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Background. Neurocognitive impairment (NCI) in people with HIV (PWH) on antiretroviral therapy (ART) is common and 
may result from persistent HIV replication in the central nervous system.

Methods. A5324 was a randomized, double-blind, placebo-controlled, 96-week trial of ART intensification with dolutegravir 
(DTG) + MVC, DTG + Placebo, or Dual - Placebo in PWH with plasma HIV RNA <50 copies/mL on ART and NCI. The primary 
outcome was the change on the normalized total z score (ie, the mean of individual NC test z scores) at week 48.

Results. Of 357 screened, 191 enrolled: 71% male, 51% Black race, 22% Hispanic ethnicity; mean age 52 years; mean CD4+ T- 
cells 681 cells/µL. Most (65%) had symptomatic HIV-associated NC disorder. Study drug was discontinued due to an adverse event 
in 15 (8%) and did not differ between arms (P = .17). Total z score, depressive symptoms, and daily functioning improved over time 
in all arms with no significant differences between them at week 48 or later. Adjusting for age, sex, race, study site, efavirenz use, or 
baseline z score did not alter the results. Body mass index modestly increased over 96 weeks (mean increase 0.32 kg/m2, P = .006) 
and did not differ between arms (P > .10).

Conclusions. This is the largest, randomized, placebo-controlled trial of ART intensification for NCI in PWH. The findings do 
not support empiric ART intensification as a treatment for NCI in PWH on suppressive ART. They also do not support that DTG 
adversely affects cognition, mood, or weight.
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Despite effective suppression of plasma human immunodefi-
ciency virus (HIV) RNA below the lower limit of quantification 
(LLQ) with antiretroviral therapy (ART), persons with HIV 
(PWH) often have neurocognitive (NC) impairment (NCI), 
which can range from mild and asymptomatic to severe. 
Large, observational studies have found that NCI occurred in 
up to 69.5% of PWH, including those taking suppressive 
ART [1–7]. A meta-analysis of more than 35 000 PWH from 
123 published reports found that the prevalence of NCI was 
42.6% (95% confidence interval [CI], 39.7%–45.5%) [8].

NCI may be accompanied by depressive symptoms [9–11], 
and each of these can adversely affect daily functioning 
[12–16]. NCI in treated PWH may be due to 1 or more factors, 

including irreversible injury that occurred prior to ART, persis-
tent HIV replication in the central nervous system (CNS) [17], 
persistent CNS inflammation [11, 18–20], or ART toxicity 
[21–23]. Controversy remains as to whether ART that 
better distributes into the CNS is important in treating NCI in 
PWH since findings from observational studies are mixed 
[24–26], with some finding that better “CNS-penetrating” 
ART is associated with better NC performance [27–35], 
while others have reported no association or even worse perfor-
mance [36–41].

This trial assessed the efficacy over 96 weeks of adding 2 well- 
tolerated drugs, dolutegravir (DTG) and maraviroc (MVC), to 
the suppressive ART regimen of PWH who had NCI. MVC was 
chosen because its cerebrospinal fluid (CSF) concentrations are 
in the therapeutic range [42, 43]; the primary target cells in the 
CNS express predominantly CC chemokine receptor 5; and in-
hibition of CC chemokine receptor 5 may decrease migration 
of lymphocytes into the CNS [44]. DTG was chosen because 
its CSF concentrations are also in the therapeutic range [45] 
and it has reliable antiviral activity in integrase inhibitor–naive 
individuals.
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METHODS

Overall Design

A5324 was a phase 4, randomized, double-blind, placebo- 
controlled trial that assessed whether ART intensification im-
proved NC performance in PWH with NCI on suppressive 
ART. Eligible participants were PWH who were on a stable 
ART regimen for at least 6 months that did not contain an inte-
grase inhibitor or MVC and who had plasma HIV RNA <50 cop-
ies/mL and NC performance ≥1 standard deviation below the 
normative mean on ≥2 NC tests in different domains (consistent 
with an HIV-associated NC disorder [HAND]) [46]. Exclusion 
criteria included severe neuropsychiatric conditions that affect 
functioning and are summarized in Supplementary Table 1. As 
summarized in the CONSORT (Consolidated Standards of 
Reporting Trials) diagram (Supplementary Figure 1), 357 partic-
ipants provided informed consent at 24 sites. Of these, 191 were 
eligible to participate and were enrolled between April 2016 and 
November 2018 in the United States (n = 156), Brazil (n = 5), 
South Africa (n = 15), and Thailand (n = 15). Participants were 
randomized 1:1:1 to add dual-placebo, DTG and placebo for 
MVC (DTG + placebo), or DTG and MVC (DTG + MVC). 
Randomization was stratified by CD4+ T-cell nadir (≤100 vs 
>100 cells/µL) and HAND severity (asymptomatic: asymptom-
atic neurocognitive impairment [ANI] vs symptomatic: mild 
neurocognitive disorder [MND] and HIV-associated dementia 
[HAD]). Minor ART regimen changes were allowed, for exam-
ple, changing tenofovir disoproxil fumarate to tenofovir alafena-
mide or changing ritonavir to cobicistat. NC testing was 
performed at screening within 90 days of entry and then repeated 
at weeks 24, 48, 72, and 96. The primary outcome was NC per-
formance change at 48 weeks with a secondary end point at 96 
weeks. The institutional review board at each site approved all 
study procedures.

Neuropsychiatric Assessment

The NC test battery was designed to adhere to the recommen-
dations of the Frascati consensus and is summarized in 
Supplementary Table 2. The tests in the battery have been im-
plemented successfully in international, multisite clinical trials, 
and extensive training materials within the AIDS Clinical Trials 
Group (ACTG) exist. Personnel who administered the tests 
completed initial training and certification as well as annual re-
certification. Country and site-specific normative data were 
used for comparison, and individual z scores were calculated 
using a demographically appropriate norming process [5–7]. 
Individual scores were separated into 6 component domains 
(see Supplementary Table 2), and the z score for each domain 
was calculated as the average of standardized individual z 
scores listed under the domain. The total z score was the aver-
age of the z scores of each domain. The primary outcome mea-
sure of change over time was calculated by subtracting the total 

z score at week 48 from the total z score at baseline. Alternative 
versions of the tests were administered at subsequent visits to 
reduce practice effects. The dual-placebo arm provided an esti-
mate of practice effects and natural history in our analyses. 
Self-report assessments of depressive symptoms (the Beck 
Depression Inventory-II [BDI-II] in the United States and the 
Patient Health Questionnaire-9 outside of the United States) 
were administered, as was the revised Lawton and Brody in-
strumental activities of daily living scale (IADLs).

Safety, Clinical, and Biomarker Assessments

Clinical safety evaluation and monitoring were performed at 
weeks 2, 4, 12, and 24 and then every 24 weeks. Blood was col-
lected for clinical hematology, chemistry panels, and CD4+ 
and CD8+ T cells at local Clinical Laboratory Improvement 
Amendments (CLIA)-approved, College of American 
Pathologists (CAP)-certified, virology/immunology quality as-
sured, ACTG-affiliated laboratories. Specimens were stored at 
−80°C prior to plasma HIV RNA quantification (Abbott 
m2000sp/rt; assay LLQ 40 RNA copies/mL) at a central labora-
tory. CSF was collected by lumbar puncture in consenting partic-
ipants. Biomarkers were measured in stored plasma (at baseline, 
12 weeks, and 48 weeks; n = 162) and CSF (at baseline and 48 
weeks; n = 34). Plasma levels of soluble tumor necrosis factor re-
ceptor II, soluble vascular cell adhesion molecule-1, soluble 
CD14, macrophage inflammatory protein (MIP)-1β (R&D 
Systems), and neurofilament light chain (NfL; Uman 
Diagnostics) were measured using enzyme-linked immunosor-
bent assay (ELISA) per manufacturers’ instructions. Duplicates 
of 15% of the samples were included in each plate, and results 
were analyzed using the BioTek EL×800 reader using 
KCjunior software (version 1.6). In CSF, MIP-1β, interferon in-
ducible protein (IP)-10 (R&D Systems), NfL, and neopterin 
(Genway) were measured in duplicate using ELISA.

Statistical Analyses

A sample size of 62 participants per group, with a total of 186 
participants, was selected to achieve 90% power to detect a dif-
ference of at least 0.5 higher for the DTG + MVC arm com-
pared with the dual-placebo arm. The sample size accounted 
for multiple comparisons of the efficacy outcome between 
arms using Bonferroni correction, 1 interim analysis of efficacy, 
and a 15% loss to follow-up. The primary analysis and second-
ary analyses used the modified intent-to-treat principle, which 
did not include 1 participant who did not start the study drug. 
The 2-sample t test was used for 3 pairwise comparisons of total 
z score between any 2 arms. Treatment comparisons were also 
evaluated using linear regression models adjusting for covari-
ates such as sex, race, and location (United States vs others). 
Proportion of adverse events and discontinuation of the study 
drug were evaluated using Fisher exact tests. Time to discontin-
uation was compared between arms using the Kaplan–Meier 
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method and log-rank test. Comparisons over time between 
arms for IADLs, BDI-II, CD4+ T cells, and CD8+ T cells 
were evaluated using mixed repeated measures models. 
Changes over time within arms were evaluated using the 
Wilcoxon signed rank test. Spearman correlations were used 
to assess associations between biomarkers.

RESULTS

Participant Characteristics at Baseline

As summarized in Table 1, participants were mostly assigned male 
sex at birth (71%), had a mean age of 52 years, and had self-reported 
racial identity as Black (51%) and ethnic identity as non-Hispanic 
(78%). Gender identity was not collected. All participants had plas-
ma HIV RNA <50 copies/mL at screening, although 7 values were 
between 50 and 200 copies/mL at baseline (after randomization). 
Mean CD4+ T cells were 703 cells/µL, and 30% had nadir CD4+ 
T cells ≤100/µL. The most frequently used ART drugs at baseline 
were emtricitabine (83%), tenofovir disoproxil fumarate (63%), efa-
virenz (32%), tenofovir alafenamide (27%), and darunavir (24%). 
The most common ART regimens at baseline were coformulated 
efavirenz-emtricitabine-tenofovir disoproxil fumarate (50, 26.3%), 
coformulated rilpivirine-emtricitabine-tenofovir alafenamide (23, 
12.1%), and darunavir-ritonavir-emtricitabine-tenofovir disoproxil 
fumarate (16, 8.4%). All participants had NCI at baseline with near-
ly two-thirds meeting criteria for symptomatic HAND. Participants 
averaged more than 4 comorbid conditions at baseline, most com-
monly hypertension (74, 39%), hyperlipidemia (29, 15%), asthma 
(23, 12%), osteoarthritis (23, 12%), and type 2 diabetes mellitus 

(18, 9%). None differed between arms, nor did the number of con-
comitant medications.

Safety of the Intervention

Fifteen adverse events were attributed to the study drug, 
had grades between 1 and 3, and did not differ between arms 
(all P values >.10; Supplementary Table 3). The most common 
were decreased creatinine clearance (6 participants, 3.1%) [47] 
and gastrointestinal disorders (5 participants, 2.6%), with 5 other 
adverse events occurring in 1 participant each (nervous system 
disorders, psychiatric disorders, respiratory disorders, urinary 
tract infection, increased serum total bilirubin). Five participants 
experienced virological failure, which was defined as plasma HIV 
RNA >200 copies/mL with repeat confirmation. Four of these oc-
curred in the dual-placebo arm (at weeks 16, 17, 24, and 28) and 1 
in the DTG + MVC arm (at week 34). The study drug was discon-
tinued in 15 (7.8%) participants. Most discontinuations occurred 
prior to week 48 and totaled 3 (5%) in the dual-placebo arm, 4 
(6%) in the DTG + placebo arm, and 8 (13%) in the DTG +  
MVC arm (P = .19). Time to discontinuation did not differ be-
tween arms (P = .17; Figure 1).

Effects of the Intervention on NC Test Performance, Depressive Symptoms, 
and IADLs

Global NC test performance, BDI-II values, and IADL values over 
time by treatment arm are shown in Figure 2. In all arms, the total 
z score improved between baseline and the primary outcome time 
point, week 48 (mean, 0.25; 95% CI, .16–.34), consistent with 
practice effects [48]. This change did not differ between arms 

Table 1. Participant Characteristics

Characteristic
Total  

(N = 191)
Dual Placebo  

(n = 63)
DTG + Placebo  

(n = 67)
DTG + MVC  

(n = 61)

Age, ya 52 (8) 52 (7) 52 (9) 52 (8)

Sex at birth, femaleb 56 (29%) 15 (24%) 23 (34%) 18 (30%)

Race, Black or African Americanb 97 (51%) 30 (48%) 30 (45%) 37 (61%)

Ethnicity, Hispanicb 42 (22%) 15 (24%) 17 (25%) 10 (16%)

Primary language, Englishb 127 (66%) 40 (63%) 44 (66%) 43 (70%)

History of injection Drug useb 14 (7%) 2 (3%) 8 (12%) 4 (7%)

HIV RNA, <50 copies/mLb 184 (96%) 62 (98%) 64 (96%) 58 (95%)

CD4+ T-cell count, per µLa 703 (300) 681 (294) 703 (278) 726 (331)

Nadir CD4+ T-cell count ≤100/µL2 57 (30%) 19 (30%) 20 (30%) 18 (30%)

CD4+/CD8+ T-cell ratioa 1.00 (0.51) 0.95 (0.46) 1.00 (0.48) 1.05 (0.59)

Body mass index, kg/m2a

29.0 (6.7) 29.5 (6.6) 29.0 (6.8) 28.6 (6.8)

Efavirenz useb 60 (32%) 24 (38%) 18 (27%) 18 (30%)

Number of comorbid conditionsa 4.49 (4.68) 4.32 (3.81) 4.35 (5.03) 4.84 (5.15)

Polypharmacy, >5 concomitant drugsb 73 (38%) 21 (33%) 26 (39%) 26 (43%)

Average z scorea −1.00 (0.73) −0.96 (0.79) −0.97 (0.70) −1.09 (0.70)

Symptomatic HIV-associated neurocognitive disorder diagnosis (mild neurocognitive disorder or 
HIV-associated dementia)b

124 (65%) 42 (67%) 44 (66%) 38 (62%)

Abbreviations: DTG, dolutegravir; HIV, human immunodeficiency virus; MVC, maraviroc.  
aMean (standard deviation).  
bNumber (percent).
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(DTG + placebo vs dual-placebo, P = .60; DTG + MVC vs dual- 
placebo, P = .33). Total z score also did not differ between arms 
over 96 weeks (DTG + placebo vs dual-placebo, P = .79; DTG +  
MVC vs dual-placebo, P = .95). Individual domain z scores also 
improved over time in the entire group and did not differ between 
arms (all P values >.05; Table 2), except for verbal memory (weeks 
48 and 72) and verbal learning (week 48) domains, which im-
proved more in the DTG + MVC arm than in the dual-placebo 
arm. BDI-II and IADL values also improved over time and did 
not differ between arms (P > .10).

Planned analyses stratified total z scores by HAND diagnosis 
(ANI vs MND + HAD) and nadir CD4+ T cells (≤100 vs >100/ 
µL). Performance did not differ between treatment arms for 
participants with either asymptomatic or symptomatic HAND 
(P > .10). Similarly, performance did not differ between treatment 
arms by nadir CD4+ T-cell stratum (P > .10). Results were un-
changed in post hoc analyses that adjusted for the influence of 
age, sex, education, study site, baseline z score, or efavirenz use 
(all P values >.10).

Sensitivity analyses that assessed the impact of missing NC test 
data using imputation by 3 methods (minimum, median, and 
maximum total z score by arm) also found no significant 

differences between arms. Per-protocol analyses included 
163 (86%) participants and found no significant differences 
between arms.

Effects of the Intervention on Cellular and Soluble Biomarkers

The DTG + MVC arm had greater increases in CD4+ (P = .019) 
and CD8+ (P = .018) T cells over time than the dual-placebo 
arm, but these arms did not differ in the CD4/CD8 T-cell ratio 
over time. The DTG + placebo arm did have higher CD4/CD8 
T-cell ratios over time than the dual-placebo arm (P = .037). 
Supplementary Figure 2A is a correlation matrix of the soluble 
biomarkers. The strongest correlations were between CSF 
IP-10 and either CSF neopterin (r = 0.58, P < .001) or CSF NfL 
(r = 0.54, P < .001). Trend-level correlations were present be-
tween worse total z score and higher plasma NfL (P = .068), 
CSF IP-10 (P = .074), and CSF NfL (P = .089) at week 48 but 
not at other time points. Change in soluble biomarkers over 
time did not correlate with change in total z score over time. 
Change in biomarkers did not differ by treatment arm (eg, plas-
ma NfL; Supplementary Figure 2B), with the exception that the 
DTG + MVC arm had greater increases over time in plasma 
MIP-1β than the other 2 arms (Supplementary Figure 2C).

Figure 1. Time to discontinuation of study drug. Abbreviations: DTG, dolutegravir; MVC, maraviroc.
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Effect of the Intervention on Body Mass Index

Because integrase inhibitors may increase weight [49], a post hoc 
analysis was performed and found that body mass index increased 
over 96 weeks in the entire cohort (P = .006; Supplementary 
Figure 3). The increase was modest (mean, 0.32 kg/m2; 95% CI, 
0.11–0.74 kg/m2); was numerically greatest in the dual-placebo 
arm; and did not differ between arms at week 96 (P > .10).

DISCUSSION

A5324 was the largest, randomized, placebo-controlled trial of 
ART intensification for NCI in PWH. The premise for the trial 
was that NCI in PWH who are taking ART is due to persistent 
HIV replication [50–54], but the findings do not support this con-
clusion: NC performance improved over 96 weeks and did not 
differ by arm. Stratification and sensitivity analyses did not 

Figure 2. Summary of neuropsychological performance (A), IADLs (B), and BDI-II (C) over time by study arm. Abbreviations: BDI-II, Beck Depression Inventory-II; DTG, do-
lutegravir; IADL, instrumental activities of daily living; MVC, maraviroc.

Table 2. Mean and 95% Confidence Interval of Change in Cognitive Domain z Scores at Week 48

Cognitive Domain Total (N = 190)

Arm A 
(Dual-Placebo) 

(n = 63)

Arm B 
(DTG + Placebo) 

(n = 67)

Arm C 
(DTG + MVC) 

(n = 60)

Attention/working memory 0.32 (0.21 to 0.43) 0.24 (0.04 to 0.43) 0.44 (0.28 to 0.60) 0.28 (0.07 to 0.50)

Executive function 0.25 (0.15 to 0.35) 0.26 (0.05 to 0.46) 0.24 (0.07 to 0.41) 0.25 (0.09 to 0.42)

Fine motor skills 0.25 (0.16 to 0.35) 0.38 (0.22 to 0.54) 0.19 (0.03 to 0.35) 0.18 (0.00 to 0.37)

Speed of information processing 0.23 (0.09 to 0.37) 0.17 (−0.09 to 0.44) 0.36 (0.13 to 0.60) 0.14 (−0.12 to 0.40)

Verbal learninga 0.23 (0.07 to 0.39) 0.01 (−0.28 to 0.30) 0.17 (−0.09 to 0.43) 0.53 (0.26 to 0.79)

Verbal memorya 0.13 (−0.14 to 0.40) −0.15 (−0.62 to 0.32) −0.08 (−0.57 to 0.42) 0.64 (0.24 to 1.04)

Abbreviations: DTG, dolutegravir; MVC, maraviroc.  
aVerbal learning and verbal memory improved more in the DTG + MVC arm than in the dual-placebo arm (both P values = .01) or the DTG + placebo arm (verbal learning P = .06, verbal memory 
P = .03).
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identify subgroups that benefitted from active study drug, nor did 
adjustments for demographic or other characteristics. Results of 
NC testing were further supported by a lack of differences be-
tween arms in depressive symptoms, IADLs, or concentrations 
of NfL in plasma or CSF [55, 56]. These findings provide strong 
evidence that ART intensification with currently available ART 
drugs is not an effective strategy for treating existing NCI in 
PWH who are already taking suppressive therapy. Instead, the 
negative findings support alternative explanations, such as prior 
CNS injury, cellular shedding of viral products [54, 57–59], per-
sistent inflammation, or comorbid disease [60].

Many studies have assessed the influence of ART on cogni-
tion [27–34, 36–40], but few have assessed the influence of 
ART intensification. Two small, open-label, single-center trials 
of MVC intensification found evidence of NC improvement 
[61, 62]. A third open-label trial of ART intensification found 
evidence of NC improvement after 96 weeks [63]. As a random-
ized, placebo-controlled, multisite, international clinical trial, 
A5324 substantially improved on the design of these prior trials 
and found that ART intensification did not improve NC perfor-
mance over 96 weeks compared with placebo. The trial did con-
firm that the addition of MVC (in combination with DTG) 
increased CD4+ and CD8+ T cells (but not CD4/CD8 ratio) 
[64] and MIP-1β in blood; however, these changes were not as-
sociated with NC performance, depressive symptoms, or 
IADLs.

Multiple reasons for these negative findings are possible. 
Foremost is that ART intensification would not reduce shed-
ding of neurotoxic viral products in transcriptionally active 
cells in the CNS more than an existing suppressive ART regi-
men. Second, ART drug concentrations may be substantially 
higher in the brain than in CSF [65–67], which could also elim-
inate the benefit of intensification. While pharmacology and 
measurement of viral products are not reported here, future 
analyses will measure ART drug concentrations, cell-associated 
HIV DNA, and extracellular single-copy HIV RNA using 
stored biospecimens from the trial. Another possibility is that 
NCI in PWH is due to comorbid conditions that occur more 
frequently in PWH than in the general population. For in-
stance, multiple reports show that conditions such as vascular 
disease [60] and metabolic syndrome [68, 69] are more strongly 
associated with NCI in virally suppressed PWH than indicators 
of HIV disease severity. Another possibility is that NCI was due 
to static brain injury that occurred prior to ART rather than to 
reversible processes that might respond to an intervention. The 
heterogeneous nature of NCI in PWH may also reduce the 
power of an intervention that targets just 1 step in pathogenesis. 
Even if NCI is associated with HIV disease indicators (eg, high 
levels of cell-associated HIV DNA [54], CSF viral escape [70], 
or HIV compartmentalization [71–74]), only a subgroup of 
PWH typically has these conditions. Finally, the drugs chosen 
for this trial may also not have been ideal. For example, since 

the trial began, data have emerged on possible DTG neurotox-
icity [75–78]. While larger analyses did not find evidence of 
DTG neurotoxicity in adults [79, 80], if DTG does cause neuro-
toxicity in a subgroup of PWH, then this may have also influ-
enced our results. Of note, however, participants in the DTG 
arms did not have worse NC performance than those in the 
dual-placebo arm.

The trial has important limitations. Chief among them may 
be insufficient power. The trial found no evidence of NC ben-
efit, but the intervention may have only been beneficial in a sub-
group for the reasons summarized above. Since the trial did not 
target PWH who had, for example, higher cell-associated HIV 
DNA or CSF viral escape, it may not have selected the group 
most likely to benefit. The multisite design that includes partic-
ipants from low- and middle-income countries strengthens 
generalizability and also necessitated the use of different NC 
test protocols (Supplementary Table 2) to optimize cultural rel-
evance (eg, different languages), which introduced variability 
[81]. The use of ecologically relevant normative data from 
each region should have mitigated this, and accounting for 
the influence of study site did not alter the findings. 
Domain-specific and global cognitive performance improved 
similarly in each treatment arm. However, the magnitude of 
change in test performance was within the range of measure-
ment error for the test protocol. Other studies report that cog-
nitive change with repeat testing of PWH is within 
measurement error. Practice effects may also have contributed 
to the improvement observed in each treatment arm. The influ-
ence of practice may have been reduced by our use of alternate 
forms for verbal learning and memory, but similar options were 
not available for other cognitive domains. Multiple baseline 
testing is another strategy that might have reduced the influ-
ence of practice, but this adds burden for study participants 
and staff. Our assessment is that measurement error and prac-
tice effects did not substantively influence the outcomes in this 
trial.

In summary, we report the primary results of the largest, ran-
domized, placebo-controlled trial of ART intensification for 
NCI in PWH to date. The negative findings do not support 
the use of ART intensification to treat this condition in PWH 
who are already taking stable, suppressive ART. As noted, fu-
ture analyses will quantify ART drug concentrations in blood 
and CSF as well as cell-associated HIV DNA and single-copy 
HIV RNA in plasma to assess whether these characteristics in-
fluenced the findings.

Supplementary Data
Supplementary materials are available at Clinical Infectious Diseases online. 
Consisting of data provided by the authors to benefit the reader, the posted 
materials are not copyedited and are the sole responsibility of the authors, 
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