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Abstract

A highly accurate but overconfident model is ill-suited for deployment in critical applications 

such as healthcare and autonomous driving. The classification outcome should reflect a high 

uncertainty on ambiguous in-distribution samples that lie close to the decision boundary. The 

model should also refrain from making overconfident decisions on samples that lie far outside 

its training distribution, far-out-of-distribution (far-OOD), or on unseen samples from novel 

classes that lie near its training distribution (near-OOD). This paper proposes an application 

of counterfactual explanations in fixing an over-confident classifier. Specifically, we propose 

to fine-tune a given pre-trained classifier using augmentations from a counterfactual explainer 

(ACE) to fix its uncertainty characteristics while retaining its predictive performance. We perform 

extensive experiments with detecting far-OOD, near-OOD, and ambiguous samples. Our empirical 

results show that the revised model have improved uncertainty measures, and its performance is 

competitive to the state-of-the-art methods.

1. Introduction

Deep neural networks (DNN) are increasingly being used in decision-making pipelines for 

real-world high-stake applications such as medical diagnostics [6] and autonomous driving 

[7]. For optimal decision making, the DNN should produce accurate predictions as well 

as quantify uncertainty over its predictions [8, 37]. While substantial efforts are made to 

engineer highly accurate architectures [23], many existing state-of-the-art DNNs do not 

capture the uncertainty correctly [9].

sumedha.singla@pitt.edu .
*Equal contribution

HHS Public Access
Author manuscript
IEEE Winter Conf Appl Comput Vis. Author manuscript; available in PMC 2023 September 
18.

Published in final edited form as:
IEEE Winter Conf Appl Comput Vis. 2023 January ; 2023: 4709–4719. doi:10.1109/
wacv56688.2023.00470.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



We consider two types of uncertainty: epistemic uncertainty, caused due to limited data and 

knowledge of the model, and aleatoric uncertainty, caused by inherent noise or ambiguity in 

the data [29]. We evaluate these uncertainties with respect to three test distributions (see Fig 

1):

• Ambiguous in-Distribution (AiD): These are the samples within the training 

distribution that have an inherent ambiguity in their class labels. Such ambiguity 

represents high aleatoric uncertainty arising from class overlap or noise [59], e.g. 

an image of a ‘5’ that is similar to a ‘6’.

• Near-OOD: Near-OOD represents a label shift where label space is different 

between ID and OOD data. It has high epistemic uncertainty arising from the 

classifier’s limited information on unseen data. We use samples from unseen 

classes of the training distribution as near-OOD.

• Far-OOD: Far-OOD represents data distribution that is significantly different 

from the training distribution. It has high epistemic uncertainty arising from 

mismatch between different data distributions.

Much of the earlier work focuses on threshold-based detectors that use information from 

a pre-trained DNN to identify OOD samples [15, 19, 24, 67, 21]. Such methods focus 

on far-OOD detection and often do not address the over-confidence problem in DNN. In 

another line of research, variants of Bayesian models [51, 9] and ensemble learning [22, 32] 

were explored to provide reliable uncertainty estimates. Recently, there is a shift towards 

designing generalizable DNN that provide robust uncertainty estimates in a single forward 

pass [64, 4, 47]. Such methods usually propose changes to the DNN architecture [61], 

training procedure [70] or loss functions [49] to encourage separation between ID and OOD 

data. Popular methods include, training deterministic DNN with a distance-aware feature 

space [65, 41] and regularizing DNN training with a generative model that simulates OOD 

data [35]. However, these methods require a DNN model to be trained from scratch and are 

not compatible with an existing pre-trained DNN. Also, they may use auxiliary data to learn 

to distinguish OOD inputs [42].

Most of the DNN-based classification models are trained to improve accuracy on a test set. 

Accuracy only captures the proportion of samples that are on the correct side of the decision 

boundary. However, it ignores the relative distance of a sample from the decision boundary 

[30]. Ideally, samples closer to the boundary should have high uncertainty. The actual 

predicted value from the classifier should reflect this uncertainty via a low confidence score 

[25]. Conventionally, DNNs are trained on hard-label datasets to minimize a negative log-

likelihood (NLL) loss. Such models tend to over-saturate on NLL and end-up learning very 

sharp decision boundaries [16, 48]. The resulting classifiers extrapolate over-confidently on 

ambiguous, near boundary samples, and the problem amplifies as we move to OOD regions 

[8].

In this paper, we propose to mitigate the over-confidence problem of a pre-trained DNN 

by fine-tuning it with augmentations derived from a counterfactual explainer (ACE). We 

derived counterfactuals using a progressive counterfactual explainer (PCE) that create a 

series of perturbations of an input image, such that the classification decision is changed 
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to a different class [57, 33]. PCE is trained to generate on-manifold samples in the regions 

between the classes. These samples along with soft labels that mimics their distance from 

the decision boundary, are used to fine-tuned the classifier. We hypothesis that fine-tuning 

on such data would broaden the classifier’s decision boundary. Our empirical results show 

the fine-tuned classifier exhibits better uncertainty quantification over ambiguous-iD and 

OOD samples. Our contributions are as follows: (1) We present a novel strategy to fine-

tune an existing pre-trained DNN using ACE, to improve its uncertainty estimates. (2) 

We proposed a refined architecture to generate counterfactual explanations that takes into 

account continuous condition and multiple target classes. (3) We used the discriminator of 

our GAN-based counterfactual explainer as a selection function to reject far-OOD samples. 

(4) The fine-tuned classifier with rejection head, successfully captures uncertainty over 

ambiguous-iD and OOD samples, and also exhibits better robustness to popular adversarial 

attacks.

2. Method

In this paper, we consider a pre-trained DNN classifier, fθ, with good prediction accuracy 

but sub-optimal uncertainty estimates. We assume fθ is a differentiable function and we have 

access to its gradient with respect to the input, ∇xfθ(x), and to its final prediction outcome 

fθ(x). We also assume access to either the training data for fθ, or an equivalent dataset with 

competitive prediction accuracy. We further assume that the training dataset for fθ has hard 

labels 0, 1  for all the classes.

Our goal is to improve the pre-trained classifier fθ such that the revised model provides 

better uncertainty estimates, while retaining its original predictive accuracy. To enable this, 

we follow a two step approach. First, we fine-tune fθ on counterfactually augmented data. 

The fine-tuning helps in widening the classification boundary of fθ, resulting in improved 

uncertainty estimates on ambiguous and near-OOD samples. Second, we use a density 

estimator to identify and reject far-OOD samples.

We adapted previously proposed PCE [57] to generate counterfactually augmented data. We 

improved the existing implementations of PCE, by adopting a StyleGANv2-based backbone 

for the conditional-GAN in PCE. This allows using continuous vector fθ(x) as condition for 

conditional generation. Further, we used the discriminator of cGAN as a selection function 
to abstain revised fθ + Δ from making prediction on far-OOD samples (see Fig. 2).

Notation:

The classification function is defined as fθ:ℝd ℝK, where θ represents model parameters. 

The training dataset for fθ is defined as D = X, Y , where x ∈ X represents an input space 

and y ∈ Y = 1, 2, ⋯, K  is a label set over K classes. The classifier produces point estimates 

to approximate the posterior probability ℙ(y ∣ x, D).
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2.1. Progressive Counterfactual Explainer (PCE)

We designed the PCE network to take a query image x ∈ ℝd  and a desired classification 

outcome c ∈ ℝK  as input, and create a perturbation of a query image (x) such that fθ(x) ≈ c. 

Our formulation, x = G(x, c) allows us to use c to traverse through the decision boundary of 

fθ from the original class to a counterfactual class. Following previous work [33, 57, 58], we 

design the PCE to satisfy the following three properties:

1. Data consistency: The perturbed image, x should be realistic and should 

resemble samples in X.

2. Classifier consistency: The perturbed image, x should produce the desired 

output from the classifier fθ i.e. fθ(G(x, c)) ≈ c.

3. Self consistency: Using the original classification decision fθ(x) as condition, the 

PCE should produce a perturbation that is very similar to the query image, i.e. 

G G(x, c), fθ(x) = x and G x, fθ(x) = x.

Data Consistency: We formulate the PCE as a cGAN that learns the underlying data 

distribution of the input space X without an explicit likelihood assumption. The GAN model 

comprised of two networks – the generator G( ⋅ ) and the discriminator D( ⋅ ). The G( ⋅ ) learns 

to generate fake data, while the D( ⋅ ) is trained to distinguish between the real and fake 

samples. We jointly train G, D to optimize the following logistic adversarial loss [12],

Ladv(D, G) = Ex[logD(x) + log(1 − D(G(x, c)))] (1)

The earlier implementations of PCE [57], have a hard constraint of representing the 

condition c as discrete variables. fθ(x) is a continuous variable in range [0, 1]. We adapted 

StyleGANv2 [1] as the backbone of the cGAN. This formulation allow us to use c ∈ ℝK as 

condition.

We formulate the generator as G(x, c) = g(e(x), c), a composite of two functions, an image 

encoder e( ⋅ ) and a conditional decoder g( ⋅ ) [1]. The encoder function e :X W+, learns a 

mapping from the input space X to an extended latent space W+. The detailed architecture 

is provided in Fig. 3. Further, we also extended the discriminator network D( ⋅ ) to have 

auxiliary information from the classifier fθ. Specifically, we concatenate the penultimate 

activations from the fθ(x) with the penultimate activations from the D(x), to obtain a revised 

representation before the final fully-connected layer of the discriminator. The detailed 

architecture is summarized in supplementary material (SM).

We also borrow the concept of path-length regularization Lreg(G) from 

StyleGANv2 to enforce smoother latent space interpolations for the generator. 

Lreg(G) = Ew ∼ e(x), x ∼ X Jw
Tx 2 − a 2, where x denotes random images from the training data, 

Jw is the Jacobian matrix, and a is a constant that is set dynamically during optimization.
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Classifier consistency: By default, GAN training is independent of the classifier fθ. 

We add a classifier-consistency loss to regularize the generator and ensure that the actual 

classification outcome for the generated image x, is similar to the condition c used for 

generation. We enforce classification-consistency by a KullbackLeibler (KL) divergence loss 

as follow[57, 58],

Lf(G) = DKL fθ(x) ∥ c (2)

Self consistency: We define the following reconstruction loss to regularize and constraint 

the Generator to preserve maximum information between the original image x and its 

reconstruction x,

L(x, x) = x − x 1 + e(x) − e(x) 1 (3)

Here, first term is an L1 distance loss between the input and the reconstructed image, and the 

second term is a style reconstruction L1 loss adapted from StyleGANv2 [1]. We minimize 

this loss to satisfy the identify constraint on self reconstruction using xself = G x, fθ(x) . We 

further insure that the PCE learns a reversible perturbation by recovering the original image 

from a given perturbed image x as xcyclic = G x, fθ(x) , where x = G(x, c) with some condition c. 

Our final reconstruction loss is defined as,

Lrec(G) = L x, xself + L x, xcyclic (4)

Objective function: Finally, we trained our model in an end-to-end fashion to learn 

parameters for the two networks, while keeping the classifier fθ fixed. Our overall objective 

function is

min
G

max
D

λadv Ladv(D, G) + Lreg(G)

+λfLf(G) + λrecLrec(G),
(5)

where, λ’s are the hyper-parameters to balance each of the loss terms.

2.2. Augmentation by Counterfactual Explanation

Given a query image x, the trained PCE generates a series of perturbations of x that 

gradually traverse the decision boundary of fθ from the original class to a counterfactual 

class, while still remaining plausible and realistic-looking. We modify c to represent 

different steps in this traversal. We start from a high data-likelihood region for original class 

k(c[k] ∈ [0.8, 1.0]), walk towards the decision hyper-plane (c[k] ∈ [0.5, 0.8)), and eventually 

cross the decision boundary (c[k] ∈ [0.2, 0.5)) to end the traversal in a high data-likelihood 

region for the counterfactual class kc(c[k] ∈ [0.0, 0.2)). Accordingly, we set c kc = 1 − c[k].

Ideally, the predicted confidence from NN should be indicative of the distance from the 

decision boundary. Samples that lies close to the decision boundary should have low 
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confidence, and confidence should increase as we move away from the decision boundary. 

We used c as a pseudo indicator of confidence to generate synthetic augmentation. Our 

augmentations are essentially showing how the query image x should be modified to have 

low/high confidence.

To generate counterfactual augmentations, we randomly sample a subset of real training 

data as Xr ⊂ X. Next, for each x ∈ Xr we generate multiple augmentations x = G x, c
by randomly sampling c[k] ∈ [0, 1]. We used c as soft label for the generate sample while 

fine-tuning the fθ. The Xc represents our pool of generated augmentation images. Finally, we 

create a new dataset by randomly sampling images from X and Xc. We fine-tune the fθ on 

this new dataset, for only a few epochs, to obtain a revised classifier given as fθ + Δ. In our 

experiments, we show that the revised decision function fθ provides improved confidence 

estimates for AiD and near OOD samples and demonstrate robustness to adversarial attacks, 

as compared to given classifier fθ.

2.3. Discriminator as a Selection Function

A selection function g:X 0, 1  is an addition head on top of a classifier that decides when 

the classifier should abstain from making a prediction. We propose to use the discriminator 

network D(x) as a selection function for fθ. Upon the convergence of the PCE training, 

the generated samples resemble the in-distribution training data. Far-OOD samples are 

previously unseen samples which are very different from the training input space. Hence, 

D( ⋅ ) can help in detecting such samples. Our final improved classification function is 

represented as follow,

(f, D)(x) = fθ + Δ(x), if D(x) ≥ ℎ
Abstain, otherwise (6)

where, fθ + Δ is the fine-tuned classifier and D( ⋅ ) is a discriminator network from the PCE 

which serves as a selection function that permits f to make prediction if D(x) exceeds a 

threshold ℎ and abstain otherwise.

3. Related Work

Uncertainty estimation in pre-trained DNN models:

Much of the prior work focused on deriving uncertainty measurements from a pre-trained 

DNN output [19, 15, 38, 42], feature representations [40, 36] or gradients [24]. Such 

methods use a threshold-based scoring function to identify OOD samples. The scoring 

function is derived from soft-max confidence scores [19], scaled logit [15, 40], energy-based 

scores [42, 67] or gradient-based scores [24]. These methods help in identifying OOD 

samples but did not address the over-confidence problem of DNN, that made identifying 

OOD non-trivial in the first place [18, 53]. We propose to mitigate the over-confidence issue 

by fine-tuning the pre-trained classifier using ACE. Further, we used a hard threshold on the 

density score provided by the discriminator of the GAN-generator, to identify OOD samples.
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DNN designs for improved uncertainty estimation:

The Bayesian neural networks are the gold standard for reliable uncertainty quantification 

[51]. Multiple approximate Bayesian approaches have been proposed to achieve tractable 

inference and to reduce computational complexity [14, 2, 28, 9]. Popular non-Bayesian 

methods include deep ensembles [32] and their variant [22, 10]. However, most of these 

methods are computationally expensive and requires multiple passes during inference. An 

alternative approach is to modify DNN training [62, 70, 66], loss function [49], architecture 

[61, 41, 11] or end-layers [65, 21] to support improved uncertainty estimates in a single 

forward-pass. Further, methods such as DUQ [65] and DDU [47] proposed modifications to 

enable the separation between aleatoric and epistemic uncertainty. Unlike these methods, our 

approach improves the uncertainty estimates of any existing pre-trained classifier, without 

changing its architecture or training procedure. We used the discriminative head of the 

fine-tuned classifier to capture aleatoric uncertainty and the density estimation from the 

GAN-generator to capture epistemic uncertainty.

Uncertainty estimation using GAN:

A popular technique to fix an over-confident classifier is to regularize the model with an 

auxiliary OOD data which is either realistic [20, 45, 54, 4, 39] or is generated using GAN 

[55, 35, 44, 69, 56]. Such regularization helps the classifier to assign lower confidence to 

anomalous samples, which usually lies in the low-density regions. Defining the scope of 

OOD a-priori is generally hard and can potentially cause a selection bias in the learning. 

Alternative approaches resort to estimating in-distribution density [60]. Our work fixed the 

scope of GAN-generation to counterfactual generation. Rather than merging the classifier 

and the GAN training, we train the GAN in a post-hoc manner to explain the decision of 

an existing classifier. This strategy defines OOD in the context of pre-trained classifier’s 

decision boundary. Previously, training with CAD have shown to improved generalization 

performance on OOD samples [27]. However, this work is limited to Natural Language 

Processing, and requires human intervention while curating CAD [26]. In contrast, we train 

a GAN-based counterfactual explainer [58, 33] to derive CAD.

4. Experiment

We consider four classification problems, in increasing level of difficulty:

1. AFHQ [5]: We consider binary classification over well separated classes, cat vs 

dog.

2. Dirty MNIST [47]: We consider multi-class classification over hand-written 

digits 0–6. The dataset is a combination of original MNIST [34] and simulated 

samples from a variational decoder. The samples are generated by combining 

latent representation of different digits, to simulate ambiguous samples, with 

multiple plausible labels [47].

3. CelebA [43]: We consider a multi-label classification setting over ‘young’ 

and ‘smiling’ attributes. Without age labels, identifying ‘young’ faces is a 

challenging task.
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4. Skin lesion (HAM10K) [63]: We consider a binary classification to separate 

Melanocytic nevus (nv) from Melanoma (mel) and Benign Keratosis (bkl) 

lesions. Skin lesion classification is a challenging task as different lesions may 

exhibit similar features [50].

Architecture details:

We consider state-of-the-art DenseNet [23] architecture for the baseline. The pre-trained 
DenseNet model followed the training procedures as described in [23]. In order to keep 

the architecture and training procedure of PCE simple, we consider the default training 

parameters from [1] for training the StyleGANv2. This encourages reproducibility as we 

didn’t do hyper-parameter tuning for each dataset and classification model. For training 

StyelGANv2, we use a randomly sampled subset (∼ 50%) of the baseline model’s 

training data. For multi-class classification, we consider all pairs of classes while creating 

counterfactual augmentations. For fine-tuning the baseline, we create a new dataset with 

30% counterfactually generated samples and 70% real samples from the original training set. 

All the results are reported on the test set of the baseline. In all our experiments, we used 

λadv = 10, λrec = 100, λf = 10, and ℎ = 0.5.

Comparison methods:

Our baseline is a standard DNN classifier fθ trained with cross-entropy loss. For baseline 

and its post-hoc variant with temperature-scaling (TS), we used threshold over predictive 

entropy (PE) to identify OOD. PE is defined as −∑ fθ(x) klog fθ(x) k. Next, we compared 

against following five methods: mixup: baseline model with mixup training using α = 0.2
[70]; deterministic uncertainty quantification (DUQ) [65]: baseline model with radial basis 

function as end-layer; DDU: that use the closest kernel distance to quantify uncertainties; 

MC Dropout (with 20 dropout samples) [9]; and five independent runs of baseline as 

5-Ensemble [32]. The ensemble approaches are an upper bound for UQ.

4.1. Identifying AiD samples

We do not have access to ground truth labels marking the samples that are AiD. Hence, 

we used the PE estimates from an MC Dropout classifier to obtain pseudo-ground truth 

for AiD classification. Specifically, we sort the test set using PE and consider the top 5 to 

10% samples as AiD. In Fig. 1, we qualitatively compare the PE distribution from the given 

baseline and its fine-tuned version (baseline + ACE). Fine-tuning resulted in minor changes 

to the PE distribution of the iD samples (Fig. 1.A). We observe a significant separation in the 

PE distribution of AiD samples and the rest of the test set (Fig. 1.B), even on the baseline. 

This suggests that the PE correctly captures the aleatoric uncertainty.

Table 1 compares our model to several baselines. We report the test set accuracy, the 

AUC-ROC for the binary task of identifying AiD samples and the true negative rate (TNR) 

at 95% true positive rate (TPR) (TNR@TPR95), which simulates an application requirement 

that the recall of in-distribution data should be 95% [21]. For all metrics higher value is 

better. Our model outperformed other deterministic models in identifying AiD samples with 

a high AUC-ROC and TNR@TPR95 across all datasets.
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4.2. Detecting OOD samples

We consider two tasks to evaluate the model’s OOD detection performance. First, a standard 

OOD task where OOD samples are derived from a separate dataset. Second, a difficult 

near-OOD detection task where OOD samples belongs to novel classes from the same 

dataset, which are not seen during training. We consider the following OOD datasets:

1. AFHQ [5]: We consider “wild” class from AFHQ to define near-OOD samples. 

For the far-OOD detection task, we use the CelebA dataset, and also cat/dog 

images from CIFAR10 [31].

2. Dirty MNIST [47]: We consider digits 7–9 as near-OOD samples. For far-OOD 

detection, we use SVHN [52] and fashion MNIST [68] datasets.

3. CelebA [43]: We consider images of kids in age-group: 0–11 from the UTKFace 

[71] dataset to define the near-OOD samples. For far-OOD detection task, we use 

the AFHQ and CIFAR10 datasets.

4. Skin lesion (HAM10K) [63]: We consider samples from lesion types: Actinic 

Keratoses and Intraepithelial Carcinoma (akiec), Basal Cell Carcinoma (bcc), 

Dermatofibroma (df) and Vascular skin lesions (vasc) as near-OOD. For far-

OOD, we consider CelebA and an additional simulated dataset with different 

skin textures/tones.

In Fig. 1, we observe much overlap between the PE distribution of the near-OOD 

samples and in-distribution samples in Fig. 1.C. Further, in Fig. 1.D, we see that 

our model successfully disentangles OOD samples from the in-distribution samples by 

using density estimates from the discriminator of the PCE. In Table 2, we report the 

AUC-ROC and TNR@TPR95 scores on detecting the two types of OOD samples. We 

first use the discriminator from the PCE to detect far-OOD samples. The discriminator 

achieved near-perfect AUC-ROC for detecting far-OOD samples. We used the PE estimates 

from the fine-tuned model (baseline + ACE) to detect near-OOD samples. Overall our 

model outperformed other methods on both near and far-OOD detection tasks with high 

TNR@TPR95.

4.3. Robustness to Adversarial Attacks

We compared the baseline model before and after fine-tuning (baseline + ACE) in their 

robustness to three adversarial attacks: Fast Gradient Sign Method (FGSM) [13], Carlini-

Wagner (CW) [3], and DeepFool [46].

For each attack setting, we transformed the test set into an adversarial set. In Fig. 5, we 

report the AUC-ROC over the adversarial set as we gradually increase the magnitude of the 

attack. For FGSM, we use the maximum perturbation (ϵ) to specify the attack’s magnitude. 

For CW, we gradually increase the number of iterations to an achieve a higher magnitude 

attack. We set box-constraint parameter as c = 1, learning rate α = 0.01 and confidence 

κ = 0, 5. For DeepFool (η = 0.02), we show results on the best attack. Our improved model 

(baseline + ACE) consistently out-performed the baseline model in test AUC-ROC, thus 

showing an improved robustness to all three attacks.
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5. Conclusion

We propose a novel application of counterfactual explanations in improving the uncertainty 

quantification of a pre-trained DNN. We improved upon the existing work on counterfactual 

explanations, by proposing a StyleGANv2-based backbone. Fine-tuning on augmented 

data, with soft labels helps in improving the decision boundary and the fine-tuned model, 

combined with the discriminator of the PCE can successfully capture uncertainty over 

ambiguous samples, unseen near-OOD samples with label shift and far-OOD samples 

from independent datasets. We out-performed state-of-the-art methods for uncertainty 

quantification on four datasets, and our improved model also exhibits robustness to 

adversarial attacks.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Comparison of the uncertainty estimates from the baseline, before (dotted line) and after 

(solid line) fine-tuning with augmentation by counterfactual explanation (ACE). The plots 

visualize the distribution of predicted entropy (columns A-C) from the classifier and density 

score from the discriminator (column D). The y-axis of this density plot is the probability 

density function whose value is meaningful only for relative comparisons between groups, 

summarized in the legend. A) visualizes the impact of fine-tuning on the in-distribution 
(iD) samples. A large overlap suggests minimum changes to classification outcome for iD 

samples. Next columns visualize change in the distribution for ambiguous iD (AiD) (B) 

and near-OOD samples (C). The peak of the distribution for AiD and near-OOD samples 

shifted right, thus assigning higher uncertainty and reducing overlap with iD samples. D) 

compares the density score from discriminator for iD (blue solid) and far-OOD (orange 

solid) samples. The overlap between the distributions is minimum, resulting in a high 

AUC-ROC for binary classification over uncertain samples and iD samples. Our method 

improved the uncertainty estimates across the spectrum.
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Figure 2. 
(a) Given a pre-trained classifier fθ, we learn a c-GAN based progressive counterfactual 

explainer (PCE) G(x, c), while keeping fθ fixed. (b) The trained PCE creates counterfactually 

augmented data. (c) A combination of original training data and augmented data is used to 

fine-tune the classifier, fθ + Δ. (d) The discriminator from PCE serves as a selection function 

to detect and reject OOD data.
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Figure 3. 
PCE: The encoder-decoder architecture to create counterfactual augmentation for a given 

query image. ACE: Given a query image, the trained PCE generates a series of perturbations 

that gradually traverse the decision boundary of fθ from the original class to a counter-

factual class, while still remaining plausible and realistic-looking.
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Figure 4. 
An example of counterfactually generated data by the progressive counterfactual explainer 

(PCE). More examples are provided in the Supplementary Material.
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Figure 5. 
Plots comparing baseline model before and after fine-tuning (ACE) for different magnitudes 

of adversarial attack. The figure shows three different attacks – FGSM [13], CW [3], 

DeepFool [46], on three different datasets – HAM10K, AFHQ, MNIST. The x-axis denotes 

maximum perturbation (ϵ) for FGSM, and iterations in multiples of 10 for CW and 

DeepFool. Attack magnitude of 0 indicates no attack. For CW we used κ = 0 and 5. (All 

results are reported on the test-set of the classifier).
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Table 2.

OOD detection performance for different baselines. Near-OOD represents label shift, with samples from the 

unseen classes of the same dataset. Far-OOD samples are from a separate dataset. The numbers are averaged 

over five runs.

Train Dataset Method Near-OOD (Wild) Far-OOD (CIFAR10) Far-OOD (CelebA)

AUC-ROC TNR@TPR95 AUC-ROC TNR@TPR95 AUC-ROC TNR@TPR95

AFHQ

Baseline 0.88±0.04 47.40±5.2 0.95±0.04 73.59±9.4 0.95±0.03 70.69±8.9

Baseline+TS [17] 0.88±0.03 45.53±9.8 0.95±0.04 71.77±8.9 0.95±0.03 65.89±8.3

Baseline+TS+ODIN [38] 0.87±0.05 45.02±1.51 0.95±0.05 69.42±2.38 0.95±0.03 67.18±2.16

Baseline+energy [42] 0.88±0.03 47.77±1.10 0.94±0.05 72.68±2.69 0.96±0.04 74.75±2.89

Mixup [70] 0.86±0.06 53.83±6.8 0.82±0.11 57.01±8.6 0.88±0.13 70.51±9.8

DUQ [65] 0.78±0.05 20.98±2.0 0.67±0.59 16.23±1.5 0.66±0.55 15.34±2.6

DDU [47] 0.83±0.02 23.19±2.6 0.90±0.02 32.98±10 0.75±0.02 10.32±5.6

Baseline+ACE 0.89±0.03 51.39±4.4 0.98±0.02 88.71±5.7 0.97±0.03 88.87±9.8

MC-Dropout [9] 0.84±0.09 30.78±2.9 0.94±0.02 73.59±2.1 0.95±0.02 71.23±1.9

5-Ensemble [32] 0.99±0.01 65.73±1.2 0.97±0.02 89.91±0.9 0.99±0.01 92.12±0.7

Near-OOD (Digits 7–9) Far-OOD (SVHN) Far-OOD (fMNIST)

AUC-ROC TNR@TPR95 AUC-ROC TNR@TPR95 AUC-ROC TNR@TPR95

Dirty MNIST

Baseline 0.86±0.04 28.23±2.9 0.75±0.15 51.98±0.9 0.87±0.02 58.12±1.5

Baseline+TS [17] 0.86±0.01 30.12±2.1 0.73±0.07 48.12±1.5 0.89±0.01 61.71±2.8

Baseline+TS+ODIN [38] 0.83±0.04 34.13±12.07 0.77±0.13 21.59±19.62 0.89±0.02 46.43±4.31

Baseline+energy [42] 0.87±0.04 40.30±1.05 0.86±0.12 43.92±2.30 0.91±0.02 62.10±5.17

Mixup [70] 0.86±0.02 35.46±1.0 0.95±0.03 65.12±3.1 0.94±0.05 66.00±0.8

DUQ [65] 0.78±0.01 15.26±3.9 0.73±0.03 45.23±1.9 0.75±0.03 50.29±3.1

DDU [47] 0.67±0.07 10.23±0.9 0.68±0.04 39.31±2.2 0.85±0.02 53.76±3.7

Baseline+ACE 0.94±0.02 37.23±1.9 0.98±0.02 67.88±3.1 0.97±0.02 70.71±1.1

MC-Dropout [9] 0.97±0.02 40.89±1.5 0.95±0.01 62.12±5.7 0.93±0.02 65.01±0.7

5-Ensemble [32] 0.98±0.02 42.17±1.0 0.82±0.03 55.12±2.1 0.94±0.01 64.19±4.2

Near-OOD (Kids) Far-OOD (AFHQ) Far-OOD (CIFAR10)

AUC-ROC TNR@TPR95 AUC-ROC TNR@TPR95 AUC-ROC TNR@TPR95

CelebA

Baseline 0.84±0.02 1.25±0.1 0.86±0.03 88.57±0.9 0.79±0.02 29.01±5.1

Baseline+TS [17] 0.82±0.04 1.24±0.1 0.87±0.06 88.75±0.9 0.78±0.04 29.01±5.1

Baseline+TS+ODIN [38] 0.65±0.01 8.75±2.21 0.55±0.01 23.03±0.16 0.54±0.01 5.00±0.07

Baseline+energy [42] 0.76±0.51 9.40±0.01 0.94±0.08 32.08±1.70 0.85±0.76 17.10±0.72

Mixup [70] 0.82±0.08 22.18±2.7 0.95±0.02 82.96±2.5 0.79±0.13 30.54±1.3

DUQ [65] 0.80±0.03 14.68±3.1 0.72±0.07 26.62±7.7 0.86±0.04 28.70±4.1

DDU [47] 0.73±0.15 7.9±0.4 0.74±0.13 8.18±0.4 0.81±0.15 25.45±1.4

Baseline+ACE 0.87±0.03 34.37±2.5 0.96±0.01 96.35±2.5 0.92±0.05 63.51±1.5

MC-Dropout [9] 0.70±0.10 25.62±1.7 0.86±0.1 91.72±7.5 0.74±0.12 64.79±1.8

5-Ensemble [32] 0.93±0.03 10.35±0.2 0.99±0.0 98.31±1.2 0.92±0.10 61.88±1.2
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Train Dataset Method Near-OOD (Wild) Far-OOD (CIFAR10) Far-OOD (CelebA)

AUC-ROC TNR@TPR95 AUC-ROC TNR@TPR95 AUC-ROC TNR@TPR95

Near-OOD (other lesions) Far-OOD (CelebA) Far-OOD (Skin-texture)

AUC-ROC TNR@TPR95 AUC-ROC TNR@TPR95 AUC-ROC TNR@TPR95

Skin Lesion

Baseline 0.67±0.04 8.70±2.5 0.66±0.06 10.00±3.6 0.65±0.10 5.91±2.8

Baseline+TS [17] 0.67±0.05 8.69±2.0 0.63±0.06 9.24±4.3 0.68±0.07 5.70±3.2

Baseline+TS+ODIN [38] 0.68±0.01 9.43±0.33 0.67±0.07 11.32±4.66 0.68±0.07 6.60±0.29

Baseline+energy [42] 0.70±0.04 10.85±0.08 0.70±0.14 7.90±0.29 0.65±0.20 2.83±1.33

Mixup [70] 0.67±0.01 8.52±2.8 0.64±0.08 10.21±4.0 0.72±0.05 5.26±3.1

DUQ [65] 0.67±0.04 3.12±1.8 0.89±0.09 11.89±2.5 0.64±0.03 4.8±1.5

DDU [47] 0.65±0.03 3.45±1.9 0.75±0.04 15.45±2.9 0.71±0.05 4.19±1.3

Baseline+ACE 0.72±0.04 10.99±2.8 0.97±0.02 66.77±1.4 0.96±0.03 95.83±5.0

MC-Dropout [9] 0.67±0.05 9.45±3.9 0.80±0.07 30.00±3.2 0.56±0.03 10.87±2.3

5-Ensemble [32] 0.88±0.01 11.23±1.7 0.91±0.03 27.89±5.9 0.76±0.02 17.89±3.5
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