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Deficiency in AK9 causes asthenozoospermia and male
infertility by destabilising sperm nucleotide homeostasis
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Summary

Background Asthenozoospermia is the primary cause of male infertility; however, its genetic aetiology remains poorly
understood. Adenylate kinase 9 (AK9) is highly expressed in the testes of humans and mice and encodes a type of
adenosine kinase that is functionally involved in cellular nucleotide homeostasis and energy metabolism. We aimed
to assess whether AKo is involved in asthenozoospermia.

Methods One-hundred-and-sixty-five Chinese men with idiopathic asthenozoospermia were recruited. Whole-exome
sequencing (WES) and Sanger sequencing were performed for genetic analyses. Papanicolaou staining,
Haematoxylin and eosin staining, scanning electron microscopy, and transmission electron microscopy were used
to observe the sperm morphology and structure. Akg-knockout mice were generated using CRISPR-Cas9. Sperm
adenosine was detected by liquid chromatography—mass spectrometry. Targeted sperm metabolomics was
performed. Intracytoplasmic sperm injection (ICSI) was used to treat patients.

Findings We identified five patients harbouring bi-allelic AKg mutations. Spermatozoa from men harbouring bi-allelic
AK9 mutations have a decreased ability to sustain nucleotide homeostasis. Moreover, bi-allelic AK9 mutations inhibit
glycolysis in sperm. Akg-knockout male mice also presented similar phenotypes of asthenozoospermia. Interestingly,
ICSI was effective in bi-allelic AK9 mutant patients in achieving good pregnancy outcomes.

Interpretation Defects in AK9 induce asthenozoospermia with defects in nucleotide homeostasis and energy
metabolism. This sterile phenotype could be rescued by ICSI.

Abbreviations: AK9, Adenylate kinase 9; WES, Whole-exome sequencing; ATP, Adenosine triphosphate; GAPDS, Glyceraldehyde 3-phosphate
dehydrogenase-S; LDHC, Lactate dehydrogenase C; AK, Adenylate kinases; ADP, Adenosine diphosphate; AMP, Adenosine monophosphate;
MMATF, Multiple morphological abnormalities of the sperm flagella; PCD, Primary ciliary dyskinesia; OAT, Oligoasthenoteratozoospermia; WT,
Wild-type; KO, Knockout; CRISPR-Cas9, Clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated (Cas) endo-
nuclease (Cas9); WHO, World Health Organization; SEM, Scanning electron microscopy; TEM, Transmission electron microscopy; FBS, Fetal
bovine serum; DAPI, 4, 6-diamino-2-phenylindole; PBS, phosphate buffered saline; SCSA, Sperm chromatin structure assay; LC/MS, Liquid
chromatography-mass spectrometry; ICSI, Intracytoplasmic sperm injection; GMP, Guanosine monophosphate; GDP, Guanosine diphosphate;
GTP, Guanosine triphosphate; TCA, Tricarboxylic acid cycle; EXAC, Exome Aggregation Consortium; SIFT, Sorting Intolerant from Tolerant; PR,
Progressive motility; NP, Non-progressive motility; NAG, N-acetyl-D-(+)-glucosamine; IF, Immunofluorescence; WB, Western blot; FSH, Follicle
stimulating Hormone; LH, Lutenizing Hormone; PRL, Prolactin; E2, Estradiol; TZI, Teratozoospermia index; SDI, Sperm deformity index; DFI,
DNA fragmentation index; HDS, High DNA stainability; MMP, Mitochondrial membrane potential
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Research in context

Evidence before this study

Sperm motility is the outcome of the motion and beating of
the flagella. Sufficient energy metabolism is indispensable for
driving the movement of the sperm flagellum. However, the
complex energy metabolic pathways that mediate sperm
motility remain unclear.

Added value of this study

In the present study, we identified bi-allelic AK9 mutations in
infertile men with idiopathic asthenozoospermia.
Spermatozoa from men harbouring bi-allelic AK9 mutations
decrease the ability of sperm to sustain nucleotide

Introduction

Approximately 15% of couples of childbearing age are
affected by infertility, in which male-related factors ac-
count for nearly half of the cases.”” Sperm motility is
essential for sperm migration through the female
reproductive tract and fertilisation.® Asthenozoo-
spermia, characterised by reduced sperm motility, is
generally considered a major factor contributing to male
infertility.** Numerous studies have revealed the genetic
contribution to asthenozoospermia, such as the AKAP,
TTC, DNAH, and CFAP gene families.® However, the
molecular pathogenesis of asthenozoospermia in most
cases remains obscure, and its genetic aetiology is
largely unknown.

The motility of spermatozoa is the outcome of the
motion and beating of the flagella,” in which sufficient
energy metabolism is indispensable for driving move-
ment of mammalian sperm flagellum.** The energy from
adenosine triphosphate (ATP) can be used directly by the
spermatozoa, which is produced in the principal piece of
the flagellum through glycolysis as well as in the mito-
chondria through oxidative phosphorylation.”® Several
pieces of evidence have indicated that some glycolytic
enzymes are specifically expressed in the spermatozoa
flagella, and that deletion of glycolytic genes, such as
glyceraldehyde 3-phosphate dehydrogenase-S (GAPDS)
or lactate dehydrogenase C (LDHC), profoundly inhibited
sperm  motility, leading to  infertility and

homeostasis. Noticeably, Ak9-knockout male mice also
present similar phenotypes of asthenozoospermia.
Intracytoplasmic sperm injection can effectively help patients
with bi-allelic AK9 mutations achieve good pregnancy
outcomes.

Implications of all the available evidence

These findings demonstrate that defects in AK9 induce
asthenozoospermia with defects in nucleotide homeostasis
and energetic metabolism; this sterile phenotype could be
rescued by intracytoplasmic sperm injection.

asthenozoospermia phenotype in male mice.'""? Oxida-
tive phosphorylation, as a classical metabolic pathway, is
also involved in energy metabolism in mouse sperm."”
Sperm motility and ATP concentration were inhibited
with mitochondrial respiratory inhibitors, and ablation of
genes involved in mitochondrial respiration, such as
deletion of testis-specific cytochrome ¢, could effectively
decrease sperm motility and the rate of fertilisation
in vitro, but cannot completely block fertilisation in
mice."* However, scholars have observed that movement
of mammalian sperm is not stopped immediately in the
presence of glycolysis inhibitors, but remits motility for
long periods.'*'® Interestingly, both glycolysis and oxida-
tive phosphorylation direct ATP generation via glucose
oxidation; however, the motility of human spermatozoa
can be sustained overnight in sugar-free medium, sug-
gesting that, in addition to oxidative phosphorylation and
glycolysis, other complex energy metabolisms are actively
involved in regulating flagellar activity.”'* When ATP
levels are low, adenylate kinases (AKs) can transfer
phosphate groups to adenosine diphosphate (ADP),
which in turn produces ATP for use in the mouse
flagella.” Unfortunately, the complicated energy meta-
bolism pathway that mediates sperm motility is not yet
fully understood.

AKs are crucial regulators of intracellular nucleotide
metabolic homeostasis, adenine nucleotide metabolism,
and ATP regeneration and utilisation by catalysing the
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reversible trans-phosphorylation reaction of two mole-
cules of ADP to one molecule ATP and adenosine
monophosphate (AMP) (2 ADP = ATP + AMP) in
Plasmodium falciparum.”® Considering the unique
capability of AK to form p-ATP, AK-catalysed phospho-
transfer doubles the energetic potential of ATP in failing
hearts.”’ AKs have also been identified to be involved in
energy generation and consumption in muscle and
nerve cells.”” Moreover, the dynamics of AK-catalysed
phosphotransfer positively participate in cell and
ciliary motility by integrating intracellular energy
metabolism.” Remarkably, AK has been identified in
the sea urchin sperm flagellum, which is essential for
the flagellum mobility of sea urchin sperm.* It has also
been demonstrated that flagellar AK effectively recovers
the motility of detergent-inactive mouse sperm with the
treatment of ADP, and sperm motility driven by ADP
can completely propagate down the full flagellum, which
presents more fluid waves than ATP alone.””” CFAP45
links dynein ATPases to an axonemal module that
converges on the AK pathway; a deficiency in CFAP45
causes situs abnormalities and asthenospermia by dis-
rupting an axonemal adenine nucleotide homeostasis
module.” These previous studies highlight that AKs, as
potentially functional regulators, contribute to sperm
motility differently.

To date, nine AKs, namely AK1-AK9, have been
identified.” AK1 deficiency did not induce any defects in
testis development, spermatogenesis, or sperm
morphology and motility in mice under physiological
conditions. However, in the detergent-modelled
epididymal sperm with only ADP, Akl disruption
largely compromised sperm motility, which manifested
as a smaller beating amplitude and higher beating fre-
quency, resulting in less effective forward swimming.*
AK1 and AK2 interact with soluble ODF4; the move-
ment of the sperm flagella of Odf4 knockout (KO) mice
was affected owing to the loss of ODF4 with AK1 and
AK2.» SPOCD1 knockdown significantly inhibited cell
proliferation and promoted apoptosis of human sper-
matogonial stem cells with downregulated AK4, and
overexpression of AK4 in SPOCDI knockdown cells
partially reversed the phenotype.*® Patrick Lores re-
ported that the ¢.2018T>G (p.Leu673Pro) transversion
in AK7 could cause severe asthenozoospermia in hu-
man beings due to multiple morphological abnormal-
ities of the sperm flagella (MMAF) but not with primary
ciliary dyskinesia (PCD) features.”’ Another team also
independently identified a homozygous missense mu-
tation (NM_152327: c.1846G>A; p.E616K) in AK7 in two
brothers with MMAF and oligoasthenoteratozoospermia
(OAT) from a consanguineous family.” The protein
encoded by AK9, also known as AKD2, contains multi-
ple nucleotide-binding region domains and exhibits
nucleoside monophosphate and diphosphate kinase ac-
tivity that is essential for nucleotide homeostasis and
energy metabolism.” Notably, AK9 is highly expressed
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in the human testis and is involved in maintaining the
homeostasis of cellular nucleotides by catalysing the
interconversion of nucleoside phosphates.” However,
because of the lack of selective AK inhibitors, the
physiological effect of AK9 in sperm and its role in the
nucleotide homeostasis and energy metabolism has not
been fully uncovered.

In this study, we recruited 165 infertile men with
asthenozoospermia and identified bi-allelic AK9 muta-
tions in five patients from unrelated families. Sperma-
tozoa from men harbouring bi-allelic AK9 mutations
have decreased potency to sustain nucleotide ratios,
which significantly disrupts the regeneration of nucle-
otides and energy metabolism. Moreover, Ak9 KO male
mice presented with similar asthenozoospermia phe-
notypes. Taken together, these findings strongly suggest
that AK9 defects induce male infertility due to asthe-
nozoospermia in humans and mice.

Methods

Human subjects

A cohort of 165 Chinese men with idiopathic astheno-
zoospermia was recruited at the Women and Children’s
Hospital of Xiamen University, as previously
described.” The percentage of these patients’ motile
spermatozoa was lower than the reference value, with
the progressive motility ranging from 0 to less than
32%. The other mean values of the semen parameters of
the 165 patients are within the reference value range (in
detail, pH > 7.2, sperm count >39 x 10° spermatozoa
per ejaculate, viability >58%, normal morphology of
sperm >4%. Men with infertility exhibited normal
external genitalia, bilateral testicular size, and hormone
levels. Normal chromosomal karyotypes (46; XY) were
identified in these 165 subjects, and no microdeletions
were detected in the human Y chromosome, according
to general protocols.”** In addition, 200 healthy men
with normal semen parameters who were fathers (one
to four children) were recruited as control individuals.

Whole-exome sequencing and bioinformatic
analysis

Whole-exome sequencing (WES) of the genomic DNA
extracted from patients with asthenozoospermia was
carried out as described previously.”” Briefly, genomic
DNA was extracted from peripheral blood samples
using the DNeasy Blood and Tissue kit (Qiagen, Hilden,
Germany), the human exome was enriched by Sure-
Select Human All Exon V6 (Agilent, California, USA),
and then sequenced using the Illumina HiSeq Xten
platform. The obtained data were aligned to the human
reference sequence (hgl9) using BWA 0.7.9a from the
BWA-MEM algorithm. Picard software and Genome
Analysis Toolkit were used to evaluate the quality of the
variants. Selected candidate mutations were annotated
in various databases. Variants satisfying the following
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criteria were retained for subsequent analyses: absent or
rare variants, nonsense variants, frameshifts, splice
sites, and missense variants. Considering the patients’
symptoms, testis-specific or highly expressed genes
associated with the sperm structure or energy meta-
bolism that met the screening criteria were prioritised.
Sanger sequencing was used to authenticate these mu-
tations. The primers used in this study are listed in
Supplementary Table S1.

Protein structure prediction

The AK9 protein structure was predicted using the
AlphaFold database. Wild-type (WT) and mutant AK9
protein structures were visualised and generated using
UCSF Chimera (Version: 1.15, California, USA), as
previously described.*®

Construction of Ak9 KO mice

Ak9 knockout mice were constructed using the Clustered
Regularly Interspaced Short Palindromic Repeats
(CRISPR)/CRISPR-associated (Cas) endonuclease (Cas9)
(CRISPR-Cas9) genome-editing technology based on the
C57BL/6 background, as previously described.”® The
sequence of guide RNAs was designed according to the
online website https://zlab.bio/guide-design-resources;
the gRNA sequence was 5- GTTCCAGCTGCAGT-
CACTGT -3. Ak9 mutated FO mice were mated with
mice based on the C57BL/6 | background to generate
homozygous offspring. All mice were housed under
standard conditions at the Laboratory Animal Centre of
Xiamen University.

Semen characteristics analysis

Semen characteristics analysis was performed according
to the guidelines of the World Health Organization
Laboratory Manual for the Examination and Processing
of Human Semen (5th edition).”* Human sperm
samples were collected by masturbation into sterile cups
after 2—4 days of sexual abstinence and were incubated
in 5% CO, at 37 °C incubator for 30 min. Semen vol-
ume, sperm concentration, and sperm motility were
evaluated using a computer-assisted sperm analysis
(CASA) system (SCA SCOPE, Microptic, Barcelona,
Spain), as described previously.”** Sperm morphology
was evaluated using Papanicolaou staining according to
the World Health Organization (WHO) guidelines, as
described previously.*

Electron microscopy analysis

Scanning electron microscopy (SEM) and transmission
electron microscopy (TEM) analyses were performed as
previously described.”® For SEM analysis, both human
and mouse sperm were fixed in 2.5% glutaraldehyde
(Sigma-Aldrich, Missouri, USA), rinsed in 0.1 mol/L
phosphate buffer, and treated with 0.5% Formvar. The
slides were then dehydrated using an ethanol gradient
and dried using a CO, critical-point dryer. After metal

spraying with an ionic sprayer meter, the samples were
observed using a Gemini SEM 500 (Zeiss, Baden-
Wiirttemberg, Germany). For TEM analysis, spermato-
zoa samples of the raw fraction were fixed with 2.5%
glutaraldehyde (Sigma-Aldrich) for 3 h at room tem-
perature (RT). After washing with phosphate buffer
(0.1 M), the samples were immersed in 1% osmium
tetroxide, dehydrated using graded ethanol concentra-
tions, and infiltrated with acetone and SPI-Chem resin.
After embedding in Epon 812, the ultrathin sections
were stained with uranyl acetate and lead citrate. The
ultrastructure of the spermatozoa was observed by TEM
(JEM-1400, Jeol, Tokyo, Japan) at 60 kV.

Immunofluorescence

The immunofluorescence of the spermatozoa was per-
formed as previously described.”® The prepared sperma-
tozoa were fixed in 4% paraformaldehyde for 30 min, and
permeabilized with 0.2% Triton X-100 for 10 min. The
sections were then blocked with 5% fetal bovine serum
(FBS) for 60 min and incubated with primary antibodies
overnight, followed by further staining with secondary
antibodies for 60 min. After staining nuclei with 4,
6-diamino-2-phenylindole (DAPI; H-1200, Vector Labo-
ratories, Burlingame, CA, USA), the fluorescence signal
was acquired by confocal microscopy (Zeiss LSM 780;
Zeiss, Ostalbkreis, Baden-Wiirttemberg, Germany).
These validated commercialised antibodies used for
immunofluorescence are listed in Supplementary
Table S2.

Western blotting

Western blotting was performed as previously
described.” Briefly, proteins were separated on 10%
SDS-PAGE and transferred to a polyvinylidene difluor-
ide membrane (Immobilon-P PVDF membrane; Milli-
pore, Bedford, Massachusetts, USA). Membranes were
blocked for 1 h at room temperature with 5% skimmed
milk in phosphate buffered saline (PBS). The mem-
branes were incubated with specific primary antibodies
at 4 °C overnight and then incubated with secondary
antibodies for 1 h at room temperature. Detection was
achieved using the ECL Plus Western Blotting substrate
(Pierce, San Francisco, California, USA). Membranes
were exposed to ChemiDoc MP Imaging System (Bio-
rad, Hercules, California, USA). These validated com-
mercialised antibodies are listed in Supplementary
Table S2.

Haematoxylin and eosin staining

Mouse testes were fixed in 4% paraformaldehyde at 4 °C
overnight and rinsed in 0.1 mol/L phosphate buffer for
10 min. Next, the testicles were progressively dehy-
drated using an ethanol gradient, penetrated with
xylene, and embedded in paraffin. Sections 5 pm-thick
were mounted on slides coated with L-lysine followed by
deparaffinisation and rehydration. For haematoxylin and

www.thelancet.com Vol 96 October, 2023


https://zlab.bio/guide-design-resources
www.thelancet.com/digital-health

Articles

eosin (HE) staining, the slides were stained with hae-
matoxylin (ZLI-9610, ZSbio, Beijing, China) and eosin
(ZL1-9613, ZSbio), as described previously.*

Sperm DNA fragmentation detection and sperm
DNA stainability

A small fraction of each human semen sample was
taken (Raw fraction) for sperm chromatin structure
assay (SCSA), as described elsewhere.* In brief, 200 pl
TNE buffer was added to the appropriate amount of
semen to attain an approximate 1-2 x 10° sperm/ml and
add 400 pl of acid detergent solution. Then, 1.20 ml
Acridine Orange (AO) staining solution was added and
mixed by vortexing. The samples were then analysed
using flow cytometry (BD FACSCanto, BD Biosciences,
San Jose, USA).

Detection of sperm adenosines

The prepared sperm samples were suspended in an
extraction solution (methyl alcohol: H,O = 7:3) and
freeze-thawed three times with liquid nitrogen. The
sample was then vortexed for 5 min and centrifuged at
13,000 rpm for 15 min at 4 °C, and the supernatants
were removed to 2 mL tubes and lyophilised by a
concentrator (Labconco corporation, Kansas, USA).
Finally, the concentrates were resolved with 50%
acetonitrile-water containing 0.03% formic acid and
subjected to liquid chromatography—mass spectrometry
(LC/MS) (AB SCIEX QTRAP 5500). The standard sub-
stances were obtained from Shanghai Yuanye Biotech-
nology Co., LTD (Yuanye, Shanghai, China).

Phosphotransfer rates

AK-catalysed phosphotransfer in sperm was measured
using the [*®0] phosphoryl labelling technique. Briefly,
sperms were collected, washed in 0.9 NaCl, and centri-
fuged at 300xg for 5 min. Then, the sperm were incu-
bated in a TYH (Toyoda, Yokoyama, Hoshi, Japan)
medium containing 10% ['®0] water for 30 s at 37 °C in
5% CO, followed by centrifuging at 500xg for 5 min to
collect the sperm. The sperm deposits were added to the
nucleoside extraction solution and freeze-thawed three
times with liquid nitrogen. The sample was then vor-
texed for 5 min and centrifuged at 13,000 rpm for
15 min at 4 °C. The supernatants were transferred into
2 mL tubes and lyophilised using a low-temperature
vacuum centrifugal concentrator (Labconco Corpora-
tion, Kansas, USA). Finally, the concentrates were
resolved with 50% acetonitrile-water containing 0.03%
formic acid and loaded onto an LC/MS (QTRAP 5500,
SCIEX, Framingham, USA). B-ATP was recorded to
evaluate AK-catalysed phosphotransfer.

Mitochondrial membrane potential detection

The sperm were collected, washed in 0.9% NaCl, and
centrifuged at 300xg for 5 min. The suspensions were
removed, and the sperm sediments were incubated in
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TYH (Toyoda, Yokoyama, Hoshi, Japan) medium at
37 °C in 5% CO,. Next, the samples were stained with
JC-1 for 15 min at 37 °C according to instructions of the
mitochondrial membrane potential (MMP) assay kit
(C2006, Beyotime, Shanghai, China). The MMP was
detected using flow cytometry (BD FACSCanto, BD
Biosciences, San Jose, CA, USA).

Targeted sperm metabolomics analysis

Targeted sperm metabolomics analysis based on the
multiple reaction monitoring (MRM) approach was
performed by Shanghai Applied Protein Technology
Co., Lid. Briefly, the sperm samples were precondi-
tioned with ultrapure water for homogenisation. Then,
800 pl pre-cooled methanol/acetonitrile (1:1, v/v) was
added and the mixture was sonicated in the ice bath for
20 min, followed by incubation at —20 °C for precipita-
tion of proteins. The samples were subsequently
centrifuged for 20 min at 4 °C and the supernatants
were collected. Finally, the supernatants were analysed
on an Agilent 1290 Infinity LC system coupled with an
AB 5500 QTRAP mass spectrometer (SCIEX, Framing-
ham, MA, USA) in the negative ion mode, followed by
the identification and quantification of targeted
metabolites.

Label-free quantitative proteomic analyses
Label-free quantitative proteomic analyses were per-
formed as described previously.*® Germ cells were lysed
in SDT buffer and proteins were quantified using a BCA
Protein Assay Kit. Each sample was processed using a
filter-aided proteomic preparation method. Peptides
were desalted using a C18 cartridge and re-suspended in
0.1% formic acid. Samples were analysed by LC-MS/MS
using an Easy nLC system (Thermo Fisher, Waltham,
USA). Buffer A was an aqueous solution of 0.1% formic
acid and buffer B was a solution of acetonitrile in 0.1%
formic acid. Trapping was performed on a NanoViper
C18 column (Acclaim PepMap100, Thermo Fisher,
Waltham, USA). Elution was performed using a
Thermo Scientific C18-A2 EASY column. Analytical
separation of the peptides was achieved at a flow rate of
300 nL/min using a Orbitrap Exploris 480 mass spec-
trometer. The dynamic exclusion time window was set
to 60 s. The data were acquired using a normalised
collision energy of 30 eV. Quantitative analysis was
performed using MaxQuant software (version 1.5.3.17;
Max Planck Institute of Biochemistry, Germany).

Intracytoplasmic sperm injection

The intracytoplasmic sperm injection (ICSI) procedure
used by the patients in this research was consistent with
a previous report.”* In brief, in the female partners,
ovulation was triggered by the combined administration
of a gonadotropin-releasing hormone agonist (GnRH-a;
Enantone, Takeda Osaka Plant, Osaka, Japan), recom-
binant follicle stimulating hormone (r-FSH; Gonal-F,
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Serono Laboratory Co. Ltd., Geneva, Switzerland),
highly purified menotrophin (HP-HMG; Menopur,
Ferring International Center SA, Kiel, Germany), and
250 pg recombinant human chorionic gonadotropin
(r-HCG; Ovidrel, Serono Laboratory Co. Ltd., Japan).
GnRH-a was administered at 3.75 mg on day 4 of
menstruation, followed by 1.875 mg 28 days later. r-FSH
and HP-HMG were administered daily until the domi-
nant follicles reached 3 and a mean diameter reached
18 mm, after which rHCG was administered to induce
ovulation. Vaginal ultrasound-guided follicular puncture
was performed 36 h after -HCG injection and mature
oocytes were retrieved.”** Male patients ejaculated after
masturbation on the day of oocyte retrieval. The semen
was centrifuged at 1400 rpm for 10 min, and the sperm
pellet was re-suspended in 150 pL of medium for ICSI.
The embryos were grown in Vitrolife G-SERIES culture
media (Vitrolife, Goteborg, Sweden). The fertilisation
rate was calculated after performing ICSI for 18 h.”"*
Three days after ICSI, the embryos were transferred
into the uterus of the female partner, who were pre-
scribed 200 mg oral progesterone (Utrogestan; Labora-
tories Besins International, Montrouge, France) twice
daily for 12 days and 90 mg topical 8% progesterone
daily (Crinone; Fleet Laboratories Limited, Watford,
England). Clinical pregnancy was established using ul-
trasonography at 6 weeks of gestation, and the clinical
outcome was evaluated by the delivery of a healthy baby.

Ethics

This study was approved by the Ethics Committee of
Women and Children’s Hospital of Xiamen University
(KY-2019-060). Informed consent was obtained from all
enrolled participants prior to their participation. All the
research involving human research participants was
performed in accordance with the Declaration of
Helsinki. Experiments on mice were approved by the
Animal Welfare Committee of the Research Organiza-
tion of Xiamen University (XMULAC20200143) and
were conducted in accordance with the guidelines of the
Laboratory Animal Centre of Xiamen University on
Animal Care.

Role of the funding source

The funders played no role in the study design, data
collection, data analyses, interpretation, or writing of the
manuscript.

Results

Identification of bi-allelic AK9 mutations in men
with asthenozoospermia

To investigate the potential genes associated with male
asthenozoospermia, we recruited 165 infertile men with
idiopathic asthenozoospermia and performed WES and
bioinformatic analyses. We identified bi-allelic muta-
tions in AK9 (MIM:615358) in five sporadic individuals,

two of whom came from unrelated consanguineous
families and harboured homozygous mutations
(Table 1).

In the patient FO13/II-I who came from a consan-
guineous family, a homozygous frameshift insertion mu-
tation, NC_000006.11:2.109820419_109820422dup
AK9 was identified and confirmed (Fig. 1a). Another
homozygous frameshift insertion mutation,
NC_000006.11:2.109906435dup in AK9 was identified in
the patient R0008/II-1 (Fig. 1b). We identified a com-
pound heterozygous non-frameshift deletion mutation
NC_000006.11:2.109980462_109980470del and a stop-loss
mutation NC_000006.11:2.109954114T>A of AK9 in
the RO0022/II-1, which was confirmed by Sanger
sequencing (Fig. 1c). Similarly, compound heterozygous
mutations NC_000006.11:g.109885474G>A and
NC_000006.11:g.109854633C>T were identified and
confirmed in the R0038/II-1 (Fig. 1d), and compound
heterozygous mutations NC_000006.11:g.109819141C>T
and NC_000006.11:2.109863352_109863354del ~ were
identified and confirmed in the R0052/II-1 (Fig. le).
Sanger sequencing was also performed on the parents,
and the results confirmed that they were heterozygous
carriers  (Fig. 1). The transcript of  AK9
(ENST00000424296.7) was 6326 bp and encoded 41 exons.
As indicated by red arrows, all eight mutation sites were
located in the exons of the AK9 transcript (Fig. 1f).
Therefore, patients with asthenozoospermia are likely to
have genetic defects in AK9, which is inherited from their
parental heterozygous carriers and followed autosomal
recessive inheritance in a Mendelian pattern.

In silico analysis of the bi-allelic AK9 mutations
The transcript of human AK9 (UniProtKB, Q5TCS8)
was predicted to generate a protein with three AK do-
mains, three NMP-binding domains, and three LID
domains. The p.Glu203_Glu205del mutation-affected
amino acids are located in the AK1 domain.
p.Glu1086del and p.Glull31llys mutation-affected
amino acids were located in the AK2 domain. The
amino acids affected by the p.Ter422Tyrext*27,
p.Cys669Leufs*4, and p.Pro815Leu mutations are
located between AK1 and AK2 domains. The
p.Cys1626Valfs*16 and p.Val1692Met mutations impact
the C-terminus of AK9 (Fig. 2a).

We constructed a three-dimensional structure of AK9
using UCSF Chimera with AlphaFoldDB (AF-Q5TCSS8-
F1) predicted by AlphaFold to visually show the effects
of these mutations on the AK9 protein. Compared to the
WT AK9 protein (Fig. 2b), the early termination of
protein translation caused by the p.Cys1626Valfs*16
frameshift insertion in FO013/II-1 (Fig. 2c), and
p.Cys669Leufs*4 frameshift insertion in R0008/II-1
(Fig. 2d) significantly affected the three-dimensional
structure of the protein. The p.Glu203_Glu205del muta-
tion caused a deletion of three amino acids and the
p.Terd422Tyrext*27 stop-loss mutation resulted in a 27
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amino acid extension of R0022/II-1 (Fig. 2e). The com-
pound heterozygous p.Glul131Lys and p.Pro815Leu
mutations induced significant changes in the amino acid
side-chains of R0038/II-1 (Fig. 2f). The p.Vall692Met
mutation also induced a significant change in the amino
acid side chain, and p.Glu1086del caused the 1086th
amino acid deletion in R0052/II-1 (Fig. 2g).

In silico analysis demonstrated that these mutations
were absent or rare in the human genome datasets
archived in the ExAC, 1000 Genomes Project, gnomAD
_exome (All), and GnomAD _exome (East Asian) data-
bases (Table 1). In addition, the amino acid residues
affected by AK9 mutations were predicted to be
conserved in PhyloP and PhastCons (Table 1). More-
over, we aligned the amino acid sequences of AK9
across different species and found the amino acids
affected by the mutations were all highly conserved
from Homo sapiens to Ictalurus punctatus, which sug-
gests that these sites affected by the identified mutations
may play an essential role in the long-term evolutionary
history (Supplementary Fig. S1). In addition, these
mutations were found to be potentially deleterious using
SIFT, PolyPhen-2, and MutationTaster tools (Table 1).

Asthenozoospermic phenotype in men harbouring
bi-allelic AK9 mutations

Clinical examinations were performed for primary male
infertility associated with bi-allelic AK9 mutations.
These patients showed normal physical development,
normal development of the organs and accessory glands
of the reproductive system, and normal serum hormone
levels (Supplementary Table S3). No obvious abnor-
malities were observed on paranasal sinus CT images
(Supplementary ~ Fig. S2a), chest CT images
(Supplementary Fig. S2b), and chest radiographs
(Supplementary Fig. S2c) between with AK9-mutated
patients and controls. Analysis of sperm parameters
showed that the volume and concentration were within
the normal ranges (Table 2); however, sperm motility
and progressive motility were significantly lower than
the reference limits in AK9-mutated patients (Table 2).

Morphological and structural characteristics of
spermatozoa from AK9 mutant patients
It is worth noting that the percentage of normal
morphological spermatozoa, teratozoospermia index
(TZI), and sperm deformity index (SDI) did not show
any abnormalities in sperm from patients with bi-allelic
AK9 mutations, according to the WHO reference values
(Supplementary Table S4). The DNA fragmentation in-
dex (DFI) and high DNA stainability (HDS) values were
within the reference range (Supplementary Table S4).
Papanicolaou staining indicated that the head and
flagella of sperm from patients with bi-allelic AK9 mu-
tations were in accordance with those of control subjects
(Fig. 3a), which was further confirmed by the SEM re-
sults (Fig. 3b). Moreover, TEM was employed to
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Subject

RO052 II-1

R0038 II-1
AK9

R0008 1I-1 R0022 II-1
AK9

FO13 II-1
AK9

AK9

AK9

Gene

¢.3257_3259del
p.Glu1086del

€.2444C>T ¢.5074G>A

c3391G>A

¢.607_615del 1266 A>T

€.2005dupT

€.4872_4875dupGTTA
p.Cys1626Valfs*16

cDNA alteration

p-Val1692Met

p-Pro815Leu

p.Ter422Tyrext*27  p.Glu1131Lys

stoploss

p.Glu203_Glu205del

p.Cys669Leufs*4

Protein alteration

nonsynonymous SNV

nonsynonymous SNV nonframeshift deletion

nonsynonymous SNV

frameshift insertion nonframeshift deletion

frameshift insertion

Variant type

Allele frequency in human populations

EXAC

0.00002946

0.00002946

0.0002 0.00003319

0.0002

0

0.000199681
0.00003726
0.0005

1000 Genomes Project

0.0000378
0.000169

0.0000438
0.0000544

0.000006864
0.0000985

0.0001

0.000178
0.000604

0.00000459
0.0000623

Conservation of the affected amino acid residues

gnomAD _exome (All)

0.00006347

(East Asian)

GnomAD _exome

1343
1.000

3.125

6.634

5.504
0.998

-1.682

-0.346
0.870

-2.434
0.001

6.805

PhyloP

1.000

1.000

PhastCons

Functional prediction

SIFT

N/A
N/A
N/A

Damaging Damaging Damaging

N/A
N/A

N/A
N/A
N/A

N/A
N/A
N/A

N/A
N/A
N/A

Probably_damaging ~ Probably_damaging

Probably_damaging

PolyPhen-2

9

Disease_causin

9

Disease_causin

9

Disease_causin

Polymorphism

MutationTaster

AK9, adenylate kinase 9; EXAC, Exome Aggregation Consortium; SIFT, Sorting Intolerant from Tolerant; N/A, not applicable.

Table 1: Bi-allelic AK9 variants identified in Chinese men with asthenozoospermia.
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Fig. 1: Pedigree-based identification of the bi-allelic AK9 mutations from five infertile patients with asthenozoospermia. (a-e) Pedigree chart of
the five patients with asthenozoospermia affected by bi-allelic AK9 mutations. The black squares represent the affected individuals. Sanger

sequencing results are shown below the pedigrees. The mutation positions are indicated by red arrows or red rectangles. (f) The location of the
mutated base sites on the genome of AK9.
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Fig. 2: Effect of mutant sites on the structure of the AK9 protein. (a) The position of the amino acid substitutions on the secondary structure of
AK9. The dark green rectangles represent the “adenylate kinase” domain, the light green rectangles represent the “NMPbind” domain, and the
orange rectangles represent the “LID” domain. (b) The three-dimensional structure of wild-type (WT) AK9 (AlphaFoldDB: AF-Q5TCS8-F1)
protein. (c-d) Three-dimensional structure of AK9 residues after homozygous frameshift insertion mutations. (e-g) Local magnification of
changes in amino acid residues between the WT and mutated AK9 protein in compound heterozygous patients.
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F013 II-1 R0008 I1-1 R0022 [I-1 R0038 II-1 R0O052 II-1 Reference

Volume (ml) 2.2-35 3.8-4.5 2532 2.6-3.2 2.5-3.8 >1.5 ml

Concentration (106/m|) 19.6-34.4 22.2-54.2 28.6-78.5 25.76-56.36 18.65-40.24 >15 x 106/m|
Progressive motility (%) 0.6-3.5 0.5-2.9 1.5-3.8 12-2.6 2.6-5.6 >32%

Non-progressive motility (%) 4.5-10.9 5.3-13.9 6.2-12.3 3.6-14.2 5.6-10.3 -

Total activity (PR + NP) (%) 3.6-12.6 5.8-16.8 7.7-16.1 4.8-16.8 8.2-15.9 >40%

vitality (%) 32 2 29 26 24 <40%

Normal flagella (%) 45 58 63 57 65 >23.0

Absent flagella (%) 4 3 4 3 <5.0

Short flagella (%) 5 2 1 3 2 <1.0

Coiled flagella (%) 14 16 9 11 8 <17.0

Angulation (%) 13 9 5 8 11 <13.0

Irregular caliber (%) 3 2 4 1 5 <2.0

NAG (mU) 65.38 107.67 112.86 110.45 85.41 >20mU/per ejaculation
Fructose (umol) 17.32 15.27 20.18 18.56 21.76 >13pmol/per ejaculation
Zinc (umol) 2.85 4.1 5.63 4.86 3.65 >2.4pmol/per ejaculation
PR, Progressive motility; NP, Non-progressive motility; NAG, N-acetyl-D-(+)-glucosamine. Lower and upper reference limits are shown according to the World Health
Organization standards and the distribution ranges of morphologically abnormal spermatozoa observed in fertile individuals.”*>°
Table 2: Semen characteristics and sperm motility in men with bi-allelic AK9 mutations.

investigate deficiencies in the axoneme ultrastructure of
the spermatozoa from these patients. We observed that
the sperm ultrastructure at the mid-piece of the flagella
was indistinguishable in appearance between the
normal control and AK9 defect patients (Fig. 3c).
However, although AK9 is mainly expressed in the
sperm flagellum of control subject, it was absent in the
sperm flagellum of the patients (Fig. 3d).

Bi-allelic AK9 mutations affect the homeostasis of
sperm nucleotides

The AK9 protein is a nucleoside monophosphate and
diphosphate kinase that is highly expressed in the testes.
Therefore, we performed targeted metabolomic analysis
to investigate the components of the nucleotide meta-
bolic process in patient FO13/II-1. As expected, ATP
levels in the patient’s sperm were significantly dimin-
ished (Fig. 4a). Compared with control nucleoside
levels, sperm from AKO9-deficient patients showed
significantly decreased AMP and ADP levels. The levels
of guanosine monophosphate (GMP), guanosine
diphosphate (GDP), and guanosine triphosphate (GTP)
were also decreased (Fig. 4a). Therefore, the sperm in
the AK9-deficient patient displayed lower levels of nu-
cleotides than that in the control subject.

AK9 defect disrupts the flow of energy metabolism
in sperm

AK-catalysed phosphotransfer, a hub within the
metabolic regulatory system, is frequently coupled
with cellular bioenergetic networks, including oxida-
tive phosphorylation and glycolysis. We measured the
sperm MMP of the patients using JC-1 staining; the
spermatozoa from AK9-mutated patients showed no
significant deficiency in the MMP compared with the

normal levels (Supplementary Table S4). Oxidative
phosphorylation was further assessed by monitoring
the levels of tricarboxylic acid cycle (TCA) metabolites;
the TCA-related metabolites of the spermatozoa from
patient FO13/II-1 were comparable to those in the
control individual (Supplementary Fig. S3). Glycolysis
was then evaluated by monitoring the levels of the
metabolites; glycolysis-related metabolites in the
spermatozoa from patient F013/I1-1 were significantly
decreased compared with those in the control
individuals (Fig. 4b). These diminished levels of
glycolytic intermediates indicated that the defect in
AK9 reduced glycolytic metabolism in the patient’s
sperm.

Due to the unique role of AK in-phosphotransfer, we
evaluated the phosphoryl moiety in ATP. Surprisingly,
'80-labelled-ATP was significantly reduced, indicating
insufficient AK-catalysed phosphotransfer in the sperm
of patients with AK9 deficiency (Fig. 4c). These results
suggest that bi-allelic mutations in AK9 disrupt glyco-
lytic metabolic homeostasis and inhibit AK-catalysed
phosphotransfer in human sperm.

MS of sperm proteins from AK9-deficient patients

We performed label-free quantitative proteomics of
sperm from control subjects and the AK9 mutated pa-
tient FO13/II-1. The results showed that the levels of
approximately 211 proteins were increased and the
levels of 195 proteins were decreased by more than 1.5-
fold (Supplementary Table S5). The differentially
expressed proteins in the spermatozoa from the AK9-
mutated patient compared to control subjects are shown
in a heat map (Fig. 4d). Gene ontology analysis showed
that the downregulated proteins (Fig. 4e) or upregulated
proteins (Fig. 4f) were enriched in carbohydrate
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Fig. 3: Morphology and ultrastructure of the spermatozoa from patients affected by bi-allelic AK9 mutations. (a) Morphological analysis of the
spermatozoa from a control subject and the patients with bi-allelic AK9 mutations. Scale bar: 20 pm. (b) Field emission-scanning electron
microscopy (FE-SEM) analysis of the morphological characteristics of the patients’ spermatozoa. Scale bar: 5 pm. (c) Ultrastructural analysis of
the spermatozoa flagella from the patients at the mid-piece. Scale bar: 100 pm. (d) Immunofluorescence analysis of AK9 expression in the

patients’ spermatozoa flagella. Scale bar: 20 pm.

transport and metabolism, energy production and con-
version, nucleotide transport and metabolism, signal
transduction mechanisms, secondary metabolite
biosynthesis, transport, and catabolism (Fig. 4g).

Ak9 KO male mice resemble asthenozoospermic
phenotypes

To determine the expression of Ak9 in various mouse
tissues, we performed qRT-PCR for Ak9 mRNA. The
results showed that Ak9 mRNA was highly expressed in
the testes (Supplementary Fig. S4a). To further confirm

www.thelancet.com Vol 96 October, 2023

the role of Ak9 in sperm motility, we constructed Ak9-
null mice using CRISPR-Cas9  technology
(Supplementary Fig. S4b). Sequencing results showed
that 82 bp bases were deleted in the Ak9 exon
(Supplementary Fig. S4c), and Western Dblotting
confirmed the absence of AK9 in the testes of KO mice
(Supplementary Fig. S4d). The immunofluorescence
results further confirmed that AK9 was absent in the
flagellum of KO mice and that AK9 was mainly
expressed in the sperm flagellum of WT mice
(Supplementary Fig. S4e).
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Fig. 4: Metabolite analysis of the spermatozoa from the patient FO13/II-1 affected by a bi-allelic AK9 mutation. (a) Changes in the nucleotide
metabolites in the spermatozoa from the AK9 mutated patient FO13/1I-1 compared with the control subjects (*p < 0.05, **p < 0.01). (b)
Changes in the glycolytic metabolites in the spermatozoa from the AK9 mutated patient FO13/II-1 compared with the control subjects. (c) The
percentages of B-ATP phosphoryl labelled with *80 in the spermatozoa from the AK9 mutated patient FO13/II-1 compared with the control
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The Ak9-deficient male mice survived and did not
display any significantly developmental abnormalities. We
performed SEM and TEM for the trachea and lung of the
Ak9 KO mice and the results showed no significant defects
in the cilia of the trachea (Supplementary Fig. S5a) and
lung (Supplementary Fig. S5b). Moreover, the appearance
of the testes and epididymis were generally similar be-
tween Ak9null and WT male mice (Supplementary
Fig. S6a). Compared to the controls, the weight of the
body (Supplementary Fig. S6b), testes (Supplementary
Fig. S6c), and epididymis (Supplementary Fig. S6d) of
Ak9-null male mice were not significantly different. HE
staining indicated that spermatozoa were produced in the
testes of Ak9-null mice (Supplementary Fig. S6e), and the
number of spermatozoa in the epididymis was not
significantly different from that in control mice
(Supplementary Fig. S6f).

Papanicolaou staining showed that sperm from Ak9-
null mice exhibited normal morphology (Fig. 5a).
Consistent with the patients’ sperm, the results of the
TEM analysis showed no obvious defects in the ultra-
structure of the flagella from Ak9-null mice at the mid-
piece (Fig. 5b) or principal piece (Fig. 5c).

The percentage of motile sperm in Ak9-null mice was
significantly lower than that in WT mice (Fig. 5d), sug-
gesting that Ak9 ablation impaired sperm mobility. We
also detected disordered adenosine metabolism and a
marked decrease in AMP, ADP, ATP, GMP, GDP, and
GTP levels in epididymal sperm from Ak9 KO mice
compared with those from WT mice (Fig. Se). Moreover,
the ablation of Ak9 decreased glycolytic metabolism
(Fig. 5f) and p-phosphoryl ATP production (Fig. 5g).
Collectively, these results further confirm that AK9 defi-
ciency impairs male fertility due to asthenozoospermia in
humans.

AK9-associated male infertility could be rescued by
ICSI in humans and mice
Accumulating evidence has shown that ICSI with
ejaculated sperm is effective in most cases of astheno-
zoospermia. In this study, we performed ICSI using
epididymal sperm from Ak9 KO mice and assessed that
the 2 PN rate (% of 2PN/total) and birth rate (% of live
offspring/transferred embryos) of the Ak9 knockout
mice comparable than those of WT mice (Fig. 5h).
ICSI was performed on subjects F013/1I-1, R0O008/I1-
1, and R0022/II-1. Day-3 high-quality cleavage embryos
(Fig. 6) were transferred under ultrasound guidance. In
all three cases, a healthy pregnancy was issued with the
delivery of healthy babies (Table 3).

Discussion

Sperm motility is essential for male reproduction and is
only achieved when dynamic ATP effectively supports
it.”* Glycolysis and oxidative phosphorylation are posi-
tively involved in the support of energy by catabolising
glucose to generate ATP in mammalian sperm.” How-
ever, mammalian sperm motility lasts for quite a long
time in glucose-free medium."* Thus, the energy
metabolism of sperm is not yet fully understood.

AKs have been identified in prokaryotes and eu-
karyotes and play an important role in maintaining
nucleotide and energy homeostasis in cells by inter-
converting stoichiometric amounts of ATP and AMP
with two ADP molecules.”** AKs are abundant in tis-
sues and cells with a high energy demand, such as the
heart, skeletal muscle, and sperm, in mice.** AK-
catalysed phosphotransfer not only provides an addi-
tional energetic source, but also doubles the utilisation
of ATP. Sperm motility is reactivated in the presence of
ADP alone in mice and bovines, but these motile sperm
are immediately stopped by P1, P5-di (adenosine 5')-
pentaphosphate (Ap5A), an AK-specific inhibitor.>*
AK-catalysed phosphotransfer is essential for sperm
motility in sea-urchins.'®*** Thus, AKs play an impor-
tant role in flagellar motility.

We identified two patients harbouring homozygous
mutations and three patients carrying compound AK9
mutations among 165 sterile men with asthenozoo-
spermia using WES analysis. AK9, a nucleoside mono-
and diphosphate kinase, plays important roles in
nucleotide homeostasis and ATP regeneration and uti-
lisation by catalysing the interconversion of adenine
nucleotides, and is preferentially expressed in the testes
of humans and mice. These mutated sites are rare or
absent in humans, and the amino acid residues affected
by these mutations are conserved in many species,
suggesting that AK9 deficiency may be a primary cause
of asthenozoospermia in humans.

Sperm motility depends on energy metabolism.
Destruction of oxidative phosphorylation and glycolysis
prevents sperm motility and induces asthenozoo-
spermia by inhibiting ATP generation.” Remarkably,
AKs can salvage energy by converting ADP to ATP, and
the functions of AKs have been reported in excitation—
contraction coupling, nuclear transport, the energetics
of the cell cycle, as well as cell and ciliary motility.”* In
the sperm of mice, ADP alone effectively reactivates
motility, and ADP-reactivated sperm exhibited a higher
amplitude, suggesting AKs are involved in sperm
motility and are a key modulator of the waveform.” Our

subjects. (d) Heat map of differentially expressed proteins in the spermatozoa from the AK9 mutated patient FO13/Il-1 compared with the
control subjects. Orange represents high expression, and green represents low expression. (e) Signalling pathways involved in the down-
regulated expression of proteins in the spermatozoa from the AK9 mutated patient FO13/Il-1 compared with the control subjects. (f) Signalling
pathways involved in the upregulated expression of proteins in the spermatozoa from AK9 mutated patient FO13/Il-1 compared with the
control subjects. (g) Western blot confirmed the protein levels of proteomics analyses.
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Fig. 5: The phenotype of the Ak9 knockout mice. (a) Morphological analysis of the sperm from wild-type (WT) and the Ak9 knockout (KO) mice.
Scale bar: 10 pm. (b) Ultrastructural analysis at the mid-piece of the flagella from the Ak9 KO mice. Scale bar: 200 pm. (c) Ultrastructural
analysis at the principal piece of the flagella from the Ak9 KO mice. Scale bar: 100 pm. (d) Percentages of motile spermatozoa in the cauda
epididymidis from the wild-type and Ak9 KO mice. (e) Changes in the nucleotide metabolites in the spermatozoa from Ak9 KO mice compared
with WT controls. (f) Changes in the glycolytic metabolites in the spermatozoa from Ak9 KO mice compared with WT controls. (g) The
percentages of B-ATP phosphoryl labelled with *80 in the spermatozoa from the WT and Ak9 KO mice. (h) The percentages of the 2 PN rate (%
of 2PN/total) and birth rate (% of live offspring/transferred embryos) of intracytoplasmic sperm injection (ICSI) of the WT and Ak9 KO mice.

(*p < 0.05, **p < 0.01, ***p < 0.001).

phenotypic analysis revealed that men harbouring
bi-allelic AK9 mutations exhibited typical asthenozoo-
spermia phenotypes, including an extremely lower per-
centage of the total and progressive sperm motility.

In addition to its energetic function, AK plays a
distinct signalling role through the generation of AMP
and the activation of AMP-dependent processes,
including adenosine production.®*® We observed a
significant reduction in AMP in the spermatozoa of
AK9-deficient patients, accompanied by a reduction in
other nucleotides of different compositions. This
may be due to the deficiency of AK9 affecting the

balance of adenosine homeostasis within the sperma-
tozoa, leading to impaired AMP production, which in
turn affects the metabolism of other adenosines in the
spermatozoa.

In addition to precise energy metabolism, the
impeccable structure of the flagella is essential for
sperm motility. Sperm morphological defects are a fac-
tor in asthenozoospermia, the most severe of which is
MMAF, which attains accessory fibre of the flagellum
(69, 70) (68, 69); however, asthenozoospermia can also
be caused by genetic mutations that affect the structure
or function of the axoneme, with or without concomitant
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Fig. 6: Morphology of embryogenesis for the implanted embryos. The embryogenesis of the AK9 mutated patients on day 1, day 2, and day 3.
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respiratory cilia impairment.”*”' In MMAF cases, muta-
tions in genes that are involved in the structure of the
flagella, such as DNAH1,”> AKAP4,”* and SPEF2,” lead to
asthenozoospermia. Previous research has indicated that
mutations in AKI or AK2 cause chronic haemolytic
anaemia and reticular dysgenesis in humans, respec-
tively, and mutations in AK7 cause primary ciliary
dyskinesia or MMAF.*"7*”7 Notably, the results of Papa-
nicolaou staining, SEM, and TEM analysis of sperm
indicated that sperm morphology and the architecture of
the axoneme running through the flagella did not show a
significant difference in men harbouring bi-allelic AK9
mutations and Ak9-null mice. In addition, clinical ex-
aminations demonstrated that none of the patients dis-
played PCD-related symptoms. These clinical symptoms
may be because AK9 is primarily expressed in the testes.
Therefore, asthenozoospermia caused by bi-allelic AK9
mutations may not be caused by abnormalities in the
structure of the flagella, but instead by abnormal energy
metabolism.

AKs are one of the most fascinating enzymes and are
enriched in tissues with a high energy demand,” and
are responsible for approximately 31% of the non-
mitochondrial ATP regeneration in sea urchin sperma-
tozoa flagella and nearly 93% of non-mitochondrial ATP
regeneration in the embryonic cilia of sea urchins.”
Previous studies reported AKs, as the unique hub
within the cellular homeostatic network, are involved in
multiple energetic and metabolic signalling networks by

regulating the homeostasis of nucleotides to convey the
energy state.”” Moreover, it has been demonstrated that
AKs can interact with glycolysis enzymes, such as
phosphofructokinase, aldolase, phosphoglycerate ki-
nase, and glyceraldehyde phosphate dehydrogenase, in
rabbits.®**! AK-catalysed reactions have been identified
as a promoter of glycolysis by decomposing ATP to
alleviate inhibition of glycolysis and providing substrates
for glycolysis simultaneously in intact rat muscle.* In
this study, we identified that bi-allelic AK9 mutations
perturbed the adenosine metabolism, and decreased
the ATP, AMP, and ADP concentration. In addition,
mutations in AK9 significantly reduced glycolysis,
accompanied by a reduction in lactic acid, but a constant
MMP when compared with control subjects, suggesting
AK?9 deficiency affected ATP generation via the glycol-
ysis  pathway, which led to AK9-associated
asthenozoospermia.

Consistent with our findings, the dysfunction of
glycolysis in sperm is closely related to male infertility
caused by asthenozoospermia. Deprivation of genes
related to glycolysis, such as GAPDS, PGK2, and LDHC,
effectively inhibited mouse sperm motility and led to
asthenozoospermia.®* Owing to their unique role in
phosphotransfer, AKs can double the energetic potential
of ATP. Studies indicated that a deficiency of Ak1 in the
muscle and heart of mice inhibited the rate of B-ATP
production, decreasing the energy economy.****** In this
study, we observed a decrease in -ATP compared with

Patients F013/Il-1 R0O008/II-1 R0022/Il-1
Male age (years) 31 40 28
Female age (years) 27 31 28
Cycles (n) 1 1 1
Embryo transfer cycles (n) 1 1 1
Oocytes collected (n) 17 11 13
Metaphase Il oocytes (n) 12 7 10
Maturation oocyte rate (%) 70.59 63.64 76.92
2 PN (n) 10 6 7
Fertilization rate (%) 83.33 85.71 70
Embryos cleaved at Day 2 (n) 9 5 7
Embryo cleavage rate (%) 90 83.33 100
Day 3 embryos (n) 9 5 7
Day 3 grade A/B embryos (n) 7 4 6
Num. of transferred embryos (n) 1 2 1
Biochemical pregnancy (n) 1 1 1
Clinical pregnancy (n) 1 1 1
Implantation rate (%) 100 50 100
Ectopic pregnancy (n) 0 0 0
Abortion (n) 0 0 0
Delivery (n) 1 1 1
Singletons/Twins Singletons Singletons Singletons
Boy/Girl Boy Girl Girl
Weight (g, range: 2500-4000) 3500 3000 3500
Table 3: Outcomes of ICSI treatment in the patients with bi-allelic AK9 mutations.
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Fig. 7: Schematic model of asthenozoospermia caused by AK9 deficiency.

control individuals, suggesting that AK-catalysed ATP
turnover and energy supply play an important role in
sperm motility.

Ak9-null male mice display phenotypes similar to
those of asthenozoospermia, characterised by markedly
decreased sperm motility. Ak9-null male mice exhibited
regular spermatogenesis in the testes, normal sperm
counts, and natural sperm architecture. Consistently,
sperm with the Ak9 deletion were quite sluggish and
there was a decreased percentage of progressive sperm.
These observations indicated that Ak9 plays an indis-
pensable role in sperm motility and male fertility.

The proteins AK1 and AK2 are accessory structures
in the mouse sperm flagellum.” AK1 is expressed in
post-meiotic round and elongated spermatids in the
mouse testis and mature sperm in the epididymis. AK1
deletion does not induce reproductive defects under
physiological conditions, but can affect sperm motility
under energy stress in mice.”® The AK4 protein partici-
pates in the proliferation and apoptosis of human
spermatogonial stem cells, which is regulated by
SPOCD1.* Interestingly, mice with Ak7 deletion
exhibited an MMAF-similar phenotype, which may be
due to Ak7 deficiency damaging the expression of A-
kinase anchoring proteins, which is an important
component of the axoneme.” AK7 defects causing
MMAF may be associated with defects in sperm
axoneme formation. In this study, we demonstrated that
Ak9 KO does not affect the ultrastructure of the
axoneme, suggesting that asthenozoospermia induced
by Ak9 deletion may not be associated with sperm
structural defects and that this phenotype is consistent
with humans with bi-allelic AK9 mutations.

With the advent of ICSI, men with asthenozoo-
spermia can be treated, favourable fertilisation and clin-
ical pregnancy rates can be achieved, including in
patients with DNAHI (with MMAF), DNAH2 (with
MMAF), and DNAH7 (with asthenozoospermia)

www.thelancet.com Vol 96 October, 2023

mutations.*****” On the contrary, mitochondrial genetic
mutations, such as nicotinamide adenine dinucleotide
hydrogen (NADH) dehydrogenase 1 (ND1), NADH de-
hydrogenase 2 (ND2), or NADH dehydrogenase 5 (ND5),
causing asthenozoospermia, negatively affected ICSI
outcomes in humans.** In this study, ICSI was per-
formed on the patients F013/II-1, RO008/II-1, and
R0022/11-1, and all fulfilled a positive pregnancy outcome
and fathered a healthy child. Therefore, our findings
prove that ICSI should be the prioritized recommenda-
tion for patients with AK9-associated asthenozoospermia.
However, the limitations of our study must be recog-
nized. We have investigated only part of the patients
including ICSI treatment. Moreover, the accuracy role of
AK9 needs to be further validated in a cohort that
involving larger and more diverse populations.

In conclusion, we identified AK9 as a gene respon-
sible for asthenozoospermia in humans and mice. The
observed effects of the AK9 protein on nucleotide ho-
meostasis and the energy metabolic network suggest
that AK9 is an indispensable component of sperm
motility (Fig. 7). Furthermore, we demonstrated that
ICSI is an effective method to rescue AK9-associated
male infertility. Therefore, our findings not only extend
the spectrum of aetiological genes involved in astheno-
zoospermia, but also provides a worthy treatment option
for AK9-associated male infertility.
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