and Mathes 2013). In
addition, among all blue light photoreceptors utilizing the flavin
chromophore, BLUF proteins are also the only photoreceptor fam-
ily showing photo-induced proton-coupled electron transfer (Park
and Tame 2017).

BLUF domains can occur in single- or multidomain proteins,
with 70% of BLUF proteins being represented by individual BLUF
domains. BLUF-EAL fusions are the second most common con-
struct (14%), such as KpBIrP1 from Klebsiella pneumoniae (Gomelsky
and Hoff 2011). In solution, the isolated BLUF domain of KpBlrP1 is
in stable monomeric form, while full-length KpBIrP1 is in dimeric
form. Under blue light irradiation, the BLUF domain of one sub-
unit of the antiparallel KpBlrP1 dimer absorbs photons, activating
the EAL domain of the second subunit through allosteric com-
munication transmitted through the conserved domain-domain
interfaces, and hydrolyzes c-di-GMP (Barends et al. 2009).

However, most YcgFs in enteric bacteria, although containing a
similar domain composition to KpBlrP1, have no enzymatic activ-
ity in the EAL domain (Gomelsky and Hoff 2011). EcYcgF is a direct
antagonist of the MerR-like regulator EcYcgE, and the two encod-
ing genes are located adjacent to each other. EcYcgF changes its
conformation after blue lightirradiation and then releases EcYcgE
from bound DNA by interacting with EcYcgE, which ultimately af-
fects the expression of bacterial biofilm formation-related pro-
teins. Interestingly, not only the expression of ycgF and ycgE is
strongly induced by low-temperature conditions, but the light-
induced dimerization of EcYcgF also exhibits a significant temper-
ature dependence (Tschowri et al. 2009, Nakasone et al. 2010). This
indicates that the EcYcgE/EcYcgF signaling pathway involves not
only the response to light but also the perception of temperature,
which can help E. coli to survive better in aquatic environments
other than the original host. In fungi, some Phys use the prop-
erty that temperature can alter the rate of dark reversal to rely
on light to sense temperature, acting as “temperature sensors”
(Yu et al. 2019). It has been found that the optimal growth tem-
perature of some bacteria varies under different light conditions
(Mesquita et al. 2019), and the photosensitivity of some bacteria
is temperature-dependent (Gomelsky and Hoff 2011, Dorey et al.
2019). These results imply that there is a cross-talk between the
bacterial light signaling and the temperature signaling pathway.
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Figure 10. Structures of blue light photoreceptors in bacteria. (A) Crystal structure of the LOV domain of Bacillus subtilis YvtA (PDB entry: 2PR5)
(Moglich and Moffat 2007). The YVtA core domain consists of a five-stranded antiparallel g-sheet (Ag, Bg, G4, Hg, and Ig) and four a-helices (C,, Dy, Eq,
and F,), with a short linker helix at the C-terminus of the core domain. Critical Cys62 are highlighted and drawn in ball-and-stick. (B) Crystal structure
of the BLUF domain of Rhodobacter sphaeroides AppA with FMN replacing the FAD cofactor of the native AppA (PDB entry: 1YRX) (Anderson et al. 2005).
It contains two a-helices (B, and E,) and a five-stranded mixed g-sheet (Ag, Cg, Dg, Gg, and Fp). (C) Crystal structure of Ectothiorhodospira halophila PYP
(PDB entry: 2PHY) (Borgstahl et al. 1995). PYP consists of a central six-stranded B-sheet (Cg, Dg, Gg, Jg, Kg, and Lg) and six a-helices (A,, By, Eo, Fo, He,
and [,). Key Cys69 covalently binding the chromophore are highlighted and drawn in ball-and-stick. (D) Protein fold of the Synechocystis sp. PCC6803
cryptochrome DASH (PDB entry: 1NP7) (Brudler et al. 2003). It contains several 31 helices (magenta) in addition to a-helices (red) and B-sheets (cyan).

The chromophores in each domain are also indicated by arrows.

Pyp

PYP is a water-soluble protein and a class of small cytoplas-
mic blue light receptors. It was originally discovered in Halorho-
dospira halophila, and more than 100 bacteria are now known to
encode PYPs (Schmidt 2017, Kim et al. 2020). PYP is the struc-
tural archetype of the PAS domain superfamily with an o/ folded
structure consisting of a central six-stranded B-sheet packed by
six a-helices (Borgstahl et al. 1995, Pellequer et al. 1998). PYP co-
valently binds the p-coumaric acid (pCA) chromophore to a con-
served Cys residue, thereby conferring blue/UV light sensitivity
to PYP. This chromophore is in a deprotonated trans form in the
dark. After photoexcitation, the chromophore undergoes photo-
isomerization from trans to cis, followed by protonation to achieve
electrostatic neutrality. This results in a rearrangement of the
hydrogen-bonding network, ultimately leading to a change in the
overall conformation of the protein, which alters protein function
(Imamoto and Kataoka 2007).

Due to the limited distribution of PYP, there is currently lim-
ited evidence for its association with c-di-GMP. In the genome
of the gammaproteobacterium Idiomarina lothiensis, isolated from
deep-sea samples and not expected to use photoreceptors, a gene
encoding a PYP homolog is located next to a gene encoding the
GGDEF domain. This protein has photochemical properties of the
PYP family, and inhibition of bacterial biofilm formation was ob-
served when bacteria were exposed to light (van der Horst et al.
2009). In addition, a protein combining PYP and GGDEF domains
has been found in the thermophilic photosynthetic purple sulfur
bacterium Thermochromatium tepidum, suggesting a possible func-
tional link between PYPs and c-di-GMP (Kyndt et al. 2005).

Blue light photoreceptors may play different roles

Bacteria use abundant blue light photoreceptors to detect the blue
light signals in the environment, regulating a wide range of biolog-
ical responses. From the distribution of these blue photoreceptors,
it is likely that their functions can be replaced by each other. For
example, LOV homologs are generally absent in obligate anaer-
obes, obligate intracellular parasites, and extremophilic microbes
thatare infrequently stimulated by light. But there are alsono LOV
homologs in Enterobacterales and Vibrionales, which may have been
exposed to light multiple times in their respective living environ-
ments. Instead, they encode BLUF proteins to take over blue light-
sensing functions. At the same time, the results of bioinformatics
analysis showed that the functional domains of BLUF proteins in
bacteria were highly similar to those of LOV proteins, further con-
firming the previously mentioned opinion that the two blue pho-
toreceptors may have overlapping functions (Krauss et al. 2009).

This conclusion seems to apply to other blue-light photore-
ceptor families as well. Compared with LOV- and BLUF-based
blue photoreceptors, PYPs and cryptochromes have a very limited
distribution. However, some halophilic bacteria that do not en-
code either LOV or BLUF, such as H. halophila and Halochromatium
salexigens, have been found to encode PYP-containing proteins in-
stead (Kumauchi et al. 2008). Therefore, the examples of c-di-GMP
metabolic domains as the functional domains of blue-light pho-
toreceptors may not be limited to LOV- and BLUF-containing pro-
teins, and are likely to be experimentally confirmed in the other
two classes of blue-light photoreceptors in the future. This also
suggests that some bacteria with different blue light photorecep-
tors may share a common blue light avoidance mechanism.



At the same time, some bacteria encode more than one class
of blue-light photoreceptors. For example, R. sphaeroides and
Burkholderia phytofirmans possess both LOV-, BLUF-, and PYP-based
photoreceptors (Kumauchi et al. 2008). From the available clues,
although both LOV and BLUF domains are capable of coupling to
c-di-GMP metabolic domains, LOV tends to be coupled to GGDEF-
EAL (this coupling accounts for 20% of bacterial LOV proteins)
(Herrou and Crosson 2011), while BLUF tends to couple to the EAL
domain (this coupling constitutes 14% of bacterial BLUF proteins)
(Gomelsky and Hoff 2011). Therefore, in these bacteria, although
the blue light photoreceptors can all sense blue light to control c-
di-GMP concentrations, they may play different roles in regulating
the specific processes of the c-di-GMP signaling pathway.

Photosensitive CMEs have broad application
prospects in synthetic biology

The light signals appear to be more controllable, safer and gen-
tler than other inducers of bacterial behaviors and metabolism.
Therefore, some researchers began to use photosensitive CMEs to
explore the feasibility of regulating cellular c-di-GMP levels in bac-
teria and to develop tools for optogenetic applications (Ryu et al.
2017a,b, Angerer et al. 2017b). To a certain extent, light can help
bacteria make important lifestyle-changing decisions. For exam-
ple, it can help bacteria switch between the single-cell planktonic
state and the attached biofilm state; in some pathogens, light can
also affect bacterial virulence. However, a deeper understanding
of the physiological significance of bacterial phototactic behaviors
and the molecular mechanisms of light-dependent signal trans-
duction is still required if we want to interfere with the lifestyle of
bacteria to better control bacterial virulence and biofilms.

Summary and outlook

As the external environment changes, bacteria are challenged
with fluctuations in various chemical and physical parameters,
which pose a serious threat to the integrity and metabolic state of
cells (Klinkert and Narberhaus 2009, Cornforth and Foster 2013).
Therefore, the ability to sense and respond to environmental sig-
nals is a key factor for bacteria to adapt to an ever-changing en-
vironment to survive and reproduce. As an important nucleotide
second messenger, c-di-GMP is a mediator that bridges signal per-
ception with the cellular response and regulates the adaptive be-
haviors of bacteria. This process has been shown to benefit bac-
teria to improve their ability to infect hosts (Fu et al. 2018), fight
environmental stress (Li et al. 2018), and establish symbiotic rela-
tionships (Rao et al. 2015), among others.

This review focused on those sensory domains that can sense
gas and light to modulate CME activities, whether they achieve
this function through direct sensing or indirect regulation. We
summarized their signal transduction mechanisms and the cor-
responding phenotypic outputs and compared the differences be-
tween sensory domains responding to the same signals, which im-
proved our understanding of bacterial adaptation behaviors. The
existence of some unique domains (e.g. orphan H-NOX) and some
bifunctional CMEs mentioned above illustrates the complexity of
the bacterial signal transduction networks. Their physiological
significance and related regulatory mechanisms are going to re-
main a key research direction in bacteriology for the foreseeable
future.

In addition to the stimuli mentioned in our article, bacterial
CMEs can sense and respond to other signals, such as nutrients,
chemicals (Bernier et al. 2011, Heo et al. 2019), temperature (Alm-
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blad et al. 2021), and so on. In addition, the enzymatic properties
of CMEs themselves can also determine whether they are affected
by factors such as pH (Koestler and Waters 2014), ionic strength
(Tamayo et al. 2005), and other signals. Due to the limitation of
article length, they have not been discussed here.

In order to reduce the virulence of pathogens and solve the
problems of antibiotic-resistant bacteria caused by biofilm forma-
tion in the medical field, researchers are trying to develop small
molecule inhibitors as new antibacterial drugs targeting the c-di-
GMP signaling pathway. These inhibitors mostly work by acting on
the potential targets, like CMEs and c-di-GMP receptors, to block
c-di-GMP signaling, but they often lack good selectivity in terms
of biological activities and there is still a huge space for explo-
ration in terms of chemical structure diversity (Xuan et al. 2021).
We, therefore, advocate a new strategy, i.e. “understand what bac-
teria want and then use environmental signals to modulate c-di-
GMP-mediated bacterial behaviors” (Galperin 2018). This strategy
not only lifts the aforementioned limitations, but also helps pre-
vent direct confrontation with bacteria during the use of tradi-
tional methods such as antibiotics, and avoiding damage to the
human (animal) host (Galperin 2018). Thus, further understand-
ing of the complete c-di-GMP-mediated signal transduction path-
way and its roles in bacterial physiology and host-pathogen in-
teractions may also provide good new targets for rational drug
design.

More importantly, mastering the specific mechanisms by which
bacteria sense and respond to signals, as well as the correspond-
ing phenotypic outputs, is also beneficial to the development of
new biosensors suitable for synthetic biology to a certain extent.
These signaling CME-derived biosensors, especially related opto-
genetic tools, will enable rapid and reversible modulation of bac-
terial cellular c-di-GMP concentrations, thereby regulating bacte-
rial physiological activities with a higher spatiotemporal resolu-
tion. Researchers can use these biosensors to regulate bacterial
adaptation behaviors by exerting specific signals, so as to induce
the formation of biofilms that can be used as living catalysts (Ha-
lan et al. 2012) and improve the colonization efficiency of intesti-
nal probiotics (He et al. 2018).

However, there are still many problems in the practical ap-
plication of the above strategy. First, different bacteria may re-
spond differently to the same environmental signals, making it
difficult to model the link between the initial signal and the fi-
nal phenotypic output. Second, bacteria face a rapidly changing
environment in the process of infecting the host, and not all the
signals are controllable. Finally, and most importantly, the regu-
latory behavior of bacteria is inherently very complex. Notably,
there are other enzymes (such as oligoribonucleases, which serve
as degrading enzymes for the linear intermediate pGpG in c-di-
GMP signaling) that can affect c-di-GMP concentrations, and their
activities are also affected by environmental signals (Orr et al.
2018). In addition to regulating c-di-GMP levels, the same en-
vironmental signals can also regulate other cyclic dinucleotide
messengers (e.g. c-di-AMP) and even other signal transduction
pathways (Zhulin et al. 2003, Rao et al. 2010). Moreover, there
is also a cross-talk between these second messenger networks
and other signal transduction systems. For example, the DGC ac-
tivity of Ledl from Leptospira interrogans and the PDE activity of
Bd1971 from Bdellovibrio bacteriovorus can both be activated upon
binding of cAMP to their sensory domains (Cadby et al. 2019, da
Costa Vasconcelos et al. 2017); c-di-GMP and (p)ppGpp, the mes-
senger molecule in the stringent response, appear to be antago-
nistic (Boehm et al. 2009). These problems all reduce the feasibil-
ity of the practical application of this strategy to control bacterial
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behavior. Therefore, there is still a long way to go before we can
truly domesticate bacteria, and more research is needed in this
field.
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