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Summary

The National Cancer Institute’s Clinical Proteomic Tumor Analysis Consortium (CPTAC) 

investigates tumors from a proteogenomic perspective, creating rich multi-omics datasets 

connecting genomic aberrations to cancer phenotypes. To facilitate pan-cancer investigations, 

we have generated harmonized genomic, transcriptomic, proteomic, and clinical data for >1000 

tumors in 10 cohorts to create a cohesive and powerful dataset for scientific discovery. We outline 

efforts by the CPTAC pan-cancer working group in data harmonization, data dissemination, 

and computational resources for aiding biological discoveries. We also discuss challenges for 

multi-omics data integration and analysis, specifically the unique challenges of working with both 

nucleotide sequencing and mass spectrometry proteomics data.
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Li et al. presents a data compendium from the Clinical Proteomic Tumor Analysis Consortium 

(CPTAC), covering tumor cohorts from 10 cancer types. This pan-cancer resource provides 

comprehensive molecular characterization of tumors, with genomic and proteomic data to connect 

genomic aberrations to cancer phenotypes.
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Introduction

Comprehensive molecular profiling is radically changing cancer research. Genomic catalogs 

of tens of thousands of tumors generated by The Cancer Genome Atlas (TCGA) and the 

International Cancer Genome Consortium (ICGC) add immense depth to our understanding 

of mutations that drive tumorigenesis1. As sequencing on individual tumor cohorts are 

published, the next wave of manuscripts from these consortia examine patterns across 

cancer types to elucidate the context-dependent nature of mutations and their impacts2. One 

limitation of these sequencing-centric efforts is the paucity of data for proteins and their 

modifications. A few select proteins were monitored through antibody-based approaches 

such as reverse phase protein arrays (RPPA), but broad and unbiased proteomics data were 

not generated. As proteins represent the primary molecules responsible for metabolism, 

signaling and structure, comprehensive and quantitative protein measurements are an 

essential part of phenotypic characterization. To connect genotype to phenotype, a true 

proteogenomic approach is needed3.

Proteogenomics analysis is a powerful method for discovering the next generation of 

precision treatments for cancer as it explicitly links genomic mutations to their impact on 

cellular physiology 4–6. Early work by the Clinical Proteomic Tumor Analysis Consortium 

(CPTAC) demonstrated extensive proteome coverage with TCGA samples7, but also 

identified that sample collection protocols for TCGA allowed significant ischemia prior 

to tissue freezing. Thus the phosphorylation data measured in these tumors represented 

a mix of cancer-related and ischemia-related signaling8. As aberrant cellular signaling is 

an important hallmark of cancer dysfunction and ischemia activates several of the same 

pathways (e.g. MAPK signaling and apoptosis), it is necessary to create proteogenomic data 

from freshly acquired tumors with protocols designed to avoid ischemic artifacts 9,10.

The CPTAC dataset currently includes 10 cancer cohorts of prospectively collected tumors 

analyzed with genomics, transcriptomics, proteomics and phosphoproteomics (Figure 1). 

Molecular classifications derived from these primary data types are also available, e.g. 

HLA typing, immune cell decomposition, and ancestry prediction. Other protein post-

translational modification (PTM) data such as acetylomics and glycoproteomics were 

generated for select cancer types. Standard clinical/demographic data and histology images 

have also been made available. Distributions of sex, age, tumor grade, tumor stage, smoking 

history, and recurrence status are illustrated in Figure 2. Detailed information of sample 

provenance is given in Tables S1 and S2. In the original publications investigating a 
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single cancer cohort 11–20, data were processed and analyzed by disease-specific working 

groups using customized genomics and proteomics data analysis pipelines. Therefore, 

to enable pan-cancer integrative analysis, and for consistency and reproducibility, we 

created a compendium of datasets where all proteogenomic data has been re-processed and 

harmonized.

Concurrent with this manuscript detailing the data processing and dissemination, CPTAC 

investigators have pursued biologically motivated pan-cancer analyses to illuminate 

mechanisms of cancer development. Pan-cancer investigation of protein post-translational 

modifications identified a subset of tumors with significant changes to cellular regulation, 

including dysregulated DNA repair, altered metabolic regulation associated with immune 

response, and patterns of acetylation that affect kinase specificity21. An integration of 

somatic driver mutations and proteomics data across tumor types resolves distinct cancer 

hallmark patterns22. Analysis groups continue to conduct thematic studies using the Pan 

Cancer dataset described here, according to five identified themes: Oncogenic drivers 

and pathways; DNA Damage Response; Cell of origin; Tumor microenvironment and 

immunotherapy; and Clinical imaging, biomarkers, and actionable targets.

CPTAC datasets are generated as a resource for cancer research, and community-driven re-

analysis is a positive and anticipated outcome from the program. Indeed, numerous groups 

have already begun re-examining the data23,24. They powerfully use proteogenomic data to 

reveal new molecular subtypes25–27, prognostic markers28–30, novel protein variants from 

alternative splicing and RNA editing31–33, and extensive post-translational regulation for 

protein complexes34,35. To facilitate an increased data reuse and serve the broad audience of 

cancer data stakeholders, we present our computational methodology for data harmonization 

and multiple dissemination mechanisms to share both the raw and processed data.

NCI’s Data Commons

The Genomic Data Commons (GDC, https://portal.gdc.cancer.gov) and Proteomic Data 

Commons (PDC, https://pdc.cancer.gov) are NCI Cloud resources that coordinate storage 

and analysis of genomics and proteomics data for cancer research. The proteogenomic 

data generated by the CPTAC program is publicly disseminated through GDC and 

PDC, which host raw and processed data according to their in-house pipelines. As 

components of NCI Cloud resource, the GDC and PDC are fully integrated with other 

NCI Research Data Commons resources, e.g., the Cancer Imaging Archive (TCIA, https://

www.cancerimagingarchive.net/), facilitating cloud-based analysis of proteomic, genomic 

and imaging data. Driven primarily by the CPTAC projects, PDC organizes the data through 

a robust data model to maintain consistency and integrity of both data and associated 

metadata, and provides an interface to filter, query, search and visualize proteogenomic 

data. A direct link to the harmonized data tables stored at the Proteome Data Commons is 

https://pdc.cancer.gov/pdc/cptac-pancancer.

Finally, in addition to thematic repositories, NCI’s Cancer Research Data Commons 

contains a data type-agnostic resource, the Cancer Data Service. CPTAC has placed 

the processed and curated data files into the Cancer Data Service (CDS; https://

datacommons.cancer.gov/). The CPTAC data stored in the CDS includes all the harmonized 
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proteogenomic data for our pan-cancer analyses, including: mutation calls, RNA and protein 

quantification tables, clinical and demographic data, and derived molecular data such as 

HLA typing, immune cell decomposition, and ancestry prediction. The CPTAC pan-cancer 

data hosted in CDS is controlled data. Access to controlled access data on CDS is through 

the NCI DAC approved, dbGaP compiled whitelists. Users can access the data for analysis 

through the Seven Bridges Cancer Genomics Cloud (SB-CGC), accessible with a queryable 

web portal through the Seven Bridges Cancer Genomic Cloud with dbGaP Study Accession, 

phs001287.v16.p6.

Data from Multiple Pipelines

Proteomic and genomic data analysis methods are continually evolving, and a variety 

of software tools exist for processing raw data into variant calls and quantifications 

(e.g., RNA or protein abundance matrices) that can be used for downstream analyses. 

As CPTAC consists of multiple groups with expertise in each data type, we have often 

analyzed data with multiple pipelines. Applying different tools to the same set of data may 

lead to different results and sometimes different conclusions. Therefore, benchmarking is 

important for tool assessment and selection. For somatic mutation calling, results from the 

ICGC-TCGA DREAM Somatic Mutation Calling Challenge show that different algorithms 

have characteristic error profiles, and an ensemble of pipelines always outperforms the 

best individual pipeline36. Based on this observation, and leveraging our team members’ 

experience from the Multi-Center Mutation Calling in Multiple Cancers (MC3) project37, 

somatic mutation calling in our harmonized dataset was based on integrated results from 

the Broad Institute and Washington University in St. Louis pipelines, which each included 

multiple algorithms. RNA-Seq data processing pipelines are now relatively mature with 

much overlap between widely-used pipelines (e.g., https://nf-co.re/rnaseq). The major 

difference between the three pipelines used in this project is that the pipeline from Baylor 

College of Medicine includes circular RNAs in addition to linear RNAs. Quantifications for 

the vast majority of genes are not affected by circular RNAs and show very high correlation 

among the three pipelines. To compare different pipelines for proteomics data quantification, 

we have developed OmicsEV38, which uses more than a dozen evaluation metrics to 

comprehensively assess data depth, data normalization, batch effect, biological signal, 

platform reproducibility, and multi-omics concordance. Among the publicly available tools 

used by the CPTAC centers, the FragPipe pipeline usually provides higher data depth while 

maintaining similar or better performance for other metrics. Using three deep learning-

derived features as evaluation metrics (predicted phosphosite probability, absolute retention 

time (RT) difference between observed and predicted RTs, and Pearson’s correlation 

coefficient between observed and predicted spectra), we further found that FragPipe 

achieved higher sensitivity and quality for phosphopeptide identification and phosphosite 

localization compared with the other tested pipelines39. Based on these evaluation results, 

we provide one non-redundant, harmonized version with data across all cancer types and 

omics data types (see BCM pipeline for pan-cancer multi-omics data harmonization in 

Data S1 for details). However, we would like to emphasize that benchmarking is usually 

complicated by the lack of absolute ground truth, and thus more efforts should be put 

towards this important but challenging task. We have therefore also included results from 

multiple data processing pipelines in the data compendium. Users are encouraged to read the 
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method description associated with each pipeline; explicit details can be found in the Data 

S1.

Computational API

Simplifying data access can significantly remove barriers to community use and improve 

transparency and reproducibility. Therefore, CPTAC has created a software package that 

streams final quantitative data tables directly into a programming environment as dataframe 

variables (Figure 3). The Python API40, which originally streamed data from the individual 

cancer type publications, has been updated to provide access to the harmonized pan-cancer 

datasets described above. Because data is streamed in native pandas dataframes, it is easily 

integrated with common machine learning and visualization packages such as SciKit-learn, 

PyTorch, plotly, seaborn, etc. Additionally, access to this API is also straightforward within 

R using the reticulate package for Python/R interconversion.

Computational APIs also extend the utility of CPTAC proteogenomic data by connecting 

them to other large public datasets41. We have recently expanded our popular R/

Bioconductor tool, TCGAbiolinks42, to stream CPTAC pan-cancer data. In addition to 

leveraging the numerous software tools available within Bioconductor, TCGAbiolinks 

facilitates access to molecular data from TCGA, GENIE, MET500, GTEx, GEO, and IHEC. 

With TCGAbiolinks internal functions to harmonize data from diverse consortia, end-users 

can explore and validate hypotheses on a comprehensive library of reference datasets using 

sharable and reproducible codes43. See http://bioconductor.org/packages/release/bioc/html/

TCGAbiolinks.html for tutorials and instructions.

Web Portals for Data Visualization and Analysis

CPTAC teams have created several web portals for visualization and exploration of pan-

cancer proteogenomics data (Figure 4). Each of these websites draws from the data 

compendium the appropriate datasets for pan-cancer analyses.

PepQuery.—Cancer genomic studies have identified many genomic aberrations that may 

give rise to abnormal proteins, which are promising candidates for cancer biomarkers, drug 

targets, and neoantigens. Validation of their expression at the protein level is a critical step 

toward the clinical translation of these findings. PepQuery (http://www.pepquery.org) allows 

quick and easy proteomic validation of genomic aberrations, such as single nucleotide 

variants (SNVs), insertions and deletions (INDELs), RNA editing sites, novel junctions, 

fusions, and novel transcription regions, using MS/MS data44,45. We have recently recently 

introduced a new data indexing algorithm in to improve the search speed and have 

expanded the dataset collection in the PepQuery web server to include MS/MS data from 

all 10 CPTAC studies, which increased the total number of MS/MS spectra to more 

than one billion46. Through the PepQuery web server and a mirror site at PDC (https://

pdc.cancer.gov), users can directly query CPTAC and other MS/MS data with a novel 

peptide or DNA sequence of interest to look for supporting peptide spectrum matches 

(PSMs). For each PSM, annotated spectra are provided for manual evaluation. Moreover, the 

stand-alone version and the implementation of PepQuery in the Galaxy Proteomics platform 
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(https://proteomics.usegalaxy.eu/) support batch analysis and user-provided MS/MS data, 

and the identification results can be visualized using PDV47.

LinkedOmics and LinkedOmicsKB.—LinkedOmics (http://www.linkedomics.org) is a 

data analysis portal that allows the characterization of any clinical or molecular feature 

of interest (e.g., survival, BRAF_V600E mutation, miR200c expression, or CHEK2-S422 

phosphorylation) using cancer multi-omics data from TCGA and CPTAC48. We now provide 

the pan-cancer harmonized datasets described in this paper for all CPTAC cohorts in 

LinkedOmics. For each CPTAC study, the database stores data for >500,000 attributes 

including clinical attributes, mutations at site and gene levels, copy number alterations at 

region and gene levels, methylations at site and gene levels, mRNA expression, miRNA 

expression, protein expression, and PTM at site and protein levels. Using three analytical 

modules, including LinkFinder, LinkCompare, and LinkInterpretor, these data can be mined 

to reveal the consequences of genetic aberrations, characterize functions of genes and PTMs, 

and uncover molecular basis of cancer phenotypes.

The on-the-fly, user-defined data queries in LinkedOmics provide a high level of flexibility 

for analyzing CPTAC data, but performing data analysis on-the-fly is time consuming, 

and integrating and co-visualizing results from multiple cancer types and multiple omics 

data types remains challenging. To address these challenges, we further developed 

LinkedOmicsKB, a new knowledge portal that makes precomputed results for individual 

genes and phenotypes readily available through a single query49. All results for a query gene 

or phenotype are presented on a single page with user-friendly visualization to facilitate easy 

comprehension. The knowledge portal is available at https://kb.linkedomics.org.

PTMcosmos.—PTMcosmos is an interactive web portal designed to catalog and visualize 

PTMs in humans. As a key regulator of protein activity, PTMs play an essential role in 

our understanding of cancer and dysregulated cellular states. The PTM sites detected across 

all CPTAC studies were harmonized using protein sequences from UniProt’s reviewed 

proteome, allowing for the integration of extensive annotations from many established 

databases including the UniProt Knowledge Base, PhosphoSitePlus, and protein 3D 

structures. In total, we harmonized 210,112 PTM sites and annotated them with 11,265 

publications. Additionally, to investigate the relationship between genetic alterations found 

in cancer and PTMs that are in close spatial proximity, we included cancer somatic 

mutations detected in the samples of CPTAC and the Cancer Genome Atlas (TCGA). 

Finally, we developed interactive visualization tools to allow researchers to explore the 

existing literature on a PTM site, the difference in abundance between tumor and normal 

samples, and the PTM-mutation clusters on protein structures. PTMcosmos portal is publicly 

available at https://ptmcosmos.wustl.edu/.

ProTrackPath: Pan-Cancer Portal.—We have developed a web application for 

accessing pathway enrichment scores across the pan-cancer cohorts. While previous 

ProTrack applications allow users to visualize normalized raw data for individual 

cancers50–52, the ProTrackPath pan-cancer portal presents pathway enrichment scores across 

cancer types, calculated with a single sample gene set enrichment analysis (ssGSEA)53. The 

user specifies a pathway database such as Hallmark54, KEGG55, or Reactome56, then selects 
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a set of pathways to visualize. An interactive heatmap is then generated, which users can 

customize by sorting according to any given track or toggling categorical variables on and 

off. Additionally, the portal includes a sample dashboard view, which allows for viewing 

clinical characteristics. This allows users to explore the distributions of the cancer types 

along with various demographic and clinical features as bar graphs. Users can filter samples 

by toggling features in each bar graph’s interactive legend, then populate the heatmap with 

their custom-generated cohort. The portal is available to the public at http://pancan.cptac-

data-view.org/.

NGlycositeAtlas Portal.—N-linked glycosylation is one of the most abundant protein 

modifications and is highly relevant to disease progression in cancer57. With the advances in 

experimental and computational approaches, glycoproteomics has provided comprehensive 

characterization of glycosite-specific glycosylation of glycoproteins and valuable insights 

into their biological functions in cancer58–62. However, there is still a lack of the integration 

of large-scale characterization of glycoproteomic data from different cancer types for pan-

cancer research. We identified intact N-linked glycopeptides (see Data S1) to create a 

database resource termed NGlycositeAtlas 2.0, which contains more than 90,629 intact 

N-linked glycopeptides (representing 5,665 N-linked glycosite-containing peptides) of over 

2,000 glycoproteins from CPTAC data. The NGlycositeAtlas database and consensus 

MS/MS spectra are available at https://www.biomarkercenter.org/nglycositeatlas.

Analytical challenges for pan-cancer multi-omics

With the rapid development of molecular measurement technologies, cancer datasets have 

become multi-modal. CPTAC has created rich proteogenomic datasets that measure DNA, 

RNA, and protein molecules within tumors and adjacent normal tissues (NATs). This 

diversity of data catalogs a comprehensive map of cellular state, providing researchers the 

opportunity to understand the subtle regulatory interplay between DNA mutation events that 

give rise to dysregulated signaling networks and the ultimate cellular phenotype. This large 

and comprehensive dataset presents several challenges in data integration and interpretation. 

In this section, we outline several important considerations for the re-use and re-analysis of 

proteogenomic data.

The first challenge in a proteogenomic dataset is to ensure that identifiers are harmonized. 

The following examples demonstrate the challenge. Many genes have multiple protein 

isoforms due to alternative splicing, including a noted change in splicing patterns in 

cancers63–65. Each isoform may have a unique function and combining all data into a 

single ‘gene level’ measurement could obscure these differences. Suppose that mRNA data 

identifies two distinct transcripts. The transcriptomics data table, therefore, reports two 

database identifiers each with a separate quantitative value. If the proteomics data does not 

identify peptides that differentiate the two isoforms, which protein identifier should be used? 

To which transcript data should the protein abundance be compared? As orthogonal data 

types, proteomics and transcriptomics frequently identify different isoforms. This situation 

is equally complex when integrating PTMs, mutations, or epigenetics. If a phosphorylation 

or a coding mutation is observed, which protein isoform should it be associated with? 

Which transcript/protein should be used in comparison with methylation data? Mapping 
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PTMs and coding mutations to different protein isoforms will make it difficult to study the 

impact of somatic mutations on PTMs. Thus, for a large multi-omics harmonization task 

such as presented here, we recommend careful consideration and transparency in reporting 

analytical methods. As potential solutions to mitigate the above challenges, we suggest the 

following: 1) using the same versions of genome assembly and gene annotation for the 

processing of data from all omics platforms and all cancer types; 2) reporting gene-level 

quantification when isoform level analysis is unrealistic; 3) applying a consistent and 

transparent rule for representative isoform selection when representative isoform selection 

is needed but the data is isoform agnostic, e.g., phosphosite localization annotation. 

A second challenge is embracing the full proteogenomic landscape as the molecular 

characterization of cells and tissues becomes more complete. We emphasize that each data 

type provides unique value and helps to clarify complex phenotypes. For example, the 

proteome and the transcriptome are distinct, and each provides a meaningful view of cellular 

processes. A rich body of research demonstrates that the mRNA and protein abundances 

frequently have a poorer correlation than expected66–70, a consequence of both translational 

and post-translational regulation71–74. As cancers are often characterized by regulatory 

dysfunction, exploring the source of this dysfunction can be best understood by combining 

transcriptomics and proteomics75. Similarly, the consequence of somatic mutation in kinases 

is best observed by combining genomics and phosphoproteomics. Indeed, many biological 

hypotheses can be best addressed by a fruitful combination of data types. To understand the 

consequence of genomic copy number variation, Gonçalves et al., combined genomics and 

proteomics and discovered widespread post-transcriptional attenuation in protein abundance 

mitigating the impact of gene amplification, especially to preserve stoichiometry in protein 

complexes34. The search for novel amino acid variants76 and cancer neo-antigens77–79 

is inherently a proteogenomic investigation, as is the discovery of tumor-specific splice 

isoforms80,81 and fusion proteins82. Combining all the proteogenomics levels into a single 

analysis is challenging, but the NMF methodology is frequently used for integrative 

clustering to highlight the unique contribution of each data type83.

Despite the great effort to harmonize the multi-omics datasets across different cancer 

studies, we want to emphasize that “batch” effects between different cancer types could 

still remain in the pan-cancer datasets due to both technical factors, as omics experiments 

of different cancer types were carried out by different labs and/or using different platforms, 

and biological factors, as different organs and cancer types have intrinsically different 

biology. Thus, when analyzing the pan-cancer data, one needs to carefully adjust for these 

batch effects across different cancer types. For example, when fitting a regression model to 

study the dependence of molecular abundances on other attributes, one can include cancer 

type indicators as covariates to account for cancer-type specific mean values of molecules. 

Other analysis techniques, such as meta-analysis framework, could also be used to perform 

pan-cancer level inferences.

Finally, we focus on a challenge specific to post-translational modifications (PTMs). In the 

CPTAC data, we report quantitative measurement of phosphorylation and selected datasets 

also have data for acetylation, and glycosylation. Although missing values are a regular 

part of all omics data, they are more pronounced in PTM data. One place where this is 

particularly problematic is pan-cancer analysis. If a PTM site is well quantified in one 
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cancer type (e.g., EGFR tyrosine 1172), it may have many missing values in another, 

which would complicate a pan-cancer comparison of protein activation. One might be 

tempted to roll together all PTMs in a protein into a single measurement - e.g., the average 

phosphorylation state of EGFR. However, we advise against this, as PTMs at each site 

in a protein can be functionally independent and may not correlate across samples. Both 

experimental and computational approaches are being developed to improve PTM peptide 

identification, which will help alleviate the missing value problem in PTM proteomics 84.

Conclusion

Pan-cancer proteogenomic data analysis requires a consistent data set processed with a 

unified pipeline across all samples. Several groups have created proteogenomic datasets on 

cancer cohorts, exploring diverse genetic backgrounds for common cancers85–88, pediatric 

tumors51 or understudied tumor types89,90. For pan-cancer analyses it is important that 

individual datasets follow similar SOPs and process data in a consistent manner. Therefore, 

we have re-processed the data from CPTAC’s 10 cancer cohorts to create a pan-cancer 

proteogenomic dataset. We presented the description of methods used to create this data 

compendium, methods of data access, as well as key considerations for pan-cancer multi-

omics data analysis. This resource has been used within CPTAC for biological discoveries 

under various themes. We hope this also serves as a resource for the broader cancer research 

community to advance cancer diagnosis and treatment.
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Fig. 1 - Tumor types and data types of the CPTAC pan-cancer dataset.
Overview of the available molecular data types for the CPTAC pan-cancer cohort (n=1072, 

see Table S1 for list of excluded cases and reasons for exclusion from the original data 

sets). Whole exome, whole genome, transcriptome, proteome, and phosphoproteome data 

are available for all ten cancer types. Normal samples are available for a subset of tumor 

types, see Table S1 and S2.
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Fig. 2 - Demographics of the CPTAC dataset.
Distributions of selected clinical features among the pan-cancer cohort illustrated in Fig 

1. Age is stratified by quartiles. Grade information is not available for BRCA and COAD 

cohorts. Stage information is not available for the GBM cohort. BMI, Tobacco use, and 

Alcohol use data is not available for BRCA, COAD, and HGSC cohorts. For survival plots, 

time starts at diagnosis. Additional clinical features, such as race and ethnicity, are available 

for exploration on the ProTrack pan-cancer sample dashboard.
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Figure 3 - Streaming data with APIs.
Programmatic access to CPTAC proteogenomic data across all cohorts is provided by both a 

Python and R API.
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Figure 4 - Web portals to CPTAC data.
Multiple websites present CPTAC’s proteogenomic data for visual exploration.
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