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Abstract 

Knowledge of the fitness effects of mutations to SARS-CoV-2 can inform assessment of new variants, design of therapeutics resistant 
to escape, and understanding of the functions of viral proteins. However, experimentally measuring effects of mutations is challenging: 
we lack tractable lab assays for many SARS-CoV-2 proteins, and comprehensive deep mutational scanning has been applied to only 
two SARS-CoV-2 proteins. Here, we develop an approach that leverages millions of publicly available SARS-CoV-2 sequences to estimate 
effects of mutations. We first calculate how many independent occurrences of each mutation are expected to be observed along the 
SARS-CoV-2 phylogeny in the absence of selection. We then compare these expected observations to the actual observations to estimate 
the effect of each mutation. These estimates correlate well with deep mutational scanning measurements. For most genes, synonymous 
mutations are nearly neutral, stop-codon mutations are deleterious, and amino acid mutations have a range of effects. However, some 
viral accessory proteins are under little to no selection. We provide interactive visualizations of effects of mutations to all SARS-CoV-2 
proteins (https://jbloomlab.github.io/SARS2-mut-fitness/). The framework we describe is applicable to any virus for which the number 
of available sequences is sufficiently large that many independent occurrences of each neutral mutation are observed.
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1. Introduction
The rapid evolution of SARS-CoV-2 has led to the emergence of 
viral variants with enhanced transmissibility, escape from thera-
peutics, or reduced recognition by immunity (Harvey et al. 2021; 
Abdool Karim and de Oliveira 2021). To anticipate and mitigate 
this evolution, the scientific community has launched efforts to 
assess the risk of new viral variants (DeGrace et al. 2022) and cre-
ate therapeutics that target constrained regions of the virus where 
resistance is less likely to evolve (Moghadasi et al. 2023; Iketani et 
al. 2022b; Hiscox et al. 2021). Both efforts require determining how 
specific mutations affect viral fitness.

Unfortunately, experimentally measuring the effects of muta-
tions is challenging for most SARS-CoV-2 proteins. For spike, 
tractable lab assays have identified key functional and antigenic 
mutations (Harvey et al. 2021; Weisblum et al. 2020), and enabled 
deep mutational scanning measurements of how most mutations 
affect receptor binding, cellular infection, and antibody recogni-
tion (Starr et al. 2020; Dadonaite et al. 2023; Greaney et al. 2021; 
Cao et al. 2022a). These experimental data are valuable for assess-
ing new spike variants (DeGrace et al. 2022; Greaney, Starr and 
Bloom 2022; Tzou et al. 2022) and designing antibody therapeu-
tics with greater resistance to escape (Starr et al. 2021; Rappazzo 
et al. 2021; Cao et al. 2022b). But most SARS-CoV-2 proteins lack 

tractable lab assays, despite contributing to viral fitness (Thorne 
et al. 2022; Syed et al. 2021; McGrath et al. 2022) and being tar-
gets of efforts to develop anti-viral drugs (Tao et al. 2021). The only 
non-spike SARS-CoV-2 protein with large-scale experimental mea-
surements of mutation effects is Mpro (Flynn et al. 2022; Iketani 
et al. 2022a).

An alternative to experiments is to estimate effects of muta-
tions by analyzing natural viral sequences. The amount of data 

available for such analyses has increased dramatically over the 
last few years with the sequencing of SARS-CoV-2 from millions 

of human infections. So far analyses of these sequences have 

focused on analyzing expanding viral clades to identify mutations 

that mediate immune escape or increase transmissibility (Ober-

meyer et al. 2022; Lee et al. 2022; Maher et al. 2022). The basic idea 

is that mutations that repeatedly appear near the base of clades 

that increase in relative frequency are likely beneficial to the virus. 

However, only a small minority of all possible mutations are bene-
ficial, with most being nearly neutral or deleterious. For purposes 

such as identifying constrained drug targets or understanding the 
function of viral proteins, it is important to estimate the effects of 
neutral or deleterious mutations as well as beneficial ones. Other 
studies have analyzed broader alignments of coronaviruses sub-
stantially diverged from SARS-CoV-2 (Rodriguez-Rivas et al. 2022;
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Figure 1. Expected versus actual counts of mutations. (A) The number of expected counts of each type of nucleotide mutation is computed from 
four-fold degenerate sites, and then compared the actual counts of each mutation. (B) Expected versus actual counts for each nucleotide mutation 
type aggregated across all viral clades and averaged across all sites where the mutation is four-fold degenerate, synonymous (including four-fold 
degenerate), nonsynonymous, or introduces a stop codon. See https://jbloomlab.github.io/SARS2-mut-fitness/avg_counts.html for an interactive 
version of panel B that enables mouseovers to read off specific values.

Thadani et al. 2022), but the resulting estimates are limited by 
sparse sampling and possible changes in the impacts of some 
mutations across divergent viruses.

Here, we develop a new approach that uses natural sequences 
to estimate the effects of mutations. Our basic insight is that there 
are now so many SARS-CoV-2 sequences that all non-deleterious 
single-nucleotide mutations are expected to independently occur 
many times along the observed phylogenetic tree. We therefore 
first calculate the number of expected observations of indepen-
dent occurrences of each mutation based on the neutral mutation 
rate of SARS-CoV-2. We then compare these expected observa-
tions to the actual observations in the SARS-CoV-2 tree to estimate 
the effect of each mutation. The resulting estimates correlate well 
with existing deep mutational scanning data. Most viral proteins 
have regions under strong selective constraints. However, some 
accessory proteins show only weak selection against amino acid 
and even stop-codon mutations. Overall, our work demonstrates 
a new approach to determine the effects of mutations and pro-
vides detailed maps of mutational effects across the SARS-CoV-2 
proteome. 

2. Results

2.1 Mutation effects from actual versus expected 
counts
To determine how many times each mutation is expected to be 
observed, we used the pre-built UShER tree (McBroome et al. 2021; 
Turakhia et al. 2021; Lanfear 2020) of ~7-million public SARS-CoV-
2 sequences to count nucleotide mutations at four-fold degenerate 
sites (Fig. 1A; Bloom et al. 2023). Because mutations at such sites 
never alter the amino acid sequence, these counts reflect the 
mutation process in the absence of protein-level selection (see 
below for caveats about nucleotide-level selection). The expected 
counts of a mutation from nucleotide x to y is simply the aver-
age count of this type of mutation across all four-fold degenerate 
sites with parental identity x. Importantly, we count independent 
occurrences of each mutation along the branches of the tree, not 
the sequences with the mutation in the final alignment (Fig. 1A). 
We also compute expected counts separately for each SARS-CoV-
2 clade to account for shifts in mutation spectrum (Bloom et al. 
2023; Ruis et al. 2022), and apply quality-control steps to remove 
spurious mutations (see Methods).

The expected counts per mutation vary with mutation type, 
ranging from ~565 for C→T to only ~9 for T→G mutations (Fig. 1B). 
This variation is because the SARS-CoV-2 mutation spectrum is 
highly biased toward specific mutation types (Bloom et al. 2023; 
Ruis et al. 2022; De Maio et al. 2021; Neher 2022). However, because 
there are so many SARS-CoV-2 sequences we are able to estimate 
the rate of even the rarest mutation types with high accuracy 
(Bloom et al. (2023)). For instance, there are ∼ 1.9 × 104 observed 
occurrences of T→G mutations across all ~2,100 four-fold degener-
ate sites with a parental identity of T, which is enough to estimate 
the T→G mutation rate (and therefore the expected counts of each 
mutation) with high accuracy.

We compared the expected counts to the actual observed 
counts of mutations averaged across sites (Fig. 1). For synonymous 
mutations, the expected and actual counts are similar. But for 
nonsynonymous and especially stop-codon mutations, the actual 
counts are substantially lower than the expected counts, reflecting 
purifying selection for protein function.

The ratio of actual to expected counts for each mutation is 
related to its effect on viral fitness. The intuition is straight-
forward: mutations arise at all sites, but viruses with delete-
rious mutations are less likely to transmit and be observed in 
sequencing of human SARS-CoV-2. Therefore, the ratio of actual to 
expected counts will be one for neutral mutations, and less than 
one for deleterious mutations. In the Methods and Appendix, we 
show that under plausible assumptions about SARS-CoV-2 evo-
lution and sampling intensity (fraction of viruses sequenced), the 
fitness cost of a deleterious mutation scales roughly inversely with 
the ratio of actual to expected counts for mutations with costs 
greater than a few percent. A key result is the dependence on 
sampling intensity: if all human SARS-CoV-2 were sequenced even 
deleterious mutations would have a high chance of being sampled 
and we would need to study the subsequent spread of the muta-
tions to assess their fitness. But the actual sampling intensity is 
~0.1%, since there are ~7-million publicly available SARS-CoV-2 
sequences and the total number of human infections is now prob-
ably roughly on par with the total global population of ~8-billion 
people. At this sampling intensity, the number of times a muta-
tion is observed reflects more subtle reductions in transmission 
efficiency. We quantify the effect of each mutation as the loga-
rithm of the ratio of actual to expected counts after summing 
counts for all nucleotides that encode the relevant amino acid. The
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Figure 2. Correlations of mutation fitness effect estimates made using subsets of natural sequences. Correlations between estimates made (A) just 
using sequences from the Delta or Omicron BA.5 clades or (B) just from the USA or England. Each point is an amino acid mutation, the orange line is a 
least-squares regression, and orange text at upper left shows the number of mutations and Pearson’s correlation coefficient. Only mutations with at 
least 10 expected counts are shown, which is why panels have different numbers of mutations shown (sequence subsets vary in size). Different subset 
size are also the reason why the regression line in (A) deviates from the identity x = y. (C) Correlations between clade or geography subsets become 
higher with an increasingly large threshold for minimum expected counts. Spike mutations have a worse correlation when subsetting by viral clade 
(plot shows average correlation over all pairwise combinations of Delta, BA.1, BA.2, and BA.5), but not when subsetting by geography (USA or England). 
(D) Correlations in estimated mutation-effects decline for clades with higher protein divergence, with the effect most noticeable for spike since spike 
is more diverged among SARS-CoV-2 clades than other viral proteins. See https://jbloomlab.github.io/SARS2-mut-fitness/clade_corr_chart.html and 
https://jbloomlab.github.io/SARS2-mut-fitness/subset_corr_chart.html  for versions of A and B that include all viral clades with at least 500,000 total 
expected counts (summed across all mutations) and have other interactive options.

statistical noise is greater for mutations with fewer expected 
counts: the figures in this paper show mutations with ≥10 
expected counts unless otherwise noted, with legends linking to 
interactive plots that enable adjustment of this threshold.

2.2 Mutation-effect estimates are robust to 
subsampling, with some evidence of epistasis in 
spike
We computed the correlations among mutation-effect estimates 
made using subsets of SARS-CoV-2 sequences from different viral 
clades or geographic locations. These estimates were well corre-
lated, with some modest variation in estimates across sequence 
subsets (Fig. 2A, B). 

The modest variation in estimates from different sequence 
subsets could have two causes: statistical noise due to finite muta-
tion counts, or real shifts in mutation effects during SARS-CoV-2 
evolution (Starr et al. 2022a; Moulana et al. 2022). To test for 
statistical noise, we computed correlations with different thresh-
olds for how many expected counts are required before making 
an estimate for a mutation (Fig. 2C). Correlations increased with 
this count threshold, consistent with reduced statistical noise for 
larger mutation counts. But the correlation for spike mutations 
was consistently lower for cross-clade but not cross-geography 
comparisons (Fig. 2C). The lower cross-clade correlation for spike 
appears due to epistatic shifts in mutation effects (Starr et al. 
2022a; Moulana et al. 2022; Pollock, Thiltgen and Goldstein 2012; 
Shah, McCandlish and Plotkin 2015; Lee et al. 2018) or changes 
in the selective landscape (Sun et al. 2023) between SARS-CoV-2 
clades, since the correlation is lower between clades with higher 
spike divergence (Fig. 2D). In particular, the interactive version 
of Fig. 2A shows that mutations that are more beneficial in Omi-
cron BA.5 than Delta are often antibody-escape mutations (e.g., 
K444N or G446S in spike (Greaney, Starr and Bloom 2022))—a 
result that makes sense, since newer variants like Omicron BA.5 
are evolving under increased immune selection compared to ear-
lier variants like Delta that circulated in a more immunologically 
naive population.

Despite evidence for some shifts in mutation effects in spike, 
for the rest of this paper we aggregate counts across viral clades 
to make a single estimate for each amino acid mutation. The 

reason is that the accuracy of the estimates increases with the 
number of counts (Fig. 2C), and several mutation types only have 
enough counts for reasonable estimates when aggregating across 
clades (Fig. 1B). For the purposes of this paper, we deemed it prefer-
able to have more accurate and comprehensive pan-SARS-CoV-2 
estimates than noisier clade-specific estimates for fewer muta-
tions. However, the interactive version of Fig. 2A linked in the 
legend enables exploration of mutations with disparate estimates 
among clades.

An important question is whether the mutation fitness esti-
mates are affected by noise from limited statistical sampling of 
mutations or whether sequencing errors and bioinformatic arti-
facts distort the estimates. To assess if this is the case, we repeated 
the entire fitness estimation using an even larger pre-built UShER 
mutation-annotated tree of all ~14-million SARS-CoV-2 sequences 
in GISAID Shu and McCauley (2017) as of March-29-2023. There 
is an extremely high correlation between fitness estimates made 
using the ~7-million publicly available sequences and the larger 
GISAID tree (Supplementary Fig. S1). This concordance indicates 
that the set of ~7-million public sequences is large enough that 
doubling the data does not appreciably shift the estimates, and so 
throughout this paper we use that sequence set due to our pref-
erence for publicly available data. Furthermore, fitness estimates 
using sequences from specific countries (USA and England, Fig. 2B) 
are also highly concordant, suggesting that sequencing and bioin-
formatic workflows are not driving the signal. Lastly, positions 
known to be under strong constraint a priori (e.g., start codons and 
the ribosomal slippage site) typically have no or only few muta-
tions, suggesting that sequencing errors in consensus sequences 
are rare. 

2.3 Structural and non-structural proteins are 
under strong purifying selection, but most 
accessory proteins are not
The distributions of mutation effects concur with biological intu-
ition about how different classes of mutations impact protein 
function. Most synonymous mutations are nearly neutral, most 
stop codons are highly deleterious, and amino acid mutations 
range from slightly beneficial to highly deleterious (Fig. 3A). The 
handful of synonymous or noncoding mutations with highly 
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Figure 3. Distribution of effects of different classes of mutations. (A) Histograms of effects of synonymous, nonsynonymous, and stop-codon 
mutations across all viral genes. Neutral mutations have effects of zero (dashed gray vertical lines), and deleterious mutations have negative effects. 
(B) Effects of each class of mutation for each viral gene. Dark squares indicate the median effect, and the lighter rectangles span the interquartile 
range. Mutation types are color-coded as in panel (A). The apparent constraint on synonymous mutations in ORF9b is probably because this gene is 
encoded in an overlapping reading frame with N (Jungreis et al. 2021). See https://jbloomlab.github.io/SARS2-mut-fitness/effects_histogram.html and 
https://jbloomlab.github.io/SARS2-mut-fitness/effects_dist.html for plots that allow adjustment of the expected-count cutoff and other interactive 
options (such as separate histograms for each gene). See Supplementary Fig. S3 for a version of panel B with genes ordered by genomic position rather 
than constraint on nonsynonymous mutations.

deleterious effects are in either regions of known non-coding con-
straint (e.g., the ORF1ab ribosomal slippage site (Bhatt et al. 2021)) 
or two regions in the center of E and the end of M (Supplementary 
Fig. S2).

To investigate differences in functional constraint among viral 
proteins, we computed the distributions of mutation effects sep-
arately for each gene (Figs. 3B and S3). SARS-CoV-2 proteins are 
grouped into three categories: nonstructural (or nsp) proteins, 
structural proteins (spike, M, N, and E), and accessory proteins 
(names prefixed with ‘ORF’) (V’kovski et al. 2021). The nonstruc-
tural and structural proteins are essential, and these proteins 
show strong selection against stop codons and clear although vari-
able purifying selection against amino acid mutations (Figs. 3B 
and S3; e.g., nsp13 is under stronger protein-level constraint than 
nsp1).

However, most accessory proteins are under little con-
straint (Figs. 3B and S3). Stop-codon and amino acid mutations 
to ORF7a and ORF8 are not more deleterious than synonymous 
mutations (although recall that our estimates are only sensitive 
to fitness costs greater than a few percent). The lack of delete-
rious mutations to ORF8 is consistent with the fact that viruses 
with deletions in this gene have spread in humans (Su et al. 2020) 
and that major variants had stop codons early in ORF8. Indeed, 
the loss of accessory proteins such as ORF8 appears to occur with 
some regularity during the early evolution of non-human viruses 
in humans (Rochman, Wolf and Koonin 2022). The only accessory 
protein under strong purifying selection against stop codons is 
ORF3a (Fig. 3B), for which stop codons in the first  240 residues 

are clearly deleterious (Supplementary Fig. S4). These observa-
tions concur with experiments showing SARS-CoV-2 is attenuated 
by deletion of ORF3a but there is little effect of deleting ORF6, 
ORF7a, or ORF8 (McGrath et al. 2022; Silvas et al. 2021; Liu et al. 
2022). However, ORF3a’s function must be relatively insensitive 
to its protein sequence, since other than selection against stop 
codons there is only amino acid level constraint at a few sites 
like 135 and 138 (Supplementary Fig. S4). Observations such as 
these could help guide experimental studies to better understand 
protein function.

The accessory proteins are encoded in the last 5kb of the SARS-
CoV-2 genome, meaning that our results show that this portion 
of the genome (with the exception of the genes coding for nucle-
oprotein, E, and M) is under relatively weak purifying selection 
(Supplementary Fig. S3). Note that some accessory proteins also 
vary in presence/absence across coronaviruses (V’kovski et al. 
2021; Llanes et al. 2020), and are mostly dispensable in cell cul-
ture (McGrath et al. 2022; Silvas et al. 2021; Liu et al. 2022; 
Liu et al. 2014). Decreased purifying selection in genes encoded 
near the end of the genome is also observed in more distantly 
related orders of large single-stranded RNA viruses such as clos-
teroviruses (Wang et al. 2011; Dawson and Folimonova 2013). 

2.4 Mutation-effect estimates correlate with 
experiments
We examined how the mutation effects estimated using our 
approach compare with prior high-throughput deep mutational 
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Figure 4. Correlation of mutation-effect estimates with experimental deep mutational scanning measurements for (A) the full spike (Dadonaite et al. 
2023) or its RBD (Starr et al. 2022b), and (B) Mpro (Flynn et al. 2023; Iketani et al. 2022a). Each point is an amino acid mutation, the orange line is a 
least-squares regression, and orange text in the upper left shows the number of mutations and Pearson’s correlation coefficient. Each subpanel shows 
a different set of mutations (depending on which mutations were measured in that experiment). See https://jbloomlab.github.io/SARS2-mut-fitness/
dms_S_corr.html and https://jbloomlab.github.io/SARS2-mut-fitness/dms_nsp5_corr.html for plots that also show the Mpro dataset from (Flynn et al. 
2022) and have various interactive options. The plots in this figure show the average of the multiple phenotypes measured in the deep mutational 
scanning of Starr et al. (2022b); see https://jbloomlab.github.io/SARS2-mut-fitness/dms_S_all_corr.html for each phenotype separately. This figure only 
shows mutations with at least 20 expected counts, which is higher than the threshold of 10 used in most of the rest of this paper (this threshold can 
be adjusted in the interactive plots).

scanning measurements. For spike, two distinct experimen-
tal methodologies have been used to characterize large num-
bers of mutations: yeast display of the receptor-binding domain 
(RBD) (Starr et al. 2020; Starr et al. 2022b) and spike pseudotyped 
lentiviruses (Dadonaite et al. 2023). For Mpro (also known as nsp5 
or 3CLpro), two different labs have performed deep mutational 
scanning using the same basic methodology of assaying protease 
cleavage in yeast (Flynn et al. 2022; Flynn et al. 2023; Iketani et al. 
2022a).

For spike, our estimates from natural sequences correlate with 
the experiments almost as well as the two experimental method-
ologies correlate with each other (Fig. 4A), with Pearson’s correla-
tions of 0.66 between the estimates and experiments versus 0.72 
between the two experiments. Neither experiment fully captures 
how mutations affect viral fitness, since both RBD yeast display 
and lentiviral pseudotyping are imperfect proxies for spike func-
tion during actual human infections. Therefore, it is unclear how 
much the differences between the mutation-effect estimates and 
experiments are due to noise in the estimates versus limitations 
of the experiments. However, the fact that the estimates correlate 
with the experiments almost as well as the experiments correlate 

with each (Fig. 4A) suggests the estimates are of comparable qual-
ity to experimental measurements. At least some of the mutations 
with the greatest divergence between our estimates and the deep 
mutational scanning likely represent experimental artifacts. For 
instance, P527L, which is favorable in the RBD deep mutational 
scan but deleterious in the sequence-based estimates and full-
spike scan, is at the C-terminus of the yeast-displayed RBD (Starr 
et al. 2020) where it may adopt a non-native conformation.

The sequence-based estimates for Mpro also correlate with the 
deep mutational scans for that protein, although in this case the 
experiments correlate substantially better with each other than 
with our estimates (Fig. 4B). However, the Mpro experiments all 
use a similar yeast-based methodology (Flynn et al. 2022; Flynn 
et al. 2023; Iketani et al. 2022a) that fails to capture significant 
aspects of Mpro’s function during human infections. For instance, 
a stop codon at Q306 is well tolerated in the deep mutational scans 
but extremely disfavorable in our sequence-based estimates, and 
such a mutation would clearly be highly deleterious to actual virus 
as it would truncate the polyprotein. Similarly, K61N is well tol-
erated in the deep mutational scans but extremely disfavorable 
in our estimates, probably because in the full viral polyprotein 
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this residue mediates important interactions between Mpro and 
nsp7-10 (Yadav et al. 2022).

2.5 Mutation-effect estimates better capture 
functional constraint than dN/dS ratios or 
predictions from other methods
A longstanding approach for analyzing protein constraint is to 
compare rates of nonsynonymous (dN) and synonymous (dS) sub-
stitutions at each site (Nielsen and Yang 1998; Kosakovsky Pond 
and Frost 2005). These dN/dS ratios can be calculated by counting 
mutations or using phylogenetic substitution models (Kosakovsky 
Pond and Frost 2005; Yang and Nielsen 2000). A limitation of 
dN/dS ratios is they cannot be interpreted in terms of the fit-
ness effects, since they simply represent the relative rate of amino 
acid substitution at a site rather than the effects of specific muta-
tions (Spielman and Wilke 2015; Kryazhimskiy and Plotkin 2008). 
Nonetheless, we can compare dN/dS ratios to our mutation-effect 
estimates as measures of the average constraint at each site. 
The mutation-effect estimates greatly outperform dN/dS ratios 
as a measure of site-level constraint as assessed by correla-
tion with deep mutational scanning experiments (Supplementary 
Fig. S5). The reason is in part because some aspects of functional 
constraint cannot be captured by a dN/dS ratio. For instance, 
the ACE2-affinity enhancing spike mutation N501Y arose in sev-
eral SARS-CoV-2 variants early in the pandemic, and has since 
remained fixed due its importance for receptor binding (Starr et al. 
2022b). Our mutation-effect estimates correctly reflect that site 
501 is strongly prefers tyrosine, but the site has a high dN/dS ratio 
due to the early convergent evolution of this site to that preferred 
amino acid.

Our mutation-effect estimates also correlate better with deep 
mutational scanning experiments than predictions from two algo-
rithms trained to learn epistatic models of mutation effects from 
phylogenetically broader but more sparsely sampled sequence 
data (Thadani et al. 2022; Rodriguez-Rivas et al. 2022) (Supplemen-
tary Fig. S6). Our estimates also correlate better with experiments 
than predictions by a machine-learning algorithm that integrates 
sequence and epidemiological data (Maher et al. 2022) (Supple-
mentary Fig. S6). These results suggest that our straightforward 
approach of directly reading out the effects of mutations from 
their actual versus expected counts can outperform much more 
complex models when millions of sequences are available.

2.6 Fixed mutations tend to have beneficial or 
neutral effects
Amino acid mutations that have fixed in at least one viral clade 
are estimated to mostly have neutral or beneficial effects, whereas 
most other mutations are deleterious (Supplementary Fig. S7). 
This fact is unsurprising: viral lineages that expand into new 
clades do so because they have acquired beneficial mutations 
while avoiding deleterious ones (Luksza and Lässig 2014; Koelle 
and Rasmussen 2015; Huddleston et al. 2020). But the fact that 
the beneficial effects of fixed mutations are correctly estimated 
by our approach, which simply counts mutation occurrences and 
does not incorporate information on lineage size, demonstrates 
such mutations occur independently in many viral lineages that 
are more successful than average.

Most fixed mutations are estimated to be beneficial regard-
less of whether estimates are made using all viral clades, or just 
clades that did not fix the mutation (Supplementary Fig. S8). How-
ever, a few beneficial fixed mutations show epistatic entrench-
ment (Shah, McCandlish and Plotkin 2015; Starr et al. 2018) in 

the sense that they are not particularly beneficial in clades in 
which they did not fix (Supplementary Fig. S8). The most striking 
example is S373P in spike, which has experimentally been shown 
to be neutral or slightly deleterious in pre-Omicron clades, but 
strongly beneficial in the Omicron clades in which it fixed (Starr 
et al. 2022b; Moulana et al. 2022).

2.7 Interactive exploration of amino acid 
fitnesses
To enable easy access to the mutation-effect estimates, we cre-
ated interactive plots to enable exploration of the data for each 
protein. A static view of one of these plots is in Fig. 5; see https://
jbloomlab.github.io/SARS2-mut-fitness for interactive versions for 
all proteins. These plots enable both high-level inspection of func-
tional constraint across each protein, and detailed interrogation 
of the effects of specific mutations.

3. Discussion
Enough SARS-CoV-2 viruses have now been sequenced that many 
independent occurrences of every tolerated single-nucleotide 
mutation have been observed along the viral phylogeny. Here, we 
have described a new approach that leverages this fact to esti-
mate the effects of these mutations. In essence, we treat natural 
evolution as a deep mutational scan, with the millions of pub-
licly available SARS-CoV-2 sequences providing a readout of this 
experiment. The key is simply to calculate how many times each 
mutation has been ‘tested’ along the history of sampled viral 
sequences, and compare that expectation to the actual observa-
tions of the mutation among viruses sufficiently fit to have been 
sequenced in actual human infections.

The resulting estimates of mutational effects are robust to sub-
setting on specific viral clades or geographies, and correlate well 
with experimental measurements. In broad strokes, the muta-
tion effects illuminate patterns of constraint: for instance, there 
is strong selection on structural and non-structural proteins, but 
only limited purifying selection on the accessory proteins.

However, the real value of our approach is in the detailed maps 
of effects of specific mutations to all viral proteins, including pro-
teins with poorly understood functions not easily characterized 
in the lab. These maps will be of value for designing drugs that 
target constrained sites, interpreting the consequences of muta-
tions observed during viral surveillance, and guiding experiments 
to mechanistically characterize protein function.

There are several caveats to our approach. First, because the 
number of observations of any given mutation is small com-
pared to the millions of SARS-CoV-2 sequences being analyzed, 
our approach requires careful quality control to remove sequenc-
ing errors. Second, we assume the rate of each type of nucleotide 
mutation is uniform across the viral genome, and neglect 
higher-order context that may influence mutation rate (Sadykov 
et al. 2021; Beale et al. 2004). Likewise, we neglect constraint 
on nucleotide identity beyond the encoded protein sequence 
(Huston et al. 2021; Kuo and Masters 2013)—although this prob-
ably has only a minor effect, since our analyses show just a 
handful of synonymous sites are under strong selection (Sup-
plementary Fig. S2). Third, the exact relationship between the 
statistics we calculate and viral fitness depend on the fraction of 
all infections that are sequenced (sampling intensity) and viral 
population dynamics. Although we derive this relationship, we 
do not adjust for sampling intensity and population dynamics 
when estimating mutation effects. Fourth, we make a single esti-
mate for each mutation across all SARS-CoV-2, neglecting the 

https://jbloomlab.github.io/SARS2-mut-fitness
https://jbloomlab.github.io/SARS2-mut-fitness
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Figure 5. Effects of amino acid mutations to E protein. The area plot at top shows the average effects of mutations at each site, and the heatmap 
shows the effects of specific amino acids, with x denoting the amino acid identity in the Wuhan-Hu-1 strain. See https://jbloomlab.github.io/SARS2-
mut-fitness/E.html for an interactive version of this plot that enables zooming, mouseovers, adjustment of the minimum expected count threshold, 
and layering of stop codon effects on the site plot. See https://jbloomlab.github.io/SARS2-mut-fitness for comparable interactive plots for all 
SARS-CoV-2 proteins.

epistasis that can affect some mutations (Starr et al. 2022a; 
Moulana et al. 2022). Finally there are a few technical caveats 
to how we count mutations that are discussed in the Methods
section.

Conceptually, our approach differs from prior methods that 
aim to identify beneficial SARS-CoV-2 mutations associated with 
viral clades that increase in frequency (Obermeyer et al. 2022; 
Lee et al. 2022; Maher et al. 2022). Those methods draw infor-
mation primarily from what happens downstream of a mutation. 
In contrast, we treat all mutations equivalently regardless of 
whether they are on a tip node or at the base of a large clade. Our 
approach is better for estimating effects of deleterious or nearly 
neutral mutations, but clade-growth methods may be better for 
beneficial mutations. In particular, clade size carries informa-
tion beyond that contained in mutation counts alone (Supple-
mentary Fig. S9). Hopefully, future work can combine mutation-
counting and clade-growth methods for even better estimates 
of SARS-CoV-2 mutation effects. Note our approach is conceptu-
ally similar to estimating fitness costs of HIV or polio mutations 
from mutation-selection balance in deep sequencing of intra-
population viral quasispecies (Zanini et al. 2017; Acevedo, Brod-
sky and Andino 2014), except we analyze mutation occurrences 
rather than frequencies to account for the phylogenetic struc-
ture and genetic hitchhiking that characterize global SARS-CoV-2
evolution.

The power of the approach we have described will increase 
with more viral sequencing. SARS-CoV-2 is the first virus with 
enough sequences that every tolerated mutation is observed 
multiple independent times. As costs drop, it is easy to imag-
ine a future with even more viral sequences. As this occurs, 
viral genomic sequencing—which has traditionally been used 
primarily to track evolution and spread—will also become an 
increasingly precise tool to determine the effects of specific
mutations.

4. Methods
4.1 Code and data availability
See the GitHub repository at https://github.com/jbloomlab/SARS2
-mut-fitness for the computer code and processed data (eg, fit-
ness estimates and mutation counts). That repository contains a 
README with links to specific data files as well as a description 
of the computational pipeline. See https://github.com/jbloomlab/
SARS2-mut-fitness/blob/main/results/aa_fitness/aa_fitness.csv
for final estimates of amino acid fitnesses across all clades; 
other intermediate data files are also provided in the GitHub 
repository. The specific version of the repository used for this 
paper is tagged as ‘bioRxiv-v2’ on GitHub (https://github.com/
jbloomlab/SARS2-mut-fitness/tree/bioRxiv-v2). The pipeline is 
fully reproducible and is run using snakemake (Mölder et al. 2021) 
with interactive plots rendered using altair (VanderPlas et al.
2018).

The interactive plots are rendered at https://jbloomlab.github.
io/SARS2-mut-fitness via GitHub pages.

4.2 Versioning of analyses of different sequence 
sets
The figures in this manuscript show analyses of the set of all 
publicly available sequences as of 11 May 2023. However, the 
pipeline can be run on different sequence sets. The sequence sets 
on which the analysis is currently run include all sets listed under 
the ‘mat_trees’ key in https://github.com/jbloomlab/SARS2-mut-
fitness/blob/main/config.yaml; these include the sets of all pub-
lic sequences from several earlier dates (such as those avail-
able for the first version of this analysis), as well as the set of 
all sequences in GISAID as of 29 March 2023. A version of the 
results for each sequence set is provided in the GitHub repository 
(https://github.com/jbloomlab/SARS2-mut-fitness ) in subdirecto-
ries with names like ‘results_public_2023-05-11’, and the index 
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page for the interactive plots (https://jbloomlab.github.io/SARS2-
mut-fitness) links at the bottom to plots for each sequence set. 
The ‘current_mat’ key in https://github.com/jbloomlab/SARS2-
mut-fitness/blob/main/config.yaml specifies which sequence set 
is used to generate the main results that in the ‘results’ sub-
directory in the GitHub repository and are shown by default 
in the interactive plats; we anticipate periodically updating 
this to newer sequence sets as more sequences become avail-
able. See https://jbloomlab.github.io/SARS2-mut-fitness/mat_aa_
fitness_correlations.html for the correlations among mutation 
effects estimated from the different sequence sets.

For the GISAID sequence set, we acknowledge the submitters 
of the sequences listed at the following URLs: https://doi.org/
10.55876/gis8.230403ab, https://doi.org/10.55876/gis8.230403hg, 
https://doi.org/10.55876/gis8.230403ht, and https://doi.org/10.558
76/gis8.230403tg.

4.3 Counting mutations along the phylogenetic 
tree
We counted occurrences of each mutation in each viral 
clade using the UShER pre-built mutation-annotated tree (McB-
roome et al. 2021; Turakhia et al. 2021; Lanfear 2020) from
May-11-2023 (http://vhgdownload.soe.ucsc.vedu/goldenPath/
wuhCor1/UShER_SARS-CoV-2/2023/05/11/public-2023-05-11.all.
masked.nextclade.pangolin.pb.gz), which contains all ~7-million 
SARS-CoV-2 sequences that are available in public databases. To 
make these counts at a per-clade level, we first subsetted the 
mutation-annotated tree on all sequences for each Nexstrain 
clade (Aksamentov et al. 2021), retained only clades with at least 
104 sequences, and then used the matUtils program distributed 
with UShER to extract the nucleotide mutations on every branch of 
the each clade-subsetted mutation-annotated tree. For the analy-
ses by geographic location (Fig. 2), we subsetted on all sequences 
that began with ‘USA’ or ‘England’ as these were the two locations 
with the most publicly available sequences.

We then performed quality control by ignoring any branch that 
met any of the following criteria:

• it had more than four nucleotide mutations;
• it contained more than one nucleotide mutation that was a 

reversion to the Wuhan-Hu-1 reference sequence;
• it contained more than one nucleotide mutation that was a 

reversion to the founder sequence for that clade as provided 
at https://raw.githubusercontent.com/neherlab/SC2_variant_
rates/7e738194a8c6592082f1caa9a6ca70cb68289790/data/
clade_gts.json by Neher (2022);

• it contained more than one nucleotide mutation to the same 
codon.

The rationale for the first exclusion is that highly mutated 
branches are often indicative of sequencing errors or viral evolu-
tion in chronically infected humans, neither of which correspond 
to the pattern of typical SARS-CoV-2 transmission in acute infec-
tions. Because the virus’s evolution is very densely sampled, only 
a small fraction of branches have more than four mutations 
(Supplementary Fig. S10). The rationale for the second and third 
exclusions is that excess reversions can arise from base-calling 
pipelines that erroneously call low-coverage sites as reference. We 
ignore branches with multiple nucleotide mutations to the same 
codon (this is very rare) because as detailed below our method 
is only designed to make estimates for mutations that represent 
single-nucleotide changes from the clade founder. Note also that 

the mutation-annotated tree does not include insertion or dele-
tion mutations, and so we only consider (and make estimates for) 
point mutations.

We then specified for exclusion certain mutations and sites 
that are prone to sequencing or base-calling errors. Specifically, 
we excluded

• the sites specified in Table S1 of Turakhia et al. (2020) as being 
error prone;

• sites 5629, 6851, 7328, 28095, and 29362 since they had very 
high error rates in some clades;

• the problematic sites listed at https://github.
com/W-L/ProblematicSites_SARS-CoV2, which are masked in 
the pre-built mutation-annotated tree;

• for each clade, the clade-specific sites listed in https://github.
com/jbloomlab/SARS2-mut-fitness/
blob/main/data/usher_masked_sites.yaml, which are masked 
in the pre-built mutation-annotated tree;

• for each clade, any mutation that was a reversion from the 
clade founder to the Wuhan-Hu-1 reference, and the reverse 
complements of these mutations.

The last exclusion criteria are because some bioinformatics 
pipelines called low-coverage sites as reference.

See https://github.com/jbloomlab/SARS2-mut-fitness/blob/
main/results/mutation_counts/aggregated.csv for the final
counts of each nucleotide mutation in each clade; note that this 
file also contains excluded mutations.

4.4 Calculation of expected counts
To calculate the expected counts for each nucleotide mutation, 
we analyzed just the four-fold degenerate sites in each clade in 
an approach paralleling that of Bloom et al. (2023). Specifically, we 
identify all non-excluded four-fold degenerate sites in each clade 
founder. We then count nucleotide mutations just at those sites in 
each clade, and calculate the expected per-site number of muta-
tions from nucleotide x to y as the total number of x to y mutations 
at four-fold degenerate sites divided by the number of four-fold 
degenerate sites with x as the parental identity. This analysis is 
done at the clade level for two reasons: referencing mutations to 
the clade founder (rather than the Wuhan-Hu-1 reference) limits 
problem with the approach that would arise at sites that substi-
tute multiple times in the history of a sequence (since each clade 
is a relatively high-identity group multiple mutations at the same 
site within a clade are very rare), and because it is know that 
SARS-CoV-2 mutation rates vary somewhat among clades (Bloom 
et al. 2023; Ruis et al. 2022). We only retain clades with at least 
5000 mutations at four-fold degenerate sites in order to avoid 
inaccurate estimates of expected counts due to low sampling of 
mutations.

4.5 Mutational effects from actual versus 
expected counts
To estimate the effects of mutations, we simply compare the 
expeutation to the actual counts in the pre-built mutation-
annotated tree. See https://github.com/jbloomlab/SARS2-mut-
fitness/blob/main/results/expected_vs_actual_mut_counts/exp
ected_vs_actual_mut_counts.csv for these expected versus actual 
counts on a per-clade basis; note that this file also includes counts 
at excluded sites.

To estimate the effects of mutations, we first sum the counts 
of all non-excluded nucleotide mutations that encode each amino 
acid mutation to convert the nucleotide counts to amino acid 
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counts. In doing this, we exclude any mutations that are not 
from the clade-founder codon identity: in other words, we ignore 
sequences with histories that involve multiple mutations at the 
same codon in the same clade (this is a caveat of the approach, 
although because each clade is relatively high identity it does not 
have a major effect). For the overall estimates reported in this 
paper, we also sum these counts across all retained clades; for 
the analyses in Fig. 2 we also make estimates without summing 
across clades and only for counts from sequences from specific 
geographic locations. We then compute the estimated fitness Δ𝑓
of each mutation as simply the natural logarithm of the ratio of 
actual to expected counts after adding a pseudocount of P − 0.5 to 

each count, namely Δ𝑓 = log( 𝑛𝑎𝑐𝑡𝑢𝑎𝑙+𝑃
𝑛𝑒𝑥𝑝𝑒𝑐𝑡𝑒𝑑+𝑃 ).

Note that these mutation-effect estimates will have more sta-
tistical noise the smaller the value of the expected counts for each 
mutation. Therefore, we also track the expected counts alongside 
the estimates. In this paper, we only show estimates for mutations 
with expected counts of at least 10 unless otherwise noted. How-
ever, the figures link to interactive legends that allow adjustment 
of this threshold: larger values (e.g., 20 or more) will lead to slightly 
more accurate estimates but drop some mutations, lower values 
can be used if you need a noisier estimate for a mutation that has 
less than 10 expected counts.

See https://github.com/jbloomlab/SARS2-mut-fitness/blob/
main/results/aa_fitness/aamut_fitness_all.csv for the estimates 
of amino acid mutation effects across all clades, and see https://
github.com/jbloomlab/SARS2-mut-fitness/blob/main/results/
aa_fitness/aamut_fitness_by_clade.csv for the clade-specific esti-
mates. The all-clade estimates of mutation effects are what are 
shown in Fig. 3.

For the clade correlations plotting in Fig. 2, we only include 
clades with at least 5 × 105 expected counts across all sites, as 
only these clades have enough counts for reasonable per-clade 
estimates.

4.6 Mutation effects to amino acid fitnesses
For the final estimates of amino acid fitnesses shown in the 
heatmaps such as in Fig. 5, we need a single estimate for each 
amino acid. This is straightforward for sites that have the same 
amino acid identity in all clade founders: the ‘wildtype’ residue 
shared across all clades has a fitness of zero, and all other amino 
acids have fitnesses equal to the effect of mutating from the ‘wild-
type’ to that amino acid. However, for sites that change amino acid 
identity between clade founders, things are more complicated and 
we need to take the extra step below.

For each clade have estimated the change in fitness Δ𝑓𝑥𝑦
caused by mutating a site from amino acid x to y, where x is the 
amino acid in the clade founder sequence. For each such muta-
tion, we also have nxy which is the number of expected mutations 
from the clade founder amino acid x to y. These nxy values are 
important because they give some estimate of our ‘confidence’ in 
the Δ𝑓𝑥𝑦 values: if a mutation has high expected counts (large nxy) 
then we can estimate the change in fitness caused by the muta-
tion more accurately, and if nxy is small then the estimate will be 
much noisier.

However, we would like to aggregate the data across multi-
ple clades to estimate amino acid fitness values at a site under 
the assumption that these are constant across clades. Things get 
complicated if not all clade founders have the same amino acid 
identity at a site. For instance, let us say at our site of interest, the 
clade founder amino acid is x in one clade and z in another clade. 
For each clade we then have a set of Δ𝑓𝑥𝑦 and nxy values for the 
first clade (where y ranges over the 20 amino acids, including stop 

codon, that are not x), and another set of up to 20 Δ𝑓𝑧𝑦 and nzy val-
ues for the second clade (where y ranges over the 20 amino acids 
that are not z).

From these sets of mutation fitness changes, we would like to 
estimate the fitness f x of each amino acid x, where the f x values 
satisfy Δ𝑓𝑥𝑦 = 𝑓𝑦 − 𝑓𝑥 (in other words, a higher f x means higher 
fitness of that amino acid). When there are multiple clades with 
different founder amino acids at the site, there is no guarantee 
that we can find f x values that precisely satisfy the above equation 
since there are more Δ𝑓𝑥𝑦 values than f x values and the Δ𝑓𝑥𝑦 val-
ues may have noise (and is some cases even real shifts among 
clades due to epistasis). Nonetheless, we can try to find the f x

values that come closest to satisfying the above equation.
First, we choose one amino acid to have a fitness value of zero, 

since the scale of the f x values is arbitrary and there are really 
only 20 unique parameters among the 21 f x values (there are 21 
amino acids since we consider stops, but we only measure differ-
ences among them, not absolute values). Typically if there was 
just one clade, we would set the wildtype value of 𝑓𝑥 = 0 and then 
for mutations to all other amino acids y we would simply have 
𝑓𝑦 = Δ𝑓𝑥𝑦. However, when there are multiple clades with different 
founder amino acids, there is no longer a well-defined ‘wildtype’. 
So we choose the most common non-stop parental amino acid for 
the observed mutations and set that to zero. In other words, we 
find x that maximizes ∑𝑦 𝑛𝑥𝑦 and set that f x value to zero.

Next, we choose the f x values that most closely match the 
measured mutation effects, weighting more strongly mutation 
effects with higher expected counts (since these should be more 
accurate). Specifically, we define a loss function as: 

𝐿 = ∑
𝑥

∑
𝑦≠𝑥

𝑛𝑥𝑦 (Δ𝑓𝑥𝑦 − [𝑓𝑦 − 𝑓𝑥])2 ,

where we ignore effects of synonymous mutations (the 𝑥 ≠ 𝑦 term 
in second summand) because we are only examining protein-level 
effects. We then use numerical optimization to find the f x values 
that minimize that loss L.

Finally, we would still like to report an equivalent of the nxy val-
ues for the Δ𝑓𝑥𝑦 values that give us some sense of how accurately 
we have estimated the fitness f x of each amino acid. To do that, 
we tabulate 𝑁𝑥 = ∑𝑦 (𝑛𝑥𝑦 + 𝑛𝑦𝑥) as the total number of mutations 
either from or to amino acid x as the ‘count’ for the amino acid. 
Amino acids with larger values of Nx should have more accurate 
estimates of f x.

See https://github.com/jbloomlab/SARS2-mut-fitness/blob/
main/results/aa_fitness/aa_fitness.csv for these overall amino 
acid fitness estimates.

4.7 Site numbering and protein naming
All sites are numbered according to the sequential Wuhan-Hu-
1 reference numbering scheme, using the reference sequence 
at http://hgdownload.soe.ucsc.edu/goldenPath/wuhCor1/bigZips/
wuhCor1.fa.gz. The protein annotations are taken from the 
associated GTF at http://hgdownload.soe.ucsc.edu/goldenPath/
wuhCor1/bigZips/genes/ncbiGenes.gtf.gz. Those protein annota-
tions refer to the polyproteins encoding the non-structural pro-
teins as ORF1a and ORF1ab. To convert to from ORF1ab number-
ing/naming to the nsp-based naming (e.g., nsp1, nsp2, etc.) we use 
the conversions specified under ‘orf1ab_to_nsps’ in https://github.
com/jbloomlab/SARS2-mut-fitness/blob/main/config.yaml,
which are in turn taken from Theo Sanderson’s annotatio-
ns at https://github.com/theosanderson/Codon2Nucleotide/blob/
main/src/App.js.
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4.8 Comparison to deep mutational scanning
Deep mutational scanning data were taken from published stud-
ies (Dadonaite et al. 2023; Starr et al. 2022b; Flynn et al. 2022; Flynn 
et al. 2023; Iketani et al. 2022a), using the data at the links specified 
under the ‘dms_datasets’ key in https://github.com/jbloomlab/
SARS2-mut-fitness/blob/main/config.yaml. For the spike deep 
mutational scanning (Dadonaite et al. 2023) we only included 
mutations with ‘times seen’ values of at least three in the deep 
mutational scanning. The RBD data (Starr et al. 2022b) include 
measurements for two phenotypes (ACE2 affinity and RBD expres-
sion), and one of the Mpro studies (Flynn et al. 2022) includes 
measurements for three different phenotypes in yeast (growth, 
FRET, and transcription factor activity). Figs. 4, S5, and S6 show 
the effect averaged across all phenotypes measured by each of 
these studies. For plots that break the correlations out by pheno-
type, see https://jbloomlab.github.io/SARS2-mut-fitness/dms_S_
all_corr.html and https://jbloomlab.github.io/SARS2-mut-fitness/
dms_nsp5_all_corr.html.

4.9 Comparison to dN/dS and other 
mutation-effect prediction algorithms
For the comparison to the dN/dS approaches shown in Supple-
mentary Fig. S5, we used the dN/dS values available at https://
github.com/spond/SARS-CoV-2-variation (Martin et al. 2021) for 
all SARS-CoV-2 sequences, which were calculated using the 
FEL approach (Kosakovsky Pond and Frost 2005). Specifically, 
the file https://raw.githubusercontent.com/spond/SARS-CoV-2-
variation/master/windowed-sites-fel-all.csv contains dN/dS esti-
mates made using large-scale sequence sets from GISAID in 3-
month windows starting with the earliest sequences from Decem-
ber 2019 and continuing up until 31 January 2022. We averaged 
the dN/dS values for each site over all three month windows, 
and analyzed those time-window averaged dN/dS values. In order 
to ensure comparability in the sequence sets used, for the com-
parisons in Supplementary Fig. S5, we used fitness estimates 
from our approach made using only sequences in the mutation-
annotated tree as of 31 January 2022. We restricted our analysis to 
this timeframe because the large-scale dN/dS analyses at https://
github.com/spond/SARS-CoV-2-variation (which use state-of-the-
art methods) were only available for that range of dates.

The dN/dS ratios only provide a single number for each site, 
which cannot be directly compared to either the mutation-effect 
estimates or the deep mutational scanning, which estimate the 
effects of individual amino acid mutations. We therefore com-
puted site-summary metrics of the mutation-effect estimates and 
the deep mutational scanning as the average effect of all mea-
sured amino acid mutations at each site, excluding stop codons. 
The correlations in Supplementary Fig. S5 are with those site-
summary metrics.

We also compared both our mutation-effect estimates and the 
spike deep mutational scanning measurements (Dadonaite et al. 
2023) to predictions from three other algorithms:

• the EpiScores reported by Maher et al. (2022),
• the DCA mutability scores reported by  Rodriguez-Rivas et al. 

(2022), and
• the EVE scores reported by Thadani et al. (2022).

These comparisons are shown in Supplementary Fig. S6. The 
Maher et al. (2022) and Thadani et al. (2023) studies report 
mutation-level predictions and so are compared directly to 

the deep mutational scanning our mutation-effect estimates; 
Rodriguez-Rivas et al. (2023) report only site-level metrics and so 
are compared to site-summary metrics as for the dN/dS analysis.

4.10 Derivation of relationship between actual to 
expected count ratio and viral fitness
The ratio of actual to expected counts that we calculate in this 
paper is related to the probability that we observe a viral lineage 
containing an occurrence of a specific mutation among sequenced 
human SARS-CoV-2. This probability depends on three factors: 
the fitness effect of the mutation, the fraction of all SARS-CoV-
2 viruses that are sequenced (sampling intensity), and the growth 
dynamics of the viral population. In the supplementary appendix, 
we derive the approximate relationship between this probability 
as a function of the fitness cost s and sampling intensity 𝜖 for dele-
terious mutations for both a constant and exponentially growing 
viral population.

We show that for a constant viral population size, the probabil-
ity of observing a lineage containing a deleterious mutation with 
cost s is roughly 𝜖

𝑠+𝜖  when 𝑠2𝑐𝜖, and more weakly dependent on s
for smaller fitness costs (when 𝑠2𝑜𝜖). The intuitive explanation is 
that the average size of a mutant lineage with fitness cost s is 1/𝑠
and we basically ask whether we sample the lineage before it dis-
appears. If we sample more intensely (larger 𝜖), whether a lineage 
gets sampled depends primarily on the stochastic dynamics and 
little on the fitness effect. With a typical sampling intensity for 
SARS-CoV-2 between 1/1000 and 1/100, this means our approach 
is sensitive to fitness effects larger than a few percent per serial 
interval; mutations with fitness costs smaller than that will not 
show an appreciable difference from neutral mutations in their 
ratio of actual to expected accounts.

In an exponentially growing population, the probability of 
observing a mutant lineage with fitness cost s again scales as ∼ 𝜖

𝜖+𝑠
if sT > 1, where T is the time over which the variant has expanded. 
If T is ~ months, that is 20 generations, which again corresponds 
to s of at least a few percent for sT > 1. For mutations with smaller 
fitness costs, the dependence scales more as ∼ 𝜖(1 − 𝑠𝑇).

Overall, these calculations indicate that for multiple different 
growth dynamics of the viral population, the ratio of expected to 
actual counts will scale inversely with the fitness cost of deleteri-
ous mutations for mutations with costs that exceed a few percent. 
Note that the approach we use in this paper does not account 
for variation in sampling intensity across space or time, does not 
attempt to adjust for changes in viral growth dynamics over time, 
uses the heuristic formula of calculating the effect as the log ratio 
of counts, and applies this same formula to all mutations regard-
less of whether they are deleterious, neutral, or beneficial. A more 
complete derivation might try to calculate the fitness effects from 
the full distribution of lineage sizes more rigorously and incorpo-
rate information about the sampling intensity and viral growth 
dynamics. However, such a derivation (if possible at all) is beyond 
the scope of this study, and we also note that good empirical 
data is generally lacking to precisely account for sampling inten-
sity and viral growth dynamics over the full span of time and 
space from which the sequences we analyze are drawn. The key 
point of the derivations for our current study is simply that our 
approach should be sensitive to detecting the effects of mutations 
with fitness costs greater than a few percent.

Supplementary data
Supplementary data are available at Virus Evolution online.
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