Skip to main content
. 2023 Jul 11;8(4):e00345-23. doi: 10.1128/msystems.00345-23

TABLE 1.

The best-14 feature types determined to be the most effective to use with MBC-Attention for predicting the MIC of a peptide against E. coli a

Feature groups Type Type description RAAC no. of clusters λ No. of features
PseKRAAC 8 Grantham distance matrix (saturation) (23) 9 3 81
PseKRAAC 8 Grantham distance matrix (saturation) 7 3 49
QSOrder Quasi-sequence-order (24) 4 343
QSOrder Quasi-sequence-order 3 343
QSOrder Quasi-sequence-order 2 343
QSOrder Quasi-sequence-order 1 343
QSOrder Quasi-sequence-order 0 343
PseKRAAC 5 BLOSUM50 matrix (25) 15 4 225
PseKRAAC 7 Metric multi-dimensional scaling (MMDS) (26) 10 3 100
PseKRAAC 5 BLOSUM50 matrix 8 2 64
PseKRAAC 3B Whelan and Goldman (WAG) matrix (27) 9 3 81
PseKRAAC 2 BLOSUM 62 matrix (28) 15 4 225
PseKRAAC 2 BLOSUM 62 matrix 8 2 64
PseKRAAC 8 Grantham distance matrix (saturation) 14 1 196
a

The symbol "-" denotes that no parameters are required for feature generation.