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Abstract

The presence and role of microbes in human cancers has come full circle in the last century. 

Tumors are no longer considered aseptic, but implications for cancer biology and oncology 

remain underappreciated. Opportunities to identify and build translational diagnostics, prognostics, 

and therapeutics that exploit cancer’s second genome—the metagenome—are manifold, but 
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require careful consideration of microbial experimental idiosyncrasies that are distinct from 

host-centric methods. Furthermore, the discoveries of intracellular and intra-metastatic cancer 

bacteria necessitate fundamental changes in describing clonal evolution and selection, reflecting 

bidirectional interactions with non-human residents. Reconsidering cancer clonality as a 

multispecies process similarly holds key implications for understanding metastasis and prognosing 

therapeutic resistance while providing rational guidance for the next generation of bacterial cancer 

therapies. Guided by these new findings and challenges, this Review describes opportunities to 

exploit cancer’s metagenome in oncology and proposes an evolutionary framework as a first step 

towards modeling multispecies cancer clonality.
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INTRODUCTION

A rich history exists between microbes and cancer. As early as 1550 BCE, Egyptian writings 

suggested a crude tumor therapy through incision and application of a poultice, inciting 

an infection.[1–3] Nearly three millennia later, Saint Peregrine Laziosi (c. 1265–1345) 

documented spontaneous regression of a septic leg sarcoma large enough to pierce skin.[2] 

Although these accounts predated modern germ theory, they associated acute infections with 

cancer retrogression, independently re-discovered between 1868–1893 by Wilhelm Busch, 

Friedrich Fehleisen, and William Coley.[4–6]

These physicians linked spontaneous tumor regressions with Streptococcus pyogenes 
and erysipelas. However, only Coley treated patients with live bacteria, and, later, heat-

killed Streptococcus and Serratia toxins. These experiments revealed >10-year disease-

free survival in 60 of 210 patients across multiple cancer types—efficacy only matched 

by modern immunotherapy.[7] Nonetheless, unknown mechanisms and side effects made 

‘Coley’s toxins’ unpalatable to oncology, especially compared to radiotherapy and 

chemotherapy.[8,9] Another century passed before recognition of Coley’s approach as 

the first intentional immunotherapy, and its prediction of a causal relationship between 

immunotherapy efficacy and endogenous or exogenously-administered microbiomes.[10–16]

Viruses also catalyzed our understanding of cancer and its genetic material. Peyton 

Rous’s 1911 discovery of his eponymous, transmissible, oncogenic, RNA virus galvanized 

investigation of cancer’s viral origins, linking Epstein-Barr, human papilloma (HPV), 

hepatitis, and Merkel cell polyomavirus to carcinogenesis.[17–19] Although decades of 

research concluded that viruses cause a minority of cancers, the pursuit of oncogenic 

viruses led to the definition of and search for ‘oncogenes’ that transform benign tissue into 

malignant tissue.[19] One key oncogene was src, a protein kinase identified in transforming-

only strains of Rous’s Sarcoma Virus (RSV), also found by Michael Bishop and Harold 

Varmus in cells of non-infected, phylogenetically-divergent birds.[20] Their data suggested 

a non-viral, cellular origin of src: hosts normally contain oncogenes, and transforming 

strains of RSV had acquired one. This discovery earned the 1989 Nobel Prize in Medicine.

Sepich-Poore et al. Page 2

Bioessays. Author manuscript; available in PMC 2023 September 18.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



[19,20] Realizing oncogenes were internal to cancer motivated characterization of all possible 

oncogenes in the human cancer genome by sequencing the normal human genome as a 

reference.[21] Modern cancer genomics thus stems from tumor virology.

RSV’s story and its hijacking of src showed how genetic information could transfer 

between tumors, microbes, and their hosts over evolutionary time. Successive passaging 

of RSV later enabled researchers to evolve the chicken-specific virus to induce tumors in 

various animals (e.g., ducks, pigeons, rats, rabbits, mice), presumably activating similar 

kinase-related oncogenic pathways.[19,22,23] This process represented early examples of 

intentional transfection and directed evolution, whereby recipient cells received genetic 

cargo that changed cellular fitness. Decades later, bacterial capability to transfect human 

or microbial genetic material[24–28] to cells—including cancer cells[29]—with subsequent 

protein expression would be demonstrated and coined “bactofection.”[30] Bactofection was 

pursed as an alternative to conventional gene therapy or vaccination, but received little 

attention.[27,30,31]

Since Bishop and Varmus’s discovery, the last 30 years of cancer research primarily 

focused on characterizing all major coding, noncoding, structural, and copy number 

aberrations in the cancer genome.[32–36] Substantial study of the tumor microenvironment 

(TME) elucidated impacts of heterogeneous tumor architecture, spatial organization, and 

multifaceted cellular agents (e.g., immune and stromal cells) on cancer evolution, clonality, 

antitumor immunity, and metastasis.[37–39] Further work revealed similarities between 

microbial and cancer evolution. For example, ubiquitous plasmid-like, extrachromosomal 

DNA (ecDNA) segments and their unequal segregation during cancer cell division is 

analogous to unequal segregation of high-copy plasmids during bacterial replication.[40–44] 

Hybrid viral-human sequences on ecDNA segments in HPV-infected cancers even contribute 

to immune evasion and carcinogenesis.[45,46] Nonetheless, most cancer ‘omic’ studies 

portrayed tumors as sterile, and microbial constituents as unrelated to tumor evolution or 

clinical care.

The last five years have revealed metabolically-active, immunoreactive, intracellular, cancer 

type-specific communities of bacteria and viruses living within tumor tissues, several 

of which modulate cancer therapies.[47–60] These microbes may move during metastasis 

and facilitate leaving and/or seeding of metastatic cancer cells.[53,54,61–63] Critically, 

intratumoral and gut microbes can create chemo-, radio-, and hormonal therapeutic 

resistance without cancer genome changes.[47,64,65] Conversely, microbiota may render 

other chemo-, radio-, hormonal, and immunotherapies possible and/or effective without 

any cancer cell intervention.[12–14,64,66–68] Trace amounts of cancer type-specific bacterial 

DNA have been identified in cancer patient blood, suggesting a novel class of microbial 

cancer diagnostics.[58,69] Most, if not all, human cancers lack sterility, and their microbes 

are clinically relevant, provoking a third revision of the classic cancer ‘hallmarks’ to include 

“polymorphic microbiomes” of the gut and tumors.[70]

Towards building a microbially-conscious framework of cancer, we posit cancer-bearing 

humans as meta-organisms colonized by numerous, diverse microbial constituents (Box 

1).[71,72] We propose the clinical utility of microbial information as cancer diagnostics, 
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prognostics, and therapeutics and consider (intracellular) microbes as live, mobile agents 

within tumors that encounter selection pressures alongside/within cancer cells. Finally, 

we hypothesize that fundamental ecological rules governing microbial activity and spatial 

placement (e.g., redox, chemotactic, oxygen gradients)[73] outside tumors also govern them 

inside tumors. This Review details the study of cancer’s “second genome,” its clinical use, 

and its impact on cancer clonal evolution.

CANCER MICROBIOME DIAGNOSTICS AND PROGNOSTICS

The concept of “strength in numbers” applies to cancer diagnostics, especially for low-

biomass material. Liquid biopsies in cancer detect minute quantities of analytes (e.g., DNA, 

RNA, proteins) shed from the tumor to diagnose cancer presence and/or type.[74] The low-

biomass, limited unique number, and limits of analyte detection usually restricts application 

of liquid biopsies to later-stage tumors, several cubic centimeters and above.[74,75] Adding 

analytes or modifications, even if rare, increases overall test sensitivity .[76] Cristiano et al. 
demonstrated this principle using Monte Carlo simulations of liquid biopsies, showing that a 

test examining DNA modifications comprising ≤0.001% of total plasma material could still 

have near-perfect sensitivity if at least 256 alterations were interrogated.[76]

These cancer genomics conclusions suggest the diversity of the intratumoral microbiome 

(≥500 unique bacterial species)[57] and gut microbiome (~4×103 bacterial species)[77] 

substantiate microbiome-focused cancer diagnostics, even if all individual microbes are 

rare or lowly abundant. Two alternative ways of phrasing this idea are: (i) high microbial 

diversity provides “many shots on goal” for a single diagnosis and (ii) interrogating the 

microbiome is like employing an ensemble of many weak learners that collectively provide 

strong prediction performance—the conceptual basis of boosting in machine learning. For 

diagnostic purposes, detected microbes need not be causally carcinogenic but only correlated 

with cancer presence, absence, and/or growth. These microbial-informed diagnostics and 

prognostics could dramatically improve clinical cancer care (Figure 1).

Pre-cancer and cancer microbiome diagnostics

Pre-cancer diagnostics identify lesions of high malignant potential, typically cervical and 

colorectal cancer (CRC) precursors. Focusing on gut microbiota, metagenomic studies 

identified distinct fecal microbial compositions between colonic adenoma-bearing human 

patients and healthy individuals, often with increases in Proteobacteria relative abundance.
[78–81] Yachida et al. characterized shotgun metagenomic and metabolomic shifts in patients’ 

guts with no disease, polypoid adenomas, and stage 0 to stage IV CRCs, revealing 

distinct stage-wise microbial and metabolic compositions sufficient to build fecal stage-

specific classifiers.[78] Vaginal microbiome studies also revealed distinguishable microbial 

compositions and functions between healthy humans, patients with cervical intraepithelial 

neoplasia or cervical cancer, and modifying effects of HPV or HIV status.[82–84] In a 

longitudinal trial, women with high-risk HPV infection and abundant vaginal Lactobacillus 
were more likely to clear the infection by their second clinical visit (average 1.5 years later); 

conversely, patients with abundant vaginal Gardnerella upon presentation were more likely 

to show disease progression by the second visit.[82] These studies suggest the opportunity 
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for minimally-invasive, swab-based stool and vaginal microbiome diagnostics that detect 

precursor cancer lesions and/or forecast cancer conversion risk.

Pre-cancerous syndromes are also pertinent for microbiome diagnostics, such as genetically-

driven familial adenomatous polyposis (FAP), pre-leukaemic myeloproliferation (PMP), and 

BRCA1 status, by auguring subsequent carcinogenesis in ways not fully predicted by host 

genomics. Comparing gut microbiota from clinical patients with and without FAP, Dejea 

et al. elucidated that FAP encourages biofilm formation comprising genotoxic strains of 

Escherichia coli and Bacteroides fragilis with greater expression of their colibactin and 

B. fragilis toxins, increasing IL-17-dependent inflammation, DNA damage, and cancer 

conversion.[85] Meisel and colleagues demonstrated in preclinical mouse models that 

gut microbial translocation to systemic circulation with resultant IL-6 production drives 

conversion from predisposing Tet2 germline mutations to PMP.[86] Nené et al. reported 

significant cervicovaginal microbiome changes (absence of Lactobacillus species) among 

BRCA1-positive, non-cancer-carrying clinical patients—changes shared among women with 

ovarian cancer, suggesting that germline mutations affect microbial composition and may 

show continuity with subsequent cancer conversion.[87] Collectively, these studies argue that 

pre-cancerous syndromes modify and interact with microbiota, highlighting an opportunity 

to develop diagnostics and interventions that reduce cancer conversion rates.

For solid tumor and blood microbiome diagnostics, Nejman et al. and Poore et 
al. provide the most comprehensive analyses to date.[57,58] Specifically, Nejman and 

colleagues combined imaging, cultivation, qPCR, and multi-region 16S rRNA sequencing 

to characterize intratumoral bacteria among breast, bone, pancreas, brain, ovarian, lung, 

melanoma, and colon cancers. Inclusion of 811 experimental contamination controls 

(i.e., DNA extraction controls, no-template PCR controls, paraffin controls) for 1010 

tumor and 516 normal samples enabled stringent decontamination that removed 94.5% of 

detected bacterial species, leaving 528 confident species-level calls. Statistical analyses of 

decontaminated tumor microbiomes exhibited cancer type-specific differences. Fluorescent 

and electron microscopic imaging data also revealed the intracellular localization—both 

in cancer and immune cells—of many intratumoral bacteria, and further experiments 

showing D-alanine metabolism (a xenobiotic) in breast tumors suggested these bacteria were 

metabolically active.

Using a distinct approach, Poore and colleagues mined all whole genome and transcriptome 

sequencing data in TCGA (n=18,116 samples; 14,007 primary tumors) and employed 

shotgun metagenomic strategies to derive ~2000 genus-level calls across bacteria, viruses, 

and archaea (59,974 total genomes searched).[58] In silico decontamination based on 

sample DNA or RNA concentrations[88] removed up to 92.3% of microbial information, 

but machine learning performance distinguishing between cancer types and tumor from 

adjacent normal tissue remained strong. Based on historical and epidemiological data 

associating bacteremias with subsequent CRC diagnosis,[69,89] they showed that blood-

derived microbes in TCGA could distinguish CRC from other cancer types, and that blood-

derived microbiomes discriminated more broadly among 19 other cancer types, including 

restricting the analyses to stage 1–2 tumors or tumors without any canonical mutations 

on two commercial cell-free tumor DNA (ctDNA) panels. Applying this approach to 100 
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plasma samples from three cancer types (lung, prostate, melanoma) and 69 HIV-negative, 

non-cancer controls suggested that cell-free microbial DNA (cf-mbDNA) could distinguish 

healthy individuals from patients with cancer, and distinguish cancer types, suggesting novel 

microbial-based, minimally-invasive cancer diagnostics.[58]

The blood and plasma analyses reported by Poore and colleagues identified novel 

taxonomic compositions not previously appreciated to play a role in cancer biology, 

despite stringent in silico decontamination.[58] Although these compositions must be 

confirmed in further cohorts and using metagenome assemblies, preceding efforts reported 

substantially new, previously uncharacterized, and compositionally divergent microbes in 

non-cancer-associated human plasma.[90] In particular, Kowarsky and colleagues performed 

metagenome assembly on cell-free DNA from 1351 sequenced blood samples (188 human 

subjects) in four longitudinally-sampled cohorts (heart, lung, bone marrow transplants and 

during pregnancy), identifying 7190 contigs larger than 1 kilobases.[90] 3761 (52.3%) 

of these contigs had little or no homology to any contemporaneous multi-domain (i.e., 

bacterial, viral, fungal, eukaryotic pathogens) microbial databases, suggesting that cell-free 

DNA from hundreds of previously uncharacterized bacteria and viruses existed in human 

plasma, several of which were validated by orthogonal analyses.[90] Future characterization 

of novel, cell-free microbial diversity in patients with cancer may thus further improve 

performance of microbiome-informed, plasma cancer diagnostics, which have thus far relied 

on mapping non-human reads against curated databases of microbial genomes. Additionally, 

although cf-mbDNA’s origins remain unknown, possible sources include oral, gut, and 

intratumoral microbiomes.[53,61,62,91,92] We speculate that the cf-mbDNA test’s strength 

derives from the number of microbial biomarkers assayed rather than the amount of 

microbial DNA in plasma, as shown in fragmentomic-based liquid biopsies.[76]

Prognostics and companion diagnostics

The impact of gut and intratumoral microbiomes on local and systemic immune tone and 

host metabolites makes them versatile prognostics and companion diagnostics.[3] In the 

clinical setting of hematopoietic stem cell transplantation, higher gut microbiome diversity 

prognoses better survival, whereas lower gut diversity correlates with higher risks of 

transplant-related and graft-versus-host disease deaths (adjusted hazard ratios in two cohorts 

of 0.71 and 0.49).[93] Gut microbial diversity is also a prognostic indicator of overall 

survival in patients with cervical cancer in the context of chemoradiation (cisplatin plus 

brachytherapy) independent of body mass index.[94] Intratumoral microbial diversities and 

their impact on survival may be cancer type-specific: high intratumoral microbial diversity 

predicts long-term survival (median 10.1 years) in pancreatic cancer patients,[52] but high 

diversity in stomach adenocarcinoma tumors predicts worse patient survival.[95] Colorectal 

cancer stages reflect successive microbial changes in the fecal microbiome,[78,81] and early 

versus late stage lung cancer in clinical patients can be distinguished through lower airway 

microbiota compositions.[51] Intratumoral microbiomes in patients can also distinguish stage 

I from stage IV tumors in multiple gastrointestinal cancers (stomach, colon, rectal) and renal 

cell cancer.[58]
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Therapeutically, numerous studies in preclinical and clinical cohorts link efficacy 

of anti-CTLA-4 and anti-PD-(L)1 immune checkpoint blockade (ICB) to gut 

microbiome composition and function,[12–14,67,96–100] and the intratumoral microbiome 

in human melanoma samples.[49,57] Efficacies and toxicities of cyclophosphamide,[66,101] 

gemcitabine,[47] and platinum-based[67,102] chemotherapy depend on the composition and 

metabolic capacity of gut and intratumoral microbiota.[103] Bacterial enzymes can degrade 

specific chemotherapy compounds into non-functional byproducts,[47] diminishing drug 

responses in colonized patients. In mouse models of HER2-positive breast cancer, antibiotic 

administration impairs trastuzumab efficacy and clinical patients with less diverse gut 

microbiomes are less likely to respond to trastuzumab;[68] moreover, fecal microbiota 

transplants from patient responders and non-responders into recipient mice recapitulate 

differential response to trastuzumab in patients, implicating gut microbiota as critical for 

HER2-targeted therapeutic responses.[68]

Gut microbiota also affect hormonal therapies. Administration of abiraterone acetate (AA) 

in the setting of castrate-resistant prostate cancer promoted outgrowth of Akkermansia 
muciniphila and appeared to aid overall AA therapeutic efficacy.[104] However, androgen 

deprivation therapy also increases gut-residing Ruminococcus species containing enzyme(s) 

(currently uncharacterized) that catalyze pregnenolone conversion to the sex hormone 

precursor dehydroepiandrosterone (DHEA) and testosterone, enhancing progression to 

castration-resistant prostate cancer; notably, CYP17A1-selective abiraterone administration 

inhibited androgen synthesis in cultivated bacteria, and incubation of R. gnavus with 

pregnenolone up-regulated 22 genes, several sharing sequence homology to CYP17, 

although the precise enzymes are unknown.[65] Thus, longitudinal profiling of implicated 

gut microbes may indicate failing androgen deprivation therapy while substantiating 

their removal. Estrogen-receptor-positive breast cancer may be affected by microbial 

hormone metabolism,[105,106] possibly including intratumoral microbes. Altogether, gut and 

intratumoral microbiomes affect virtually every domain of cancer therapy, supporting their 

clinical utility as prognostics and companion diagnostics.

Challenges for cancer microbiome diagnostics and prognostics

Low-biomass microbial sampling creates analysis challenges requiring care and 

decontamination.[107,108] While less impactful in gut microbiome studies or large-scale 

meta-analyses, external (e.g., environmental) and internal (e.g., well-to-well) contamination 

can skew small-to-moderate scale profiling of the cancer microbiome.[107,108] Standardized 

experimental contamination controls (Figure 2) alongside in silico decontamination 

methods[88,108] can enable more robust and reproducible results, and therefore improve 

microbiome-augmented cancer diagnostics and prognostics. Few cancer genomics studies 

implement contamination controls, but adding them would allow broad utilization of 

“cancer-specific” data for microbial analyses, although this may be addressable by 

integrating thousands of samples.

Other challenges with microbiome studies include (i) the degree of variation between 

sample and bioinformatics processing choices;[109] (ii) fundamental differences in data 

properties and statistics with relative abundances compared to host ‘omic’ data;[110–112] 
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and (iii) geographical and ethnic compositional differences, particularly when assaying 

gut microbiota.[113–115] One or more of these factors have, for example, resulted in three 

major microbiome studies[12–14] concluding that different gut microbes predict anti-PD(L)1 

immunotherapy response—irreconcilable despite analyses that equally reprocessed the data 

or instead examined microbial functions.[98] Large meta-analyses can surmount some of 

these problems, with two studies identifying conserved gut microbial signatures predictive 

of colorectal cancer across diverse cohorts and geographies.[116,117]

Strategies for assaying low-biomass microbes

Alternative strategies involving host-depletion and microbial enrichment methods may 

circumvent low-biomass challenges. Three categories of host depletion strategies exist: 

pre-extraction, post-extraction, and during sequencing.[118,119] Pre-extraction methods use 

differential lysis plus enzymatic or chemical (e.g., propidium monoazide) cell-free DNA 

removal.[119,120] Post-extraction methods remove nucleic acids by targeting species-specific 

chemical moieties (e.g., methylation marks).[121,122] Nanopore sequencing methods enable 

dynamic rejection of human-aligning reads,[118,123,124] and combining strategies can 

optimize host depletion.[118]

Microbial enrichment strategies often use post-extraction amplicon sequencing but with 

limited taxonomic resolution and amplification biases.[125] qPCR[126] and microarrays[127] 

are “post-extraction” but limited by genomic region-specificity, fragment size, and practical 

multiplexing. Stitching multiple 16S rRNA amplicons bioinformatically[128] improves 

taxonomic resolution and biases; this method identified intratumoral bacterial species.[57] 

High fidelity, long-read sequencing of full-length 16S with single-base precision can provide 

species or strain-level resolution.[125,129] Pre-extraction methods (e.g., microfluidics) 

selectively isolate bacteria[130] but present challenges in solid tissues. Selective microbial 

sequencing can improve low-biomass read depths.[123] Although challenges remain for 

commercial host depletion and microbial enrichment strategies,[119,131] advancements 

would tremendously aid low-biomass, intratumoral and blood-based cancer microbiome 

characterization.

CANCER CLONALITY AS A MULTISPECIES PROCESS

Redefining conventional cancer clonal evolution and selection

Cancer cells evolve through space and time. Although clonal evolution has traditionally 

centered on genetic alterations,[37,132,133] non-genetic alterations (e.g., epimutations) also 

contribute.[134–136] Single-cell multi-omics and longitudinal studies offer more inclusive, 

multi-analyte views of intratumor heterogeneity and clonal evolution.[137,138] Recognizing 

the role of multi-omics in functional clonal diversity advocates for broader definitions 

beyond cancer genomics.[38]

Research demonstrating effects of extracellular and intracellular microbes on cancer 

cells’ genomes,[85,139] transcriptomes,[48,50,51,140] proteomes,[49] and metabolomes[47,65] 

strongly justify microbial inclusion in multi-omic clonal evolution models (Figure 3). 

Additional microbial functions that enable or abolish chemo-, radio-, and/or immunotherapy 
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efficacy without any cancer genomic changes further substantiate their inclusion.[3,11,141] 

Intracellular localization of metabolically active, immunogenic cancer microbes that 

shape cancer immunoediting—evolutionary processes and selection pressures previously 

privileged to cancer clonal selection—also provides justification.[49,57,63] Identification 

of hybrid microbial-human reads involved in carcinogenesis on plasmid-like ecDNA 

segments intimately links cancer and microbial fitness.[45,46] Microbial mechanisms that 

modify immunosurveillance also impact when and where tumors grow and/or metastasize.
[49,53,54,61,62,142] As distinct agents from cancer cells with separate genetic material that 

can face discordant selection pressure(s) from the cancer genome (e.g., antibiotic therapy 

for bacteria, targeted kinase therapies for cancer cells), cancer microbes cannot merely be 

added as another “-ome.” Studies examining cancer microbiota roles have not yet seriously 

considered their clonality or impacts on cancer cell clonality. Thus, there is a theoretical gap 

between the cancer microbiota and clonal evolution modeling that should be bridged.

Key evidence advocating for multispecies cancer clonality

Decoupling of therapeutic efficacy from human genetic changes—The genetic 

model of clonal evolution explains mutagenic-induced relapses. For example, epidermal 

growth factor receptor (EGFR) mutations induce resistance to EGFR inhibitors while 

creating favorable selection pressures for mutated cells over non-mutated counterparts.
[143,144] Consequently, EGFR-mutated cells outcompete their neighbors and clonally 

expand.

However, this model has its limitations. For instance, isocitrate dehydrogenase (IDH1/

IDH2)-mutated acute myeloid leukemia patients treated with IDH1/2 inhibitors can show 

complete and sustainable responses to treatment without eliminating mutated cells.[145–147] 

The same is observed in chronic myelomonocytic leukemia responsive to hypomethylating 

agents—no decrease in the mutational load and no specific selection events explain 

secondary escape.[148] Moreover, despite clear cancer cell burden reductions, thereby 

generating a selective bottleneck, relapse can occur without genetic selection. For example, 

in childhood B-cell precursor acute lymphoblastic leukemia, Turati et al. demonstrated how 

vincristine and dexamethasone drastically reduced the leukemic burden with no change 

in clonal composition.[149] Conversely, a transcriptional bottleneck was observed in single-

cell RNA-Seq, with reduced transcriptomic intratumor heterogeneity. A similar resistant 

transcriptomic profile was found in the leukemic cells before treatment, suggesting positive 

selection of these rare pre-existing resistant cells rather than induction of that phenotype 

under treatment exposure. These resistant cells comprised a subfraction of low cycling cells 

and have been associated with distinct metabolic programming.[149,150] Several hypotheses 

concerning non-genetic resistance to therapies are debated.[151]

Genetic clonal evolution also fails to account for microbial-mediated treatment efficacy 

or failure of (i) cyclophosphamide,[66,101] gemcitabine,[47] and platinum-based[67,102] 

chemotherapy; (ii) anti-CTLA-4 and anti-PD-(L)1 ICB efficacy;[12–14,96–100] (iii) androgen 

deprivation therapy in prostate cancer;[65] and (iv) trastuzumab in HER-2-positive breast 

cancer.[68] Notably, some of these examples rely on microbial genetic content (e.g., cytidine 

deaminase long (CDDL) isoforms degrading gemcitabine),[47] which may be shared through 
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conventional horizontal gene transfer and may also be intracellular. Similarly, clonal 

selection may entirely occur on CDDL-containing microbes by providing growth advantages 

to microbes that can metabolize the concentrated carbon source, and cancer cell survival 

may be tied to CDDL
+-microbe proximity. Yet, cancer genome-centric evolutionary models 

miss all these effects and fail to accurately forecast evolutionary changes.

Impact of intracellular bacteria on cancer cell properties and fitness—
Immunohistochemistry, immunofluorescence, and electron microscopy data document 

intracellular localizations of intratumoral bacteria.[49,57,61,63] Bacteria inside cancer 

cells modify their properties—transcriptional states,[63] proteomes,[49] and metabolic 

repertoires[47,57]—in ways tied to clonal evolution. Extracellular bacteria also modulate 

these properties and cause cancer cell genomic mutations.[85,139,152] Key affected clonal 

aspects comprise cancer cell metabolism, immunoediting, clonal expansion and metastasis, 

and mutagenesis.

First, intracellular microbes change host cell metabolism, including degradation of 

exogenous chemotherapy[47] and xenobiotic D-alanine.[57] Geller et al. identified microbial 

gemcitabine resistance through incidental Mycoplasma contamination of cell cultures, 

which caused drug resistance.[47] Isolating the responsible enzyme and its drug-degrading 

isoform (CDDL), and bioinformatic searches, revealed >300 CDDL
+ species, 98.4% within 

Gammaproteobacteria. Imaging, sequencing, and cultivation from gemcitabine-associated 

pancreatic cancer patient biopsies revealed CDDL
+ bacteria that conferred gemcitabine 

resistance in co-cultures with cancer cell lines.[47]

Second, intratumoral microbes modulate the immune response. Fusobacterium nucleatum 
inhibits natural killer cell (NK)-dependent tumor killing through Fap2 interaction with 

TIGIT, constituting a bacterium-dependent mechanism of tumor-immune evasion.[153] 

Pancreatic cancer bacteria induce innate and adaptive immune suppression, including via 

selective Toll-like receptor ligation leading to T-cell anergy.[48] Conversely, a metastatic 

melanoma study elucidated immunogenic, MHC I and II-bound bacterial peptides presented 

on cancer and immune cells that putatively shape cancer immunoediting, positting gut-tumor 

antigenic overlap.[49] Thus, uneven partitioning of microbes among cancer cells could result 

in differential elimination or maintenance, enriching the traditional “3Es” of elimination, 

equilibrium, and escape[154] and documenting how cancer cell fitness is decoupled from the 

cell’s own genome.

Third, intratumoral microbes can favor metastases. Bullman et al. found Fusobacterium 
persistence in colorectal cancers through successive mouse xenografts and similar 

bacterial compositions in matched primary-metastasis (colorectal-liver) patient samples.
[61] Metronidazole treatment reduced tumor growth, implying greater fitness from 

Fusobacterium colonization.[61] Bertocchi et al. then showed that colorectal bacteria 

stepwise enter tumor tissue, modify the gut vascular barrier, migrate to the liver, and foster 

formation of a premetastatic niche favoring metachronous metastasis.[62] Parhi et al. noted 

earlier metastasis of Fusobacterium-seeded breast cancers.[53] Hence, intratumoral bacteria 

enhance metastasis.
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Fourth, microbes cause genotoxin-mediated mutagenesis.[85,139] pks+ E. coli generates 

mutational signatures in head and neck, colorectal, and urinary tract cancers.[139] Gut-

residing Proteobacteria produce cytolethal distending toxin (CDT) that induces single- 

and double-stranded DNA breaks.[152] Collectively, these mechanisms shape cancer cell 

properties and fitness.

Implications and hypotheses if cancer clonality is multispecies

Imaging data portray intracellular bacteria as heterogeneously distributed among cancer 

cells and tumor regions,[57,61] suggesting differential fitness at the single cell level that 

may not correspond with mutational status. This challenges the definition of cancer clones 

as private lineages of mutated cells stemming from common ancestors, and violates 

modeling assumptions whereby clonal lineages comprise homogeneous cell populations. 

Although no two cancer cells are equal in every respect, the primary assertion of clonality 

is that intraclonal individual differences are negligible.[155] Moreover, if intracellular 

bacteria differentially alter phenotypes, behaviors, and fitness of spatially-adjacent cancer 

cells, then they create major intraclonal heterogeneity, which we define as “microbial 

intraclonal diversity” (MIDS). MIDS challenges clonal lineage homogeneity and motivates 

revising clonal boundaries, most simplistically through further subsetting (e.g., KRAS-

mutated, Fusobacterium-infected cells versus KRAS-mutated, uninfected cells) or more 

accurately through revised modeling approaches that account for discordant microbe-cancer 

selection pressures. MIDS also includes mimicry between microbial and cancer antigens.
[156,157] Should genetic cargo be shared between intracellular bacteria and host cells, as 

biotechnology already shows is possible[24] and cancer virology affirms,[45,46] MIDS must 

account for DNA and RNA from multiple species.

Beyond challenging clonal boundaries, intracellular bacteria may require evolutionary tree 

revision, particularly if future evidence demonstrates heritability (i.e., at time of division 

during mitosis or infection post-division) of intracellular microbes. Typical clonal evolution 

models depict evolutionary trees with one trunk and several branches, assuming vertically 

transmitted traits from mother to daughter cells. If future research affirms horizontal/lateral 

gene transfers between intracellular bacteria and host cancer cells, multiple tree trunks and 

branch connections would be required. A similar debate has taken place in evolutionary 

biology, challenging the traditional Darwinian “tree of life.”[158–160] Clonal evolution may 

be better articulated as “reticulated evolution,” wherein horizontal/lateral transfers change 

the fitness, function, and/or phenotype of host cancer cells.

Considerations for cancer microbiome therapeutics under multispecies 
clonality—Multispecies cancer clonality offers new therapeutic strategies that neither 

human nor microbial clonality proposes. For instance, Byndloss et al. demonstrated 

an interplay between fastidious anaerobic gut bacteria and butyrate-mediated, PPAR-γ-

dependent host signaling that maintained low oxygen levels in the gut and prevented 

outgrowth of facultative pathogens.[161] Conversely, antibiotics increased gut oxygen 

concentration and pathogen outgrowth.[161] Analogously, there may be opportunities to 

target host processes that facilitate microbial homeostasis to mitigate microbial-mediated 

carcinogenesis in favor of blunted antibiotics. Butler et al. provide another example whereby 
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administration of a bacterial protease depleted cellular MYC in colon and bladder cancers.
[162] Similarly, identification of anticancer microbial enzymes or metabolites may provide 

effective host-modulating cancer therapies or improve efficacy of existing therapies—a 

strategy several groups have already taken with immunotherapy.[99,100]

EVOLUTIONARY MODELING OF THE CANCER MICROBIOME

Example of Helicobacter pylori

Helicobacter pylori is a well-studied example of microbial effects on the TME,[163] and 

has adapted to thrive in the majority of humans long enough to trace migration events.
[164] H. pylori has co-evolved protective and pathogenic roles: protective against gastric 

cardia and esophageal adenocarcinoma[165,166] and pathogenic in noncardiac gastric cancer.
[163] Most H. pylori-positive patients carry multiple strains, including at least one strain 

unique to their body alongside more common strains like VacA, CagA, and BabA.[164] 

This extreme genetic diversity stems from slipped-strand mispairing in multiple genes and 

H. pylori’s lack of typical DNA repair genes.[164] High strain diversity across individual 

human hosts also enhances H. pylori’s population-wide resilience, expanding the strain with 

highest fitness in each setting. Collectively, high diversity and concomitant mutagenesis of 

H. pylori, combined with human immune selection pressures and pathological impacts on 

noncardiac gastric carcinogenesis, help portray an exemplary “big picture” of multispecies 

cancer evolution. Building on this idea, we describe how existing clonal evolution modeling 

may take intratumoral microbes into account.

Common constraints of the tumor microenvironment

The TME contains intracellular and extracellular microbes that affect cancer fitness and 

comprise independent clonal agents. The TME contexture applies simultaneous, shared 

selective pressures and environmental constraints on co-located cancer cells and microbes. 

Shared resources necessitate cooperative use and/or competition, which may further limit 

their abundance. For instance, oxygen availability drives spatial organization and metabolic 

capacities of cancer cells[167] and similarly affects microbes in environmental contexts 

and model systems (e.g., Winogradsky columns).[168–170] Common selection pressures may 

drive common evolutionary solutions, such as metabolic symbiosis between cancer cells[171] 

or between microbes positioned along an oxygen gradient.[170] pH gradients are tied to 

oxygen and common in tumors,[167] and shape microbial compositions in environmental 

contexts.[172] Hence, multispecies evolutionary models should include joint environmental 

constraints.

Anderson and colleagues presented compatible multiscale mathematical models of 

cancer growth including cellular biophysical properties and TME factors.[173–175] Their 

models determined that aggressive cancer clones establish under the harshest TME 

conditions (e.g., hypoxia, heterogenous extracellular matrix) but tumor invasiveness was 

blunted under milder TME conditions.[173,174] Hence, chemotherapy that creates a harsh 

microenvironmental condition may worsen long-term cancer invasiveness. Incorporating 

microbes into similar multiscale model equations—their reliance and impacts on TME 
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chemical gradients, cancer metabolism, and therapy—could inform TME conditions that 

improve multispecies clonal dynamics.

Microbes affect clonal fitness

Current fitness models account for factors including probabilities of cell division and 

cell death alongside inferred mutation rates and human cancer driver genes. Intracellular 

microbes may also need to be included, particularly their mutational, division, and death 

rates. In circumstances of microbial enzymatic degradation of TME metabolites or drugs,
[47] transcriptional rates and enzymatic efficiencies may comprise important variables. In 

genotoxin-mediated mutagenesis (e.g, pks+ E. coli),[139] the base-pair motif and rate of 

mutations in cancer cells may be instructive to add, since cancer cells in the presence of pks+ 

E. coli may have higher mutation rates.

Likelihood of clone development, treatment resistance, and fitness are all major parts 

of clonal evolution models and related to extracellular and intracellular microbes, but 

microbes have not been typically considered within models of cancer evolution. In common 

population genetics models of clonal evolution, including Wright-Fisher diffusion type 

models[176] and Moran type models,[177] clonal fitness may be considered as a function 

of time-dependent fluctuations in microbial abundances or presence/absence of particular 

species. Branching-process stochastic models of tumor growth that parameterize evolution 

in terms of proliferation and mutation rates[178–180] may also benefit from considering 

microbial colonization rates and species-specific transcriptional or mutational effects when 

found to have a significant effect on cancer cell evolution. Furthermore, cancer microbes 

individually (and perhaps jointly) undergo somatic clonal evolution, as with H. pylori, 
and similar modeling techniques quantify evolutionary dynamics in microbial populations 

(e.g., emergence of community-level heredity).[181] Phylogenetic tree reconstructions of 

clonal evolution[182] may need to include multispecies lineages, but specialized methods 

are likely necessary. Finally, existing software can construct genome-scale metabolic 

models (GEMs), including host-microbe interactions,[183] to quantify microbial production/

consumption of metabolites and determine impacts on host metabolism.[184,185] GEMs 

recently characterized bacterial passengers in colorectal cancer (CRC) based on metabolite 

availability[186] and predicted CRC therapeutic drug targets.[187] To summarize, we created 

a table listing suggested strategies for adapting existing models to study multispecies clonal 

interactions and evolution while incorporating cancer cell and microbial information (Table 

2).

CONCLUSIONS

Rigorous studies provide extensive evidence for the existence and functionality of cancer-

associated gut and intratumoral microbes while echoing ancient historical narratives 

of microbial-mediated recovery. Drawing from cancer genomics, the high diversity of 

the cancer microbiome substantiates its strong predictive power, even with rare or 

low-abundance microbes. Cancer microbiota can distinguish healthy, pre-cancer, and 

cancerous tissues across multiple cancer and sample types, although most diagnostics 

remain unvalidated in large, multi-national, prospective cohorts. Cancer microbiota also 
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demonstrate stage-specific differences that may enable simultaneous identification and 

prognostication of tumors. Nonetheless, contamination challenges in low-biomass settings 

and analytic idiosyncrasies of microbiomic data have hitherto complicated routine clinical 

application of microbial-informed cancer diagnostics or prognostics. Recent and future 

advances in host depletion and microbial enrichment strategies may help mitigate low-

biomass characterization challenges.

Numerous microbial mechanisms affect the cancer genome, transcriptome, proteome, and 

metabolome, advocating for their inclusion in cancer evolution models. Extracellular and 

intracellular microbes affect most cancer medication classes’ efficacies, sometimes without 

any cancer cell(s) interventions. Negatively, it is not possible to accurately model cancer-

drug dynamics, clonality, or fitness without accounting for microbes. Serious consideration 

of multispecies clonality is complex because microbes carry distinct genetic cargo with 

discordant selection pressures from the cancer genome. Flexible evolutionary models 

treating intratumoral microbes as independent, albeit rule-abiding, agents within the TME 

may be appropriate. Multispecies clonality also informs treatments: modifying cancer 

pathways may be more effective to restore healthy microbial ecologies than targeted 

antimicrobials, and vice versa. Multispecies treatment strategies may benefit from target 

selectivity, because targeting microbial genes or proteins generally carries fewer side effects 

than targeting human counterparts. Altogether, understanding cancer’s metagenome carries 

key ramifications for cancer care and clonal evolution for the benefit of patients worldwide.
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CRC colorectal cancer

ecDNA extrachromosomal DNA
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FAP familial adenomatous polyposis

GEM genome-scale metabolic model

HPV human papilloma

ICB immune checkpoint blockade

MIDS microbial intraclonal diversity

PCAWG Pan-Cancer Analysis of Whole Genomes

PMP pre-leukaemic myeloproliferation

qPCR quantitative polymerase chain reaction

RSV Rous’s Sarcoma Virus

TCGA The Cancer Genome Atlas

TME tumor microenvironment
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BOX 1—

Quantifying the cancer microbiome

Broadly speaking, the human body microbiota include ~4×103 species accounting for 

~4×1013 total microorganisms, with ~97% of those cells comprising colonic bacteria and 

~2–3% comprising extra-colonic bacteria while archaea and eukarya—including fungi—

comprise smaller populations around ~0.1–1% of the total microbial abundance.[71,77] 

Human virus and phage abundance estimates remain undercharacterized but likely have 

even greater diversity than bacteria.[174] The human gut microbiome contains the largest 

bodily microbial biomass by far—roughly 0.2 kilograms[71,175]—with substantial effects 

on host antitumor immunity.[3] Biomass estimates of other body sites or tissues remain 

unknown.

Intratumoral microbiome diversity estimates with stringent decontamination controls 

(~1:2 control to sample ratio) suggest that at least 500 distinct bacterial species inhabit 

tumors.[57] Intratumoral microbiome abundance estimates have been inferred using 

shotgun read quantification and quantitative polymerase chain reaction (qPCR) of 16S 
rRNA.[57,58] Microbial profiling of all whole genome and transcriptome studies from 

The Cancer Genome Atlas (TCGA) revealed an average of 2.5% of total sequencing 

reads to be microbial and an average of 0.9% of total reads that were resolvable at 

the genus-level (both estimates were based on raw, non-decontaminated data).[58] To 

quantitate intratumoral bacterial abundance, Nejman et al. performed qPCR of the V6 

region of 16S rRNA among DNA extraction and paraffin controls and several cancer 

types (Table 1). Bootstrapping these qPCR data reveal a heterogeneous average number 

of bacteria per cancer type, ranging from ~13 to ~70 per 40 nanograms (ng) of DNA, 

among seven major human cancers (Table 1), although we note that abundances varied 

over three orders of magnitude between patients within the same cancer type.[57] The 

pan-cancer average was 34.19 bacteria per 40 ng of DNA (95% CI: [24.04, 46.56]; Table 

1), or, as will be calculated below, approximately 0.68% bacterial composition (i.e., a 

ratio of 1 bacteria for every ~147 cancer cells).

The discrepancy between the shotgun metagenomic read abundance and qPCR (V6 16S 
rRNA amplicon) bacterial abundance may be due to several factors: (1) 16S rRNA, 

though abundant in bacteria, does not account for total microbial DNA or RNA, nor 

does it account for non-bacterial nucleic acids (e.g., viruses, archaea) measured by the 

shotgun read approach; (2) technical amplification biases of the V6 region may under-

represent certain bacteria, with a recent in silico study showing ~55% of bacteria being 

inadequately covered by V6-V8 primers;[176] and (3) the qPCR data were normalized to 

non-template contamination controls[57] whereas the shotgun estimates[58] did not take 

into account contamination, which may comprise as much as 90–95% of raw microbial 

data. To proceed with calculations, however, we used the qPCR data from Nejman 

et al. as a conservative approach that accounted for contamination using hundreds of 

experimental controls.
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To translate qPCR values from Nejman and colleagues to percent tumor composition, it 

is necessary to first estimate the number of tumor cells per 40 ng of DNA. One way to 

estimate this for haploid cells is as follows:

DNA   mass   ℎaploid ≈ 3.2 × 109bp/cell 1   mole
6.022 × 1023bp

660   g
1   mole   base pair ≈ 3.5   picograms

/ℎaploid   cell

To translate from haploid cell to tumor cell, an estimate of ploidy is needed, which can 

be derived from the most recent Pan-Cancer Analysis of Whole Genomes (PCAWG) 

dataset.[32] The mean estimated ploidy in PCAWG across all human cancers is 2.36 and 

ranges from a low of 1.28 to a high of 6.22. If we assume average cancer ploidy, the 

average DNA mass per cancer cell is thus:

DNA   mass   cancer   cell ≈ 3.5   picograms/ℎaploid   cell × 2.36   avg .   ploidy ≈ 8 . 26 pg/cancer
  cell

Similarly, the range of DNA masses per cancer cell based on ploidy would be 4.48 pg 

to 21.77 pg. For simplicity, one can round the average mass value to 8 pg/cancer cell. 

Assuming that the DNA mass of microbes is negligible compared to that of the host, 

since its genome is roughly 103-fold smaller and there are fewer of them expected, then 

the estimated percent composition is as follows:

pure   tumor   bacterial   composition ≈ 34.19   bacteria
40   ng   DNA

0.008   ng
1   cancer   cell 100% = 0.68%   bacterial

This estimate, however, assumes 100% tumor purity. Fortunately, PCAWG estimated 

tumor purity across the same samples, showing an average tumor purity of 63.8%.[32] 

Instead of 5000 cancer cells per 40 ng of DNA, assuming 8 pg per cancer cell, average 

tumor purity suggests 3190 cancer cells with the remaining cells comprising the TME. 

While this does not change the percent bacterial composition of the tumor, it does 

change the ratio of bacteria to cancer cells to approximately ~1:100 or ~1% (i.e. 34.19 

bacteria:3190 cancer cells; Table 1). Using the 95% confidence interval bounds of the 

pan-cancer bootstrapped average number of bacteria per tumor (Table 1) gives a range of 

0.75% to 1.46% bacterial.

In the case of high tumor ploidy and low tumor purity, it may become important to weigh 

the contributions between tumor (aneuploid) and stroma (diploid) to the number of cells 

within 40 ng of DNA. This may be done as follows, for example using a tumor ploidy of 

6.0 and 20% purity:

Composition ≈ 34.19   bacteria
40   ng   DNA

20
100

0.02177   ng   DNA
1   cancer   cell + 80

100
0.007   ng   DNA
1   stromal   cell 100% = 0.85%

  bacterial
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whereas a tumor of 100% purity at a ploidy of 6.0 would provide an average tumor 

bacterial composition of 1.86%. More generally, cases with high ploidy and high purity 

will maximize this percentage value, in addition to when there is more observed bacteria.

To compare these bacterial abundances to intratumor immune cell populations, which are 

usually reported as densities of immune cell counts per square millimeter, it is necessary 

to first estimate the total number of cells per square millimeter in a tumor. While a 

handful of density estimates exist in the literature, such as a mean of 5,558 cells (std. 

dev. 1,980) per mm2 in metastatic melanoma,[177] it can be inferred directly from circle 

packing theory.[178] Specifically, given the average diameter of cells in a tissue, then 

the number of possible cells within the 1 mm2 square can be calculated. In one way, 

this can be interpreted as a conservative estimate since cells are often compressed and 

non-circular in real tissues; conversely, it may overestimate cell density in regions with 

dense blood or lymphatic vessels. The typical diameter of lymphocytes approximates 6–7 

μm in diameter[179] while the diameter of cancer cells vary by type and are approximately 

~20 μm in diameter across many cancer cell lines.[180] Using average cell diameters of 12 

μm, 15 μm, and 18 μm, circle packing theory predicts the following total cell abundances 

per 1 mm2: 8213 cells, 5208 cells, and 3589 cells.

Then, using the previously calculated average pan-cancer tumor bacterial composition 

of 0.68% (assuming tumor homogeneity), the estimated number of bacteria inferred as 

the following: 56, 35, 24 bacteria/mm2 (assuming 12 μm, 15 μm, and 18 μm average 

diameter cells, respectively). Notably, these bacterial abundance estimates are similar to 

the proportion of PD1+ cells identified in a recent pan-cancer imaging dataset (~22 PD1+ 

cells/mm2) and roughly one-tenth of CD8+ T-cell density (~385 cells/mm2).[181] Overall, 

the values reflected in this analysis may vary from tumor to tumor, depending on the 

assumptions made above—tumor ploidy, purity, homogeneity—but the analysis provides 

a rough approximation and analogy of intratumor bacterial abundances to immune cell 

abundances.

To summarize, these calculations estimate an average pan-cancer bacterial composition 

of ~0.68% with two- and three-dimensional estimates of ~35 bacteria/mm2 (assuming 

5200 cells/mm2), or approximately 6×105 to 6×106 bacteria per palpable 1 cm3 tumor 

(assuming 108-109 cells/cm3).[182] Again, we note that these estimates can vary between 

patients by three orders of magnitude and require further examination in additional 

cohorts.

Notwithstanding the above calculations, Nejman and colleagues noted that many and 

different proportions of samples per cancer type had qPCR abundances that were lower 

than the 99th-percentile of their DNA extraction controls, which comprised their cutoff 

for background contamination.[57] Specifically, just 14.3% of melanoma samples, 16.8% 

of lung cancer samples, 24.6% of ovarian cancer samples, 44.4% of glioblastoma 

samples, 68.2% of pancreatic cancer samples, 66.7% of bone cancer samples, and 62.7% 

of breast cancer samples exceeded this conservative threshold.[57] However, because large 

inter-patient variability was also observed within cancer types in their study, these values 

may change and become more accurate with broader cohorts.
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FIGURE 1. 
Illustration of opportunities to enhance clinical cancer diagnostics and prognostics using the 

cancer microbiome. Relevant references are listed in the title of each quadrant.
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FIGURE 2. 
Extracting and analyzing low-biomass microbiomes requires special care to control external 

and internal contamination.[88,107,108] (A) Collection of environmental controls ideally 

begins in the operating room to account for non-patient environmental sources. (B) Post-

operative tissues, if paraffin embedded, can have non-tissue paraffin controls taken to ensure 

the embedding process is not contaminated. Whole blood should ideally be collected with 

a skin swab to account for peri-needle contamination. (C) Negative reagent-only ‘blank’ 

controls and positive titrated controls should be processed simultaneously alongside nucleic 

acid extraction from biological and environmental samples. (D) Plating strategies should 

be considered to reduce cross-contamination; controls may include up to 40% of total 

samples. (E) Amplification steps may include PCR no-template controls and sequencing 

may include correction for cross-contamination or index swapping, although the latter 

remains challenging.
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FIGURE 3. 
Impacts of intratumoral microbes on cancer evolution and arguments for multispecies clonal 

evolution. Effects are summarized into three major categories: modulation of ecosystem 

effects, mechanisms of clonal diversity, and example disjoint and joint phylogenetic 

clonal evolution. Upper figure subpanels depict supported and hypothesized microbial 

counterparts to the host-specific clonal selection modes, mechanisms, and ecosystems 

originally described by McGranahan and Swanton.[37]
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TABLE 1.

Abundance estimates of intratumoral bacteria among seven major human cancers profiled by Nejman et al. 

(Ravid Straussman, personal communication).[57] One thousand iteration-bootstraps of the mean and median 

approximated the average number of bacteria per 40 nanograms of DNA on a per-cancer and pan-cancer basis. 

Conversions and assumptions of tumor ploidy, purity, and homogeneity are detailed in Box 1. Area density 

estimates assume 5200 total cells/mm2 and volume density estimates assume 109 total cells/cm3. In the two 

far-right columns, “med.” denotes the propagated “median” bootstrapped value and “avg.” denotes the 

propagated “average” bootstrapped value.

Cancer type 
in Nejman et 
al. 2020[57]

qPCR 
sample 
size (n)

Absolute 
range 

(bacteria/
40ng) (min, 

max)

Bootstrapped 
estimate of median 
bacteria per 40 ng 

DNA (median, 95% 
CI; 1000 iterations)

Bootstrapped 
estimate of average 
bacteria per 40 ng 

DNA (mean, 95% CI; 
1000 iterations)

Area density 
estimate 

(bacteria/mm2)

Volume density 
estimate (bacteria/

cm3)

Melanoma 200 (0.85, 3023) 6.72 (5.99, 7.77) 31.69 (9.71, 71.20) ~7 med., ~33 
avg.

~1.3×106 med., 
~6.3×106 avg.

Lung 274 (1.2, 3663) 5.83 (5.13, 6.48) 22.50 (7.90, 50.35) ~6 med., ~23 
avg.

~1.2×106 med., 
~4.5×106 avg.

Ovarian 57 (1.84, 73.2) 9.88 (7.59, 12.37) 12.72 (10.25, 16.00) ~10 med., ~13 
avg.

~2.0×106 med., 
~2.5×106 avg.

GBM 37 (3.41, 77.4) 10.06 (6.62, 15.85) 15.55 (10.89, 20.85) ~10 med., ~16 
avg.

~2.0×106 med., 
~3.1×106 avg.

Pancreatic 66 (3.82, 2147) 17.17 (11.72, 22.36) 70.43 (26.19, 147.78) ~18 med., ~73 
avg.

~3.4×106 med., 
~14×106 avg.

Bone 30 (1.62, 76.4) 15.53 (12.78, 18.53) 19.33 (13.97, 25.51) ~16 med., ~20 
avg.

~3.1×106 med., 
~3.9×106 avg.

Breast 352 (0.765, 1723) 14.82 (13.35, 16.39) 44.63 (31.41, 59.83) ~15 med., ~46 
avg.

~3.0×106 med., 
~8.9×106 avg.

Pan-cancer 1016 (0.765, 3663) 9.15 (8.70, 9.60) 34.19 (24.04, 46.56) ~10 med., ~35 
avg.

~1.8×106 med., 
~6.8×106 avg.
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TABLE 2.

Microbial integration into mathematical models of cancer evolution. Overview of each model’s 

characteristics and references provided with modeling examples, as well as suggested ways that both microbes 

and cancer cells could be incorporated into models if not yet commonly applied in this context. Hybrid models 

that include aspects of more than one model type are also utilized in practice. CRC: colorectal cancer.

Model Type Overview of Model
Examples of Potential

Incorporation of Host-Microbe Cancer 
Interactions

References

Genome-scale 
metabolic 

model (GEM)

• Models metabolic interactions between 
microbiome and host
• Analyzes genotype-phenotype relationships 
by connecting metabolic genes with their 
corresponding metabolic pathways
• Can be used to analyze the Warburg effect in 
cancer cells
• GEM algorithms (e.g., CASINO) allow several 
microbial species (≥5 species) to be modeled

• Current uses include modeling host-microbe 
interactions (e.g., quantifying how microbiota 
interactions impact host physiology, including 
applications in CRC)
• Potential to explicitly incorporate metabolite 
release by microbes and consumption (e.g., 
glucose) by cancer cells in an evolutionary model

[169–173,198–202]

Generalized 
Lotka-Volterra 
(gLV) model

• Predicts the population dynamics of cancer 
cells or microbes and incorporates growth rates, 
interaction strength or competition between 
groups, and environmental changes
• Classical predator-prey LV model defined 
as two competing populations that affect one 
another’s growth, but can be generalized to an 
arbitrary number of coexisting populations

• Quantify competition between cancer cells 
using relative abundance of microbes
• Microbes and cancer cells could both be 
considered as distinct populations competing 
amongst each other over shared resources or 
sustaining a mutualistic relationship in the model 
with defined interaction strengths

[170,203,204]

Agent-based 
model

• Define ‘agents’ as individuals or members of 
the microenvironment with specific properties and 
actions on a structured grid or 3D space
• Can have stochastic and deterministic 
components with spatial constraints
• Define environmental rules such as chemotaxis, 
and the presence of factors in space, such as 
signalling proteins like VEGF
• Define agent-agent interaction rules

• Create microbe as one agent type in the 
microenvironment and cancer cell as another agent 
type
• Allow clonal evolution of cancer cells and 
separate evolution of microbes in equations
• Create biophysical rules accounting for spatial 
movement of microbes (e.g., quorum sensing) and 
effect of microbes on evolutionary rates, such as 
proliferation or death of cancer cells during drug 
delivery

[205–208]

Wright-Fisher 
type model

• Population size remains constant over time (can 
be extended to growing populations)
• Models consider finite number of population 
species/k-alleles among either microbes (e.g., 
bacteria, viruses) or cancer cells
• To create the next non-overlapping generation, 
alleles are randomly sampled with replacement
• Allele frequency in the new generation is the 
combination of random sampling of population and 
the fitness of alleles
• Captures genetic drift and natural selection if 
included

• Microbial species could undergo distinct 
Wright-Fisher evolutionary dynamics that are 
independent of, or, in turn, affect cancer cell 
evolution
• Effects of microbes present could also be 
interwoven into cancer cell fitness evolving under 
Wright-Fisher dynamics
• Fitness parameter of certain cancer cell 
genotypes may depend on metabolites, proteins, 
and antigens from intracellular bacteria, which in 
certain cases may drive differential immunoediting 
between cancer cell-bearing bacteria

[162,209–211]

Moran-type 
model

• Two or more species considered in a population 
of either microbes or cancer cells
• Asexual reproduction, overlapping generations
• Simultaneous birth and death events occur
• As in the Wright-Fisher model, can be 
formulated as a diffusion approximation

• Similar to the Wright-Fisher type model, 
microbial species could be considered distinct 
population genotypes undergoing evolutionary 
dynamics, or the effects of microbes could be 
interwoven into the fitness of cancer cells
• Fitness parameter of certain cancer cell 
genotypes may depend on metabolites, proteins, 
and antigens from intracellular bacteria, which in 
certain cases may drive differential immunoediting 
between cancer cell-bearing bacteria

[163,212–214]

Birth-death 
stochastic 
process

• Continuous time Markov model (branching 
process) where ‘birth’ or ‘death’ events can change 
the state/population size
• A ‘birth’ increases the state by one, a ‘death’ 
decreases the state by one
• Allows for multiple cell types (e.g., with/
without driver mutations), fluctuations in total 
population size, stochastic extinction of cells, and 

• Define properties of stochastic events such as 
survival for human cancer cells with:
 ◦ Probability of birth, death, and/or 
mutation affected by products of microbes in the 
microenvironment
 ◦ Probability of birth, death, and/or 
mutation dependent on a function of the fluctuating 
populations of intracellular microbes present

[167,215,216]
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Model Type Overview of Model
Examples of Potential

Incorporation of Host-Microbe Cancer 
Interactions

References

mutation to other types
• Can also be used to model eco-evolutionary 
dynamics of microbial communities

• Define stochastic events in terms of both human 
cancer cells and microbial populations

Evolutionary 
game theory 

model

• Includes density-dependent fitness with cell-
cell interactions
• Models cooperation (e.g., between tumor and 
stromal cells, or between bacteria)
•  Fitness landscapes in non-cancer models 
have been central to understanding microbial 
evolution such as E. coli

• Include microbes as a type of “player” in 
the modeled ecosystem alongside tumor cells for 
limited chemicals and nutrients (e.g., oxygen, 
sugars)
• “Public good” produced by tumor cells, such as 
lactate, included in a game as competing resources 
with microbial populations

[217–222]
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