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Summary
Background Severe community-acquired pneumonia (SCAP) results in high mortality as well as massive economic
burden worldwide, yet limited knowledge of the bio-signatures related to prognosis has hindered the
improvement of clinical outcomes. Pathogen, microbes and host are three vital elements in inflammations and
infections. This study aims to discover the specific and sensitive biomarkers to predict outcomes of SCAP patients.

Methods In this study, we applied a combined metagenomic and transcriptomic screening approach to clinical
specimens gathered from 275 SCAP patients of a multicentre, prospective study.

Findings We found that 30-day mortality might be independent of pathogen category or microbial diversity, while
significant difference in host gene expression pattern presented between 30-day mortality group and the survival
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group. Twelve outcome–related clinical characteristics were identified in our study. The underlying host response was
evaluated and enrichment of genes related to cell activation, immune modulation, inflammatory and metabolism
were identified. Notably, omics data, clinical features and parameters were integrated to develop a model with six
signatures for predicting 30-day mortality, showing an AUC of 0.953 (95% CI: 0.92–0.98).

Interpretation In summary, our study linked clinical characteristics and underlying multi-omics bio-signatures to the
differential outcomes of patients with SCAP. The establishment of a comprehensive predictive model will be helpful
for future improvement of treatment strategies and prognosis with SCAP.

Funding National Natural Science Foundation of China (No. 82161138018), Shanghai Municipal Key Clinical Spe-
cialty (shslczdzk02202), Shanghai Top-Priority Clinical Key Disciplines Construction Project (2017ZZ02014),
Shanghai Key Laboratory of Emergency Prevention, Diagnosis and Treatment of Respiratory Infectious Diseases
(20dz2261100).

Copyright © 2023 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND
license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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Research in context

Evidence before this study
We searched PubMed database, for published studies
evaluating the metagenomic and transcriptomic signatures
for predicting outcomes of patients with severe Community-
acquired Pneumonia (CAP) in the past five years. The search
terms used were (“Community-acquired pneumonia” OR
“Community-acquired infection”) AND (“genomics” OR “gene
expression profiling”) AND (“transcriptomic” OR
“transcriptome”) AND (“outcomes” OR “prognosis”). We
identified only 2 studies of CAP in children.

Added value of this study
Our study comprehensively investigated metagenomic and
transcriptomic signatures in severe CAP and their associations

with prognosis. We found a significant difference in host gene
expression pattern presented between 30-day death group
and the survival group. Most importantly, we integrated
omics data, clinical features and parameters to develop a
model with six signatures for predicting 30-day mortality,
showing an AUC of 0.953.

Implications of all the available evidence
This study suggested a potentially critical connection between
host response and prognosis of SCAP. The comprehensive
predicting model could develop precision therapeutics of
clinical practices.
Introduction
Community-acquired pneumonia (CAP) is a major in-
fectious disease worldwide and contributes to high
mortality and massive economic burden.1–3 Hospital
mortality among the severe CAP (SCAP) remains high,
ranging from 25% to more than 50%.4 Disease pro-
gression and prognosis in SCAP, from first symptoms
to the need for supportive care such as mechanical
ventilation, can vary widely among patients. It is
believed that pulmonary microbiota—host interaction
plays fundamental roles in development and severity of
lung infectious diseases.5,6 However, studies about
microbiota-host interactions on outcomes of SCAP are
still in their infancy.

Many microorganisms including bacteria, viruses
and fungi, coexist in the lungs of healthy individuals to
constitute the lung microbiome. Published articles
demonstrated the diversity of sputum microbiota pre-
dicted mortality in patients with chronic obstructive
pulmonary disease, and the community composition of
respiratory microbiota predicted exacerbations in bron-
chiectasis and respiratory infections in infants.7–9

Moreover, among mechanically ventilated critically ill
patients, variation in lung microbiota predicts ICU
outcomes.10 In particular, microorganisms residing in
the upper respiratory tract can alter the susceptibility to
the outcomes of infectious diseases.11 The underlying
mechanisms may be the induction of the immune
response in the host and colonization resistance.12 To
date, no study has determined whether altered lung
microbiota predict disease outcomes in the population
of SCAP.

It has been observed that in many cases, death is not
solely attributable to the direct effect of the pathogen or
any toxin it produces. Rather, it is often the consequence
of the systemic response in the host.13,14 There are at
least two distinct biological components to the mortality
risk: susceptibility to infection and propensity to develop
harmful pulmonary inflammation. For example, sus-
ceptibility to respiratory viruses such as influenza and
www.thelancet.com Vol 96 October, 2023
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SARS-COV-2 is heritable and known to be associated
with specific genetic variants.15,16 Another example is
tuberculosis, in which outcomes vary greatly among
different individuals infected. Studies show that TLR2,
CCL2 and SLC11A1 genes may associate with suscep-
tibility to tuberculosis and relate to its outcomes.17 Un-
derstanding the host response could be an invaluable
tool guiding clinical treatment, as well as in under-
standing of the infectious disease development, pro-
gression and outcomes. However, a comprehensive
assessment of the heterogeneity in the adult host
response to varied outcomes and severity of community-
acquired pneumonia has not previously been reported.

Massive attempts have been tried to find clinical
factors and biomarkers to assess the severity and predict
the risk of poor outcome of CAP patients. Previous
studies indicated age and sex were related to the inci-
dence and outcomes of CAP patients.18,19 It was also
pointed out that some scoring system, such as pneu-
monia severity index (PSI), CURB-65 (acronym for
confusion, urea, respiratory rate, blood pressure and 65
years of age) and quick sepsis-related organ failure
assessment (qSOFA), were associated with prognosis of
CAP.20,21 Meanwhile, C-reactive protein (CRP), procalci-
tonin (PCT), neutrophil-to-lymphocyte ratio (NLR), lactic
dehydrogenase (LDH) and some cytokines were used as
biomarkers for the prediction of outcomes.4,22,23 How-
ever, the variations of host response underlying these
characteristics are still ambiguous. The determinations
of these variations may help to uncover the mechanism
underlying the progression of CAP, and discover sig-
natures or clinical-genetic combination of new models
to improve the accuracy of prediction contributing to the
decrease of CAP mortality.

In the current study, we enrolled SCAP patients to
explore the pulmonary microbiota and host responses of
different outcomes, since the genetic differences could
be detected more easily in the most severe patients as
opposed to mildly severe ones.24 We performed DNA
and RNA-based metagenomic next generation
sequencing of bronchoalveolar lavage fluid (BALF),
sputum and whole blood samples from 275 SCAP pa-
tients with varied characteristics and outcomes, to
analyze the differences in the microbes and host re-
sponses between them. Besides, we tried to establish a
comprehensive risk prediction model with those mi-
crobes, host genes and clinical characteristics correlated
with outcomes, aiming to enable physicians to more
accurately predict prognosis and provide appropriate
treatments for SCAP patients.

Methods
Study design
All adult patients in this study were from our previous
work.25 Blood samples, sputum samples and bron-
choalveolar lavage fluid (BALF) were chosen for further
DNA or RNA sequencing or both. The DNA-seq and
www.thelancet.com Vol 96 October, 2023
RNA-seq data were applied for the analysis of microbial
diversity and host gene expression profiles respectively.
Infectious pathogens, microbial diversity and host
response were compared between 30-day survivals and
30-day deaths. Clinical characteristics (such as age and
sex), scoring systems (including PSI and CURB-65),
oxygenation and laboratory parameters (blood routine
and biochemical tests) were collected, and associations
of host gene expressions with them were analyzed.

Sample collection and nucleic acid extraction
Three types of samples including 54 BALF (5 mL), 211
blood (3 mL) and 113 sputum (5 mL) samples were
collected from 275 SCAP patients and were pretreated
before further nucleic acid extraction. For blood sample,
volume of 3 mL blood was drawn from patient, placed in
cell-free DNA storage tube, and stored at room tem-
perature. Plasma was separated within 96 h by centri-
fugation at 1600g for 10 min at 4 ◦C, then transferred to
new sterile tube for next step. For sputum sample, 5 mL
sputum sample from patient was collected according to
standard procedures and then placed in a sterile
container and inactivated at 65 ◦C for 30 min. Then
sputum sample was liquefied by using 0.1% dithio-
threitol (DTT) for 30 min at room temperature and then
used for nucleic acid extraction. For BALF sample, 5 mL
BALF was collected based on the standard clinical pro-
cedure and then placed in a sterile container and inac-
tivated at 65 ◦C for 30 min before nucleic acid
extraction. BALF collection was standardized according
to the guideline issued by the Chinese Medical Associ-
ation, which was performed by sequentially instilling
two 10-mL aliquots in the pulmonary lobe directed by
abnormal imaging. Aspiration was performed immedi-
ately after instilling each aliquot.

DNA of some pretreated samples (BALF, blood and
sputum) from SCAP patients was extracted respectively
and used for further DNA library construction. For
blood sample, 300 μL plasma, spiked with 0.05 ng DNA
as internal control, which was a nucleic acid fragment of
known sequence, was used for DNA extraction. For
sputum and BALF sample, 1.5 mL microcentrifuge tube
with 500 μL sample and 1g 0.5 mm glass beads were
attached to a horizontal platform on a vortex mixer and
agitated vigorously at 2800–3200 rpm for 30 min. And
then 300 μL of the supernatant was transferred to
1.5 mL microcentrifuge tube and mixed with 0.2 ng of
internal DNA control. DNA was extracted using the
TIANamp Micro DNA Kit (DP316, TIANGEN
BIOTECH) according to the manufacturer’s recom-
mendation. The extracted DNA was quantified by Qubit
and 100 ng DNA was used for the following library
construction, and if the DNA yield was less than 100 ng,
then all the DNA from the sample was used for the
following library construction.

RNA of some pretreated samples (BALF, blood and
sputum) from SCAP patients was extracted respectively
3
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and further applied for the synthesis of cDNA before
DNA library generation. For plasma sample, 140 μL
sample was used for extraction of RNA. For sputum and
BALF sample, 200 μL sample was first centrifuged at
1500g for 30 min at 4 ◦C to reduce human derived
nucleic acid before extraction, and then 140 μL super-
natant was used for RNA extraction. The sputum and
BALF samples were handled the same way for the RNA
extraction, library construction and RNA sequencing
steps. RNA was extracted by using QIAAMP VIR-
ALRNA MINI KIT (52904#, QIAGEN) according to the
manufacturer’s recommendation. Then complementary
DNA (cDNA) was generated from an RNA template by
reverse transcription, followed by second strand syn-
thesis of cDNA. Then the double strand DNA was used
for the construction of DNA library.

Library preparation and sequencing
DNA library was constructed through DNA-
fragmentation, end-repair, adapter-ligation and PCR
amplification. Constructed library was qualified by Agi-
lent 2100 (Agilent Technologies, Santa Clara, CA) and
Qubit 2.0 (Invitrogen, USA). The concentration required
for the constructed library was ≥1 ng/μL. Qualified
double strand DNA library was transformed into single-
stranded circular DNA library through DNA-
denaturation and circularization. DNA nanoballs
(DNBs) were generated from single-stranded circular
DNA using rolling circle amplification (RCA). The
DNBs were qualified using Qubit 2.0. Qualified DNBs
were loaded on the flow cell and sequenced on
MGISEQ-2000 platform (MGI, China). The requirement
for the amount of data obtained from sequencing must
be more than 15 M reads.

Metagenomic analysis
The DNA-seq data were applied for the analysis of mi-
crobial diversity. Firstly, the high-throughput
sequencing raw data were filtered by fastp to remove
low quality reads and adapters, and the quality of filtered
data were further controlled using FastQC (Version
0.11.9).26,27 Then the filtered reads were mapped to the
human genome (GRCh38) using HISAT2 (2.2.1 release)
to remove human sequences.28 The identifications of
microbial species were performed on the clean reads by
Kraken2.29 The DNA-seq data were then normalized to
RPM before further analysis. Shannon Wiener index
were calculated by the known formula.30 PCA was per-
formed by ade4 R package.31 All the PCA plots, box plots
and heatmap figures were generated by utilizing the
ggplot2 package in R v4.0.3.32

Transcriptome analysis
The RNA-seq data were used for the analysis of host
transcriptomic profiles. Firstly, the RNA-seq raw data
were filtered to remove low quality reads and adapters
by fastp.26 Subsequently, the rRNA sequences of filtered
RNA-seq data were removed using SortMeRNA (version
4.3.3) with rRNA databases including RFAM 5S and
5.8S databases from the ARB package.33,34 Then, the
quality of RNA-seq filtered reads were further controlled
using FastQC (Version 0.11.9).27 Later, the RNA-seq
filtered reads were mapped to the human genome
(GRCh38) used hisat2 (2.2.1 release),29 and then the
RPKM values of host gene expressions were calculated
by the R package “edgeR”.35 Host differentially ex-
pressed genes (DEGs) between two different groups
were analyzed by RStudio (Version 1.3.959) with R
software package DEseq2.36 The genes with absolute
foldchange more than 1.2 between two groups and with
adjusted p value <0.05 were presented as DEGs.37–40 The
p-value were adjusted using the Benjamini and Hoch-
berg’s approach for controlling the false discovery rate
(<0.05). Genes with an adjusted p-value <0.05 (detected
by DESeq2) were considered to be significantly differ-
entially expressed. DEGs were further showed in vol-
cano plot as well as applied for gene functional
enrichment analysis. The gene functional enrichment
analysis of DEGs in host was performed in Metascape
website (https://metascape.org/gp/index.html#/main/
step1).41

The establishment of predictive model
We tried to apply transcriptomic, microbial and clinical
signatures to develop models for predicting outcomes
(30-day mortality or 30-day survival) of SCAP patients.
Previous studies showed that random forests gave
outstanding binary predictions on similar data types,
which were a mix of numeric, characters and Boolean
values.42 Therefore, our models in this study were built
in random forest. Models were trained using data from
the host genes, microbes and clinical characteristics.
Microbes and genes correlated with death (spearman
correlation coefficient |rho| > 0.3) were selected and
clinical characteristics including gender, age, CURB65
(acronym for confusion, urea, respiratory rate, blood
pressure and 65 years of age), CRB65, pneumonia
severity index score, PSI class, Neutrophil-Lymphocyte
Ratio (NLR), LDH, ratio of the partial pressure of oxy-
gen (PaO2) to the fraction of inspired oxygen (FiO2),
blood urea nitrogen (BUN), albumin, arterial blood pH
and sodium, were utilized to further screen high effec-
tive markers for generating predictive models. RPKM
values of genes, RNA/DNA ratio of microbes and the
detection values of clinical characteristics were used
respectively for the screen of signatures building the
models.

In total, 9 models were built based on different
sample types and markers. Among them, three models
were developed only with host gene signatures from
BALF, sputum and blood samples respectively, namely
BALF gene-based model (BALF-G), sputum gene-based
model (SPU-G) and blood gene-based model (BLO-G).
Besides, two models were generated with microbial
www.thelancet.com Vol 96 October, 2023
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signatures from BALF (model BALF-M) and sputum
(model SPU-M) samples. Since there were no microbes
which showed correlation (|rho| > 0.3) with outcomes of
SCAP patients in blood samples, no microbe-based
model was constructed for blood samples. In addition,
one model only consisting of clinical signatures (model
C) was developed to examine the performance of clinical
features in predicting SCAP outcomes. Moreover, we
hypothesized that comprehensive signatures should
improve the precision and specificity of predicting out-
comes of SCAP patients, and hence three different types
of signatures (genes, microbes, and clinical character-
istics) were combined to develop combined models for
sputum (model SPU-GMC) and blood (model BLO-GC)
samples. No combined model was built for BALF sam-
ples due to insufficient death cases (only 3 cases) for
testing the generated model, which limits its ability in
making practical predictions. Additionally, to take
advantage of information from the three types of sam-
ples simultaneously to further improve prediction per-
formance, one integrated model (ALL-GMC) was
developed. The model ALL-GMC was built based on all
the markers obtained from sputum, blood and the pa-
tients’ clinical characteristics.

For the model building, numeric values were scaled
so that the mean of each numeric marker was zero and
fell between −1 and 1. Models SPU-G, SPU-M, BLO-G,
SPU-GMC, and BLO-GC included only the complete
datasets, but ALL-GMC would assign “NA” with values
imputed from random forest proximity matrix if the
patient had done either one of the NGS sample tests.
Data were split into 80% for training and 20% for testing.
As more patients survived in the 30-day window, our
datasets were imbalanced. Therefore, a specific number
of death cases were forced to be included in the testing
set to ensure sufficient death cases for model testing.

To optimize the model parameters, ten trees per grid
search was applied to determine the optimal number of
trees, which was 200–300 in this study. In total, two
rounds of modelling were made. In the first round 100
training iterations using 80% of all data selected
randomly were done. During each round, the combi-
nations of the most critical markers which led to the
least model errors were noted. After 100 iterations,
markers were selected if they were considered impor-
tant more than 20 times. In the second round of
training, the markers selected from the previous step
were used and RF models were built.

To validate the prediction power of the markers
selected, 10 rounds of random forest training were done
on each type of model, and during each round, data was
randomly split into training (80%) and testing (20%)
datasets. To ensure that a sufficient amount of death
cases can be tested, around 35% of total death cases
were included in the testing dataset. Ten-fold cross-
validation was not used here, because there were much
more survival cases than death cases, and ten-fold cross
www.thelancet.com Vol 96 October, 2023
validation would inevitably result in a training or testing
dataset without any death cases. Including death cases
in the testing dataset is a must, since if we would like to
implement predictive markers clinically, correctly pre-
dicting patients at high risk of mortality is crucial to
promptly provide medical care or intervention before
their condition worsens.

To evaluate the performances of the models, the area
under the receiver operating characteristic curve (AUC-
ROC) was calculated for each model. AUC-ROC was
calculated from the values predicted by the random
forests on the test datasets, after 10 rounds of model
training. F1 scores, calculated as below, were also listed
as indicators of model performances at a cut-off value of
0.5:

2 ×
(Precision × Recall)
(Precision + Recall).

Statistical analysis
Principal component analysis (PCA) is a method to
extract and keep the most important information from
variables with many dimensions/features in a large
dataset to simplify the description of data set and then
make it easier for analyzing.43 Comparisons of differ-
ences between groups in PCA plot were tested by pair-
wise permutational multivariate analysis of variation
(PERMANOVA). Comparisons of microbial diversity,
microbe abundance and gene expression level between
two groups were assessed by Wilcoxon rank sum test,44

and between three groups were examined by Kruskal–
Wallis test.45 Correlations between microbial taxa or
host genes and clinical characteristics were tested using
Spearman correlation analysis or multiple linear
regression analysis. The Spearman correlation co-
efficients between 0.3 and 0.6 was regarded as moderate
correlation, and more than 0.6 indicated high
correlation.46–49 Spearman correlation analysis was per-
formed with the R package “Hmisc”.50 Multiple linear
regression analysis was performed using R base func-
tion glm() and the boot.lasso.proj() from the hdi pack-
age.51,52 The associations of outcome with clinical
characteristics were measured by multiple logistic
regression analysis using R base function glm().51 The
function was used with argument “family” of “bino-
mial”. For incomplete clinical data, missing values were
imputed using the rfImpute() function from the ran-
domForest R package. All clinical features and outcomes
(survival/morality) were included to build the multiple
logistic regression models. All genes and ten outcome-
related clinical features were imported to build the
multiple linear regression model. We used Least Abso-
lute Shrinkage and Selection Operator (LASSO) logistic
or linear regression as a feature selection strategy. As p-
values were calculated using bootstrapping to test
whether the corresponding regression coefficient were
5
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significant, features with insignificant impact on the
output were therefore omitted. The model performances
were assessed using the area under the receiver oper-
ating characteristic curve (AUC-ROC), as well as F1
scores to compensate for the possible misleading AUC-
ROC information due to our imbalanced data. F1 scores
were calculated at a cut-off value of 0.5, regardless of
which model was tested.

Ethics statement
The current study was approved by the Ruijin Hospital
Ethics Committee, Shanghai Jiaotong University School
of Medicine (reference number: 2017-186). Informed
consent was signed by all patients.

Role of funders
The funding sources had no role in the design of this
study, data collection, analyses, interpretation of the data
or writing the manuscript.

Results
Patient characteristics and sequence data
assessment
From 1 June 2018 to 31 December 2019, 275 adult pa-
tients with SCAP from 17 hospitals were included for
Fig. 1: Study design. mNGS: metagenomic next generation sequencing. BA
diagnosis including routine bacterial/fungal cultures, polymerase chain reac
antibody titre, metagenomic next generation sequencing (mNGS) method
the final analysis. The detailed characteristics of these
patients were shown in the previous study.25 Fifty-two
out of the 275 patients eventually died within 30 days
after admission to the hospital. Three types of samples
including BALF, blood and sputum were collected from
non-survival (n = 9, 43, 25, respectively) and survival
(n = 52, 207, 124, respectively) patients as soon as
possible after the presentation, which were further
sequenced by DNA or RNA or both-based metagenomic
next generation sequencing (mNGS) method. The me-
dian (interquartile range, IQR) of clean data for samples
with DNA-based sequencing was 24.43 (18.07–35.09) M
reads, and for samples with RNA-based sequencing was
24.37 (16.34–32.42) M reads. The DNA data were
applied to detect pathogens as well as characterize mi-
crobial compositions, and the RNA data were used for
the analysis of host gene expression profiles. Further-
more, the microbes, the differentially expressed genes
(DEGs) and clinical characteristics were exploited to
develop a risk prediction model for 30-day death (Fig. 1).

The impact of different pathogens on outcomes of
SCAP patients
Different pathogens, including bacteria, virus, fungi,
mycoplasma and chlamydia, were finally identified by
LF: bronchoalveolar lavage fluid. Pathogen detection is an integrated
tion (PCR) for virus detection, urine—antigen test, pathogen—specific
, as well as features (laboratory tests and imaging findings).

www.thelancet.com Vol 96 October, 2023
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integrated diagnosis methods in 198 (72.0%) of 275
recruited SCAP patients, while no pathogens were
identified in the other 77 patients. Among the 198 cases,
119 patients (60.1%) were infected by bacterial patho-
gens. Fifty-seven (28.8%), 35 (17.7%) and 7 (3.5%) pa-
tients were confirmed to be infected by virus,
Mycoplasma and Chlamydia, and fungi, respectively
(Fig. 2a). Some cases were simultaneously infected by
two or more pathogens according to the final diagnosis
(Supplementary Table S1). Then we investigated asso-
ciations of pathogens with outcomes of SCAP patients.
We didn’t find obvious evidence that the outcome of 30-
day mortality was dependent on bacteria (p = 0.636,
Fisher’s exact test), virus (p = 0.836, Fisher’s exact test),
fungi (p = 0.343, Fisher’s exact test), mycoplasma or
chlamydia infections (p = 0.586, Fisher’s exact test) and
co-infection (p = 0.138, Fisher’s exact test) in this study.
Moreover, we further investigated associations of spe-
cific pathogens with outcomes of SCAP patients by Chi-
square test. The results indicated that 30-day mortality
might be independent of these identified pathogens
(Fig. 2b).

The correlations of microbes in BALF, blood and
sputum with outcomes of SCAP patients
Various studies have shown that human diseases can be
related with alterations of microbiota in human body. To
test the associations of microbes with outcomes of
SCAP patients, three hundred and seventy-eight sam-
ples including 54 BALF, 211 blood and 113 sputum
samples from the 275 SCAP patients were first
sequenced using mNGS for the analysis of microbial
diversity. Significant differences in microbial diversity
between BALF, blood and sputum were observed
(Supplementary Fig. S1a and S1b). Hence, we next
compared the microbiome diversity in BALF, blood and
sputum between patients who died within 30 days and
those who survived over 30 days, respectively. The re-
sults showed that there was no significant difference in
microbial alpha- and beta-diversity between the two
groups (Fig. 2c–h), indicating that the outcomes of
SCAP patients were not distinctly dependent on BALF,
blood, and sputum microbial diversity. We next calcu-
lated the correlations of specific microbial taxa (at spe-
cies level) with the outcomes of SCAP patients by
spearman’s rank correlation analysis. Consistently, no
strong associations (spearman’s rank correlation coeffi-
cient |rho| > 0.6) between microbes and outcomes of
SCAP patients were found. Only a few microbial species
showed moderate negative or positive associations (|
rho| > 0.3) with 30-day death (Supplementary Table S2).

The impact of differential host response on
outcomes of SCAP patients
The principal component analysis (PCA) based on RNA
sequencing data was performed to compare the
dissimilarity of host response among different types of
www.thelancet.com Vol 96 October, 2023
samples, which showed obvious differences in host re-
sponses between blood and BALF or blood and sputum,
indicating that gene expression pattern was body site-
dependent (Supplementary Fig. S2). To unravel
whether host gene expressions affected outcomes of
SCAP patients, we conducted analysis of differentially
expressed genes (DEGs) in BALF, blood and sputum
between SCAP patients who died within 30 days and
those who survived over 30 days. The results showed
that 52 genes were down-regulated in BALF in the 30-
day death group compared to the survival group
(Fig. 3a, Supplementary Table S3). These genes were
mainly enriched in one pathway: gene silencing by
miRNA. Among them, two immune-related genes
including IFNA17 and IGHD3-3 (immunoglobulin
heavy diversity 3-3) were found, and IFNA17 was sup-
posed to be associated with antiviral infection.
Compared to BALF samples, a smaller number of DEGs
(14 genes) were found in sputum between the 30-day
death group and the patients who survived over 30
days (Fig. 3b, Supplementary Table S4). The 14 genes
were not found to be enriched in certain functional
pathways, including IGHD6-6 (immunoglobulin heavy
diversity 6-6), RP11-218E15.1, SNORD45 (small nucle-
olar RNA SNORD45), Z70272.1, as well as AC069157.2.
Besides, 87 genes were distinctly downregulated in
blood in the non-survivors compared to the survivors
(Fig. 3c, Supplementary Table S5). These genes were
mainly involved in GO terms: aminoacyl-tRNA biosyn-
thesis, electron transport chain, energy coupled proton
transmembrane transport against electrochemical
gradient, mitochondrial cytochrome c oxidase and
response to hydrogen peroxide (Fig. 3d).

The associations of age and gender with outcomes
of SCAP patients and the potential mechanisms
Previous studies indicated that the outcomes of SCAP
patients were usually related with age and sex, thus we
investigated the variations of 30-day mortality with the
increase of age and compared their differences between
males and females. The distribution of age and sex for
the SCAP patients was shown in Supplementary
Table S6. The results showed that there was a clear
cut-off age for enrolled patients to be at the most sig-
nificant risk of 30-day death, which was 55 years old
(Fig. 4a). The patients who were 55 or under 55 years old
displayed a significantly lower 30-day death rate than
those aged over 55 (0.1 versus 0.260, p < 0.001, Welch’s
t-test). However, this age-dependent mortality was only
observed in male patients not in female patients
(Supplementary Fig. S3). Besides, males had distinctly
higher 30-day mortality than females in the cohort of
patients aged over 55 (mean 0.340 [95% CI: 0.02–0.66]
versus 0.044 [95% CI: 0.01–0.08], p = 0.00043, Wilcoxon
rank sum test), which was not significant between the
male and female patients aged 55 or under 55 (mean
0.066 [95% CI: 0.00–0.13] versus 0.038 (95% CI:
7
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Fig. 2: The identified pathogen profiles and associations of microbial diversity with outcomes of SCAP patients. (a) Pathogen profiles identified
in SCAP patients. MC: Mycoplasm and Chlamydia. NO: unknown etiologies. The innermost pie indicates the main categories of pathogens:
bacteria (blue), virus (yellow), MC (orange), fungi (red), and NO (white). The second pie shows the taxa of pathogens at genera level. The
outside pie shows the species or genera of pathogens identified. (b) The associations of different pathogens with 30-day death of SCAP patients
by Chi-square test. The vertical red line indicating the p = 0.05. (c) The associations of microbial alpha-diversity with outcomes of SCAP in BALF,
blood (d) and sputum (e), respectively. The statistical significances between the 30-day death and survival groups were tested by Wilcoxon rank
sum test. (f) The associations of microbial beta-diversity with outcomes of SCAP in BALF, blood (g) and sputum (h), respectively. The statistical
significances between the 30-day death and survival groups were tested by pairwise permutational multivariate analysis of variation (PER-
MANOVA). p < 0.05 means that the difference was significant.
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0.00–0.08), p = 0.4, Wilcoxon rank sum test, Fig. 4b).
These results may suggest that age factor played a more
important role in outcomes of male versus female SCAP
patients.

To explore the potential mechanisms of the impact of
age on outcomes of SCAP, the host DEGs between the
elder (>55) and the young (≤55) patients were first
analyzed. Three and 14 genes were differentially
expressed in BALF and blood between the two groups
respectively, as shown in Fig. 4c. No DEG was found in
sputum between the elder and the young groups. Since
age showed no significant impact on outcomes of
www.thelancet.com Vol 96 October, 2023
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Fig. 3: Comparison of host gene expression profiles in BALF, sputum and blood between different outcome groups. (a) The clustered heatmap
shows the DEGs in BALF between SCAP patients who died within 30 days and those who survived over 30 days. The color scale indicating
different values of log10(RPM). RPM: reads per million. The top horizontal bar indicating the survival (purple) and death (blue) outcomes. (b)
The DEGs in sputum between the 30-day death and survival groups. (c) The DEGs in blood between the 30-day death and survival groups. (d)
The GO and KEGG pathway enrichment analysis of DEGs in BALF and blood between the 30-day death and survival groups.
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female SCAP patients, we further compared the DEGs
between the elder and young patients by sex to find the
exact mechanisms responsible for the higher mortality
in the elder male patients. In order to remove the genes
related with age but uncorrelated with outcomes, among
the DEGs between the elder and young male patients,
the DEGs which were also present between the elder
and young female patients were removed except for
those with different (2 folds) foldchanges in male pa-
tients and female patients. After the removal of genes
unrelated with outcomes, 20 genes were significantly
upregulated in BALF in the elder male patients versus
the young male patients (Supplementary Table S7).
Interestingly, three of the 20 genes including CXCL8
(IL-8), CXCL5 (IL-5), and DEFB114 (β-Defensin 114)
were related to response to bacterium (Fig. 4d). There
were 14 genes significantly downregulated in the elder
male patients and interestingly 5 of them belonged to
www.thelancet.com Vol 96 October, 2023
immunoglobulin kappa variable 1 (pseudogene)
including IGKV1OR22-5, IGKV1OR2-1, IGKV1OR2-2,
IGKV1OR1-1, and IGKV1OR2-118. Fifty-three genes
were significantly upregulated in blood in the elder male
patients (Supplementary Table S8), such as PI4K2B
(Type II phosphatidylinositol 4-kinase β), PIGC (phos-
phatidylinositol glycan anchor biosynthesis class C), and
(gap junction protein epsilon 1). PI4K2B played an
important role in early T cell activation.53 Fifty-four
genes were distinctly downregulated in blood
(Supplementary Table S8) in the elder male patients and
enriched in 6 terms including regulation of neuron
differentiation, signaling by NOTCH, nucleic acid
phosphodiester bond hydrolysis, regulation of cell acti-
vation, regulation of cation transmembrane transport,
and negative regulation of cell differentiation (Fig. 4d).
No DEG was found in sputum in the elder versus the
young male patients.
9
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Fig. 4: Impact of age and gender on outcomes of SCAP patients and its potential mechanisms. (a) The column chart showing differential 30-day
morality of SCAP patients at different ages. The vertical line shows the cut-off age for patients to be at higher risk of 30-day death. The males
were indicated in blue. The females were marked in red. (b) The box plot showing the 30-day death rate of four groups including the females
aged ≤55 (red), the females >55 (light green), the males aged ≤55 (blue), the males >55 (purple). The statistical analysis was conducted by
Wilcoxon rank sum test. (c) The column chart shows DEGs in BALF and blood in the elder (patients aged >55) group compared to the young
(patients aged ≤55) group. (d) The GO and KEGG pathway enrichment analysis of the outcomes-related DEGs between the elder male patients
and the young male patients. (e) The volcano plot showing outcomes-related DEGs in BALF, blood and sputum between the males and females
aged over 55. The outcomes-related DEGs: the rest DEGs between the males and females aged over 55 after the removal of the overlapped DEGs
(present not only in DEGs between the male and female SCAP patients aged >55 years but also in DEGs between the male and female SCAP
patients aged ≤55 years) except those associated with age. (f) The GO and KEGG pathway enrichment analysis of the outcomes-related DEGs
between the males and females aged over 55.
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We further analyzed the role of sex in the influence
of age on outcomes. We separately investigated host
DEGs between male and female SCAP patients aged
>55 years and those aged ≤55 years. The overlapped
DEGs except those associated with age were removed, so
that genes correlated to sex not to outcomes were
eliminated. The results showed that 53 genes were
specifically upregulated and 176 genes downregulated in
BALF of males compared to females (Fig. 4e,
Supplementary Table S9). Most of genes upregulated in
www.thelancet.com Vol 96 October, 2023
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BALF of males were involved in histone acetylation and
spermatogenesis, while those downregulated were
correlated with pathways such as promotion of filopo-
dium assembly, ubiquitin mediated proteolysis,
morphogenesis of epithelium, dendrite development,
and inhibition of exocytosis, cytoskeleton organization
as well as cellular component organization (Fig. 4f).
Besides, there were 6 genes (such as MIR320D2, HBA2
and RNU6-1175P) upregulated in blood, and 17 genes
upregulated (such as VTRNA2-1, IGHD6-6 and
HIST1H1PS1) as well as 95 genes downregulated (such
as POLA1, IL1RAPL2, XACT, and RRAGB) in sputum
in male versus female population (Supplementary
Tables S10 and S11). VTRNA2-1 produces a non-
coding RNA (lncRNA), inhibiting the activation of pro-
tein kinase R (PKR) which plays a critical role in host
innate immune response to defend against viral in-
fections by suppressing protein synthesis.54,55 This sug-
gests that the upregulation of VTRNA2-1 in sputum
(log2FoldChange = 26, p = 2.11 × 10−42, Wald test) in the
male patients (age >55) may increase the patients’ sus-
ceptibility to viral infection leading to poor outcomes.

The associations of host gene expressions with
other outcome-related clinical characteristics in
SCAP patients
To unravel clinical characteristics synergistically asso-
ciated with outcome, multiple logistic regression anal-
ysis between clinical characteristics (Supplementary
Table S12) and outcome was performed. The results
showed that besides age, characteristics including pro-
thrombin time, neutrophil count, LDH, CD4/CD3 ratio,
base excess (BE), direct bilirubin, lactic acid, glycated
hemoglobin, neutrophil/lymphocyte ratio (NLR),
fibrinogen and kidney disease were significantly asso-
ciated with 30-day morality of SCAP patients (p < 0.05;
Bootstrapping, Supplementary Table S12). Further, to
understand the host response underlying these
outcome-related clinical characteristics, we investigated
the associations of host gene expressions with them by
multiple linear regression analysis (age had been dis-
cussed above). The results indicated that these outcome-
related characteristics were associated with BALF genes
mainly involved in leukocyte and lymphocyte activation
(such as IRF8, IFNA2, IFNA4), response to reactive
oxygen species, carbohydrate metabolism, signaling by
interleukins, and male gamete generation (Fig. 5a and
Supplementary Table S13). Similarly, in sputum, genes
associated with these characteristics were enriched in
carbohydrate metabolism, leukocyte and lymphocyte
activation, defense against infection, superoxide meta-
bolism, and inflammatory response (Fig. 5b and
Supplementary Table S14). In contrast, blood genes
associated with these features were mainly referred to
cell morphogenesis, organ development, cellular
response to nitrogen compound and cell differentiation
(Fig. 5c and Supplementary Table S15).
www.thelancet.com Vol 96 October, 2023
Combined signatures for predicting outcomes of
SCAP patients
To compare the performances of transcriptomic and
metagenomic signatures for predicting outcomes (30-
day death or survival) of SCAP patients, we used
microbes and genes correlated with 30-day death
(|rho| > 0.3) to develop models respectively (Table 1,
Supplementary Table S16). Notably, we combined sig-
natures from genetic, microbial and clinical perspectives
to build comprehensive models with regard to different
types of samples to see the precision and specificity of
predicting outcomes of SCAP patients. The combined
model for sputum samples (SPU-GMC) exhibited
excellent performance with an AUC of 0.953 (95% CI:
0.92–0.98) and an F1 of 0.87, which consisted of 6 sig-
natures including four genes (RP11.513M16.8,
RPL23AP48, TECTB, RNU1.36P) from sputum sample
and two clinical characteristic neutrophil/lymphocyte
ratio (NLR) and age. RP11.513M16.8 produces a non-
coding lncRNA, and RPL23AP48 is ribosomal protein
L23a pseudogene 48 (NCBI database), however, the
functions of them were not discovered yet. TECTB
encoding a non-collagenous glycoprotein (β-tectorin),
was involved in the formation of tectorial membrane
which was important for hearing.56 RNU1.36P is a
pseudogene with unknown functions, which produces
RNA, U1 Small Nuclear 36, Pseudogene (NCBI
database).
Discussion
In the current study, we found that 30-day mortality was
independent of pathogen category, microbial diversity or
specific microbial taxa, while significant differences in
host gene expression patterns were suggested to be
responsible for different outcomes. Clinical character-
istics analysis showed that male sex with age over 55
years was a risk factor for poor prognosis, and specific
enrichment of genes and signaling pathways were
found in omics data. Besides, in addition to age and sex,
characteristics including prothrombin time, neutrophil
count, LDH, CD4/CD3 ratio and neutrophil/lymphocyte
ratio (NLR), were also related to outcomes, and associ-
ated genes underlying were mainly involved in leukocyte
and lymphocyte activation, carbohydrate metabolism,
defense against infection, and response to reactive
oxygen species. Furthermore, the sputum model SPU-
GMC showed the best performance for predicting 30-
day mortality, indicating the significance of exploring
markers from different perspectives.

Association analysis to clinical outcomes of SCAP
indicated tremendous changes in transcriptomic pro-
files in relation to the host response to the disease. We
observed that the identified DEGs in BALF between the
30-day death and the survival group were mainly
enriched in gene silencing by miRNA. This may suggest
that the host response differences in BALF mainly
11
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Fig. 5: GO and KEGG pathway enrichment analysis of host genes associated with outcome-related clinical characteristics. The GO and KEGG
pathway enrichment of associated genes in BALF (a), sputum (b), and blood (c).
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present in protein level since only few functional genes
such as IFNA17 and IGHD3-3 were found. In blood,
genes enriched in aminoacyl-tRNA biosynthesis were
negatively modulated in the 30-day death group versus
the surviving group, which was similar to the observa-
tion that genes related to aminoacyl-tRNA biosynthesis
such as TRNS1 and TRNM were downregulated in pa-
tients with severe pneumonia in comparison with
www.thelancet.com Vol 96 October, 2023
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Model content Model
abbreviation

Number of
markers

Markers ROC (%)
(test)

ROC 95% CI

BALF gene BALF-G 3 RNU7.141P, AC009502.1, RP11.80H5.6 91.38 85.28–97.47

BALF microbes BALF-M 10 Corynebacterium.diphtheriae, Waddlia.chondrophila, Fonsecaea.monophora, Xanthobacter.tagetidis,
Bipolaris.oryzae, Paucibacter.toxinivorans, Aspergillus.brunneoviolaceus, Streptococcus.pneumoniae,
Pneumocystis.jirovecii, X.Candida.glabrata

60.00 43.83–76.17

Sputum gene SPU-G 16 RPL23AP48, PDSS1P2, RP11.513M16.8, CTC.499B15.7, RAC1P3, OR52W1, RNU1.36P, TECTB,
DNAJC3, AC018890.4, MINOS1P2, RP11.983C2.3, SEC61B, UBE2V1P10, AC007204.3, RNA5SP285

91.36 87.27–95.45

Sputum microbes SPU-M 7 Clostridiaceae.bacterium, Acanthamoeba.castellanii, Corynebacterium.matruchotii,
Chryseobacterium.contaminans, Schaalia.vaccimaxillae, Bacteroidales.bacterium.KA00251,
Fusobacterium.necrophorum

74.91 66.47–83.34

Sputum combined SPU-GMC 6 RP11.513M16.8, RPL23AP48, TECTB, RNU1.36P, NLR, age 95.32 92.19–98.45

Blood gene BLO-G 3 RP11.325O24.1, UGT3A2, ANKRD66 74.76 69.28–80.23

Blood combined BLO-GC 7 ldh, albumin, RP11.325O24.1, UGT3A2, ANKRD66, psi_score, age 85.05 80.90–89.20

Clinic C 5 Age, ldh, pH, albumin, psi_score 73.47 67.56–79.38

All markers combined ALL-GMC 9 BUN, RPL23AP48_sputum, TECTB_sputum, psi_level, RP11.513M16.8_sputum, OR52W1_sputum,
RNU1.36P_sputum, AC007204.3_sputum, RP11.325O24.1_blood, age

79.58 73.62–85.53

Table 1: The developed risk prediction models for SCAP.

Articles
healthy individuals.57 Besides, genes related to mito-
chondrial functions were also downregulated in non-
survivors in our study, including electron transport
chain: OXPHOS system in mitochondria, energy
coupled proton transmembrane transport against elec-
trochemical gradient, and mitochondrial cytochrome c
oxidase. Previous findings demonstrated that genes
associated with oxidative phosphorylation such as elec-
tron transport chain complex I, IV and V were down-
regulated in blood of non-surviving patients with sepsis
caused by CAP.58 The downregulation of energy coupled
proton transmembrane transport, which is essential for
ATP synthesis, may contribute to poor outcome. This is
supported by evidence that decreased ATP concentra-
tions in skeletal muscle are related with multiorgan
failure and eventual death in septic patients.59 Genes
related to response to hydrogen peroxide were also
downregulated in the 30-day death group. Hydrogen
peroxide belongs to reactive oxygen species (ROS),
which can induce oxidative stress and cytotoxicity to
cells. The reduced transcription of genes involved in
response to hydrogen peroxide suggested that the ca-
pacity of anti-cytotoxicity was declined in the 30-day
death patients, which may be also responsible for the
poor outcome. The differential host responses in
different body sites were understandable since the
composition of cells, microbiota and microenvironment
were divergent.

A variety of previous studies had shown that mortality
of SCAP was associated with age and sex, since elder or
male patients had higher mortality, which were consis-
tent with our finding. Clinical characteristics were the
macroscopical reflection of host-related element, while
the microscopical mechanism lay in the variation of host
gene expressions.18,60–62 To date, there is still lack of
studies to investigate the differential host gene expres-
sions between varied age and sex from transcriptomic
www.thelancet.com Vol 96 October, 2023
profiles. In our study, we found that three genes related
with host immune response were significantly upregu-
lated in the elder male patients compared to the young
male patients, including CXCL8 (IL-8), CXCL5 (IL-5),
and DEFB114 (β-Defensin 114). IL-8 is a key proin-
flammatory cytokine for the recruitment of neutrophils
to infection sites. A meta-analysis from 13 studies found
that IL-8 was in higher level in SCAP patients than in
patients with non-severe pneumonia.63 It was also re-
ported that IL-5 concentration was increased in severe
Coronavirus Disease 2019 (COVID-19) patients in com-
parison with those with moderate COVID-19 and it
displayed an upward trend during the progress of the
disease in severe COVID-19 patients.64 Defensins are
antimicrobial peptides which are important components
of host innate immunity. Influenza virus infection could
induce the expression of some murine β-defensins in
respiratory tract mucosa of mice.65 Human β-defensin
114 was found to be able to bind Lipopolysaccharide
(LPS) in vitro and modulate LPS-mediated Inflamma-
tion.66 As a whole, CXCL8, CXCL5, and DEFB114 may
serve as the important modulators in the poor outcome
of the elder male SCAP patients.

In the current study, we exploited microbes, host
genes, clinical characteristics, and parameters as signa-
tures, and developed 9 models with them respectively to
predict 30-day death of SCAP patients. Among these,
the model from sputum with host genes, age and NLR
showed the best performance. This result was supported
by previous findings, in addition to age mentioned
above, NLR has also been reported to be correlated with
poor outcomes and act as biomarker predicting prog-
nosis.67,68 The predicting models in previous published
studies were usually established according to the sig-
natures of single level, while the comprehensive model
further improved the predictive capacity and reliability.
In addition, our comprehensive model was raised from
13
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multi-omics analysis, and genetic changes would better
reflect the underlying mechanism of disease progress.
Finally, this was an ideal and easy-to-use model for
assessing 30-day mortality risk of SCAP, since sputum
is much easier to collect than blood or BALF.

Some limitations of this study should also be
acknowledged. There were some unavoidable biases in
identifying and recruiting participants. For example,
more male SCAP patients were enrolled than the female
patients, and the number of surviving patients was
much larger than that of non-survivors. Meanwhile, the
conclusion that pathogens didn’t affect outcomes needs
to be further evidenced since the specimens in each
category were not quite enough and balanced. Besides,
limited to the sample size, we failed to enroll a separate
cohort of SCAP patients to further verify the predicting
capacity of comprehensive model. Thus, a study with a
larger sample size is needed to bring a more credible
result. Notably, 77 (28%) patients were found pathogen-
negative. To the best of our knowledge, the identifica-
tion rate of responsible pathogens in our study was
among the highest in similar studies, and the identifi-
cation of responsible pathogen by the scientific com-
mittee made the result clinically reliable. We thought
the initial empiric treatment before enrollment in part
of patients covered the responsible pathogens may
somehow lead to pathogen-negative findings. Moreover,
the cell types and numbers were not analyzed in BALF,
blood and sputum samples, and therefore the potential
impacts of cell composition shift induced by pathogen
infection on variance in gene expression were unclear,
though there were centrifugation steps to remove most
of host cells before RNA extraction. And the lack of
evaluation on RNA integrity of all samples before RNA
sequencing should be considered when we over-
interpret these data, and further study with more strict
and thorough RNA quality control is required to confirm
these data.

In conclusion, the findings in our study suggest a
potentially critical connection between host response
and prognosis of SCAP. Elderly male patients were a risk
factor for poor outcomes and a series of clinical param-
eters were also associated with outcomes, in which dif-
ferential host gene enrichments lay behind. According to
metagenomic as well as in transcriptomic data, a
comprehensive predicting model based on six signatures
was established and has a strong predictive ability for 30-
day mortality in SCAP patients, which could provide
guidance to make further clinical decisions.
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