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Syndrome of the month

Zellweger syndrome and associated phenotypes

David R FitzPatrick

Abstract
Until recently, the peroxisome was con-
sidered a "reactor chamber" for H202
producing oxidases, and it is now re-

cognised as a versatile organelle per-
forming complex catabolic and bio-
synthetic roles in the cell. Zeliweger syn-
drome (ZS), the paradigm of human per-
oxisomal disorders, is characterised by
neonatal hypotonia, severe neuro-
developmental delay, hepatomegaly, renal
cysts, senorineural deafness, retinal dys-
function, and facial dysmorphism. It is
now clear that ZS is at the severe end of
a phenotypic spectrum of Zellweger-like
syndromes which may present for diag-
nosis later in childhood and even in adult
life. It is important that clinical geneticists
are aware of these milder clinical variants
as the availability of sensitive and specific
biochemical assays of peroxisomal func-
tion (for example, serum VLCFA ratios,
platelet DHAP-AT activity) makes their
diagnosis relatively straightforward.
(JMed Genet 1996;33:863-868)
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Peroxisomes
In July 1995 an international symposium in
Aspen marked the 30th anniversary of the nam-
ing and biochemical characterisation of per-

oxisomes by Baudhuin et al' as catalase
containing microbodies on cell fractionation.
These membrane bound metabolic com-

partments were probably acquired en-

dosymbiotically2 and are found throughout the
eukaryotic kingdom. This review will con-

centrate on recent clinical, biochemical, and
molecular developments in human disorders of
assembly and function of this organelle.

Peroxisomes are roughly spherical organelles
bound by a single lipid bilayer with a diameter
of 0.1-1 ,um. The exact nature and origin of the
phospholipids which make up the peroxisomal
membrane is not known although they are likely
to be derived from the endoplasmic reticulum.
The protein component of peroxisomes (in-
tegral membrane, membrane associated and
matrix proteins) are translated on free po-

lyribosomes and imported post-translationally3
and stably folded4 via specific peptide per-

oxisomal targeting sequences (PTS) (for review
see Subramani5). Most matrix proteins appear

to be imported using a C-terminal tripeptide
sequence (-SKL) named PTS 1.6 PTS II is an
N-terminal sequence (MHRLQVVLGHL-)
found in mammalian peroxisomal 3-oxoacyl-
CoA thiolase which, unlike PTS I, undergoes
protease mediated cleavage after import.7 It is
likely that several other PTSs have yet to be
identified.
The enzymatic abilities of human per-

oxisomes can be divided into five broad and
overlapping categories: (1) simple oxidases (for
example, D-amino acid oxidase, polyamine ox-
idase) producing heat and H202 which is
decomposed by catalase; (2) 1-oxidation cycles
for degradation of very long chain fatty acids
(VLCFA), pristanic acid, and bile acid in-
termediates; (3) the glyoxalate cycle which cata-
lyses the conversion of acetyl-CoA to succinate
(this is of uncertain significance in humans);
(4) ether lipid synthesis pathway; (5) cho-
lesterol and dolichol biosynthesis. These path-
ways have been comprehensively reviewed by
Van den Bosch et al8 and will be discussed in
detail only as they relate to biochemical tests
of peroxisomal function. An additional re-
markable feature of peroxisomes is the in-
duction of proliferation that occurs in response
to exogenous agents (named peroxisome pro-
liferators), such as the hypolipidaemic agent
clofibrate in rodent hepatocytes9 and methanol
or oleic acid in yeast species.'0

Clinical phenotypes
Zellweger (or cerebrohepatorenal) syndrome
(ZS) was originally described as a lethal, mul-
tiple malformation syndrome of infancy." 12
The first indication that peroxisomes may be
involved in human disease came in 1973 when
Goldfischer et al 13 noted their apparent absence
(combined with abnormalities in mitochondrial
function) in the liver and kidney of a child with
a clinical diagnosis of ZS. Since that report it
has become clear that genetic mutations caus-
ing either a generalised disorder ofperoxisomal
function (that is, interrupting peroxisome as-
sembly) or single matrix enzyme deficiencies
can cause a similar spectrum of abnormalities. 14
In addition to ZS several different names have
been used to describe these disorders, (neonatal
adrenoleucodystrophy (NALD), infantile Re-
fsum disease (IRD), hyperpipracolic acidaemia
(HPA)); however, these generally denote
differences in severity of the clinical phenotype
(ZS > NALD > IRD (HPA is now obsolete))
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Table 1 Disorders ofperoxisomal function excluding ZSAP

Disease Gene Locus Lab findings Phenotype

Acatalasaemia (MIM 115500) Catalase lipl3 Reduced H202 decomposition in Chronic oral ulceration, often
red blood cell asymptomatic

Adult Refsum disease (ARD)(MIM Phytanic acid a- ? High serum phytanic acid Retinitis pigmentosa, peripheral
266500) oxidase neuropathy, cerebellar ataxia
ARD with hyperpipracolic acidaemia6' ? 10q High serum phytanic acid and Same as ARD
(no MIM number as yet) pipecolic acid
Glutaric aciduria type III (MIM Glutaryl CoA ? Riboflavin responsive glutaric Single case, failure to thrive
231690) oxidase aciduria
Hyperoxaluria type I (MIM 259900) AGT 2q36-37 High serum and urinary oxalate Urolithiasis, nephrocalcinosis,

systemic oxalosis
Rhizomelic chondrodysplasia punctata PTS II receptor or ? Reduced plasmalogen synth +- Severe rhizomelia, cataracts, early
(MIM 215100) DHAP-AT cytoplasmic localised thiolase lethality
Adrenoleucodystrophy (MIM 300100) ALDP Xq28 High VLCFA Inflammatory adreno- and

neurodegeneration

rather than differences in organ involvement,
biochemical phenotype, or pathogenesis.

Pseudo-Zellweger syndrome (PZS) was ori-
ginally used to describe a unique case with
clinical features of ZS, structurally normal per-
oxisomes, and peroxisomal 3-oxoacyl CoA thi-
olase deficiency.'516 It is now clear that most
often PZS is caused by acyl-CoA oxidase'7 or
trifunctional enzyme"8 deficiency. For ease of
discussion, all of the above disorders will be
grouped under the heading of Zellweger Syn-
drome and Associated Phenotypes (ZSAP) in
this review. The combined birth prevalence of
these disorders is thought to be between 1:
25 000 and 1:50 000 live births.'9

Rhizomelic chondrodysplasia punctata
(RCDP), a peroxisomal disorder genetically
and biochemically distinct from ZSAP, is char-
acterised by severe proximal limb shortening,
early onset symmetrical cataracts, retinal dys-
function, facial dysmorphism, ichthyosis, and
early lethality.20 The biochemical hallmarks of
RCDP are disordered PTS II mediated protein
import (that is, cytoplasmic localisation of thi-
olase2") or deficiency of plasmalogen bio-
synthesis22 with normal localisation of PTS I
proteins, or both. There is significant pheno-
typic overlap between RCDP and ZSAP sug-
gesting that plasmalogens may have a critical
role in, at least, lens development, retinal func-
tion, and the synchrony of normal ossification.
Since RCDP has been the covered in a recent
Syndrome of the month23 it will not be con-
sidered in detail. Table 1 summarises the fea-
tures of RCDP and several other disorders of
peroxisomal function which result in clinical
phenotypes distinct from ZSAP.

Clinical phenotype in ZSAP
NEURODEVELOPMENTAL DISORDER AND
DYSMORPHISM
To date, global developmental delay has been a
feature of all cases ofZSAP with many showing
profound congenital hypotonia and no psy-
chomotor development whatsoever. The basis
ofthis severe cerebral dysfunction appears to be
the premature arrest of migrating neuroblasts
during development, resulting in site specific
cerebral micro- and pachygyria with neuronal

heterotopia (fig 1, top).24 The cortical regions
showing the most severe abnormalities are the
perisylvian and frontoparietal areas.25 Dys-
myelination has been reported but this feature
appears to be variable and poorly dis-

Figure 1 (Top) The subcortical cerebral white matter in
a 6 week old male case ofZSAP showing two irregular
collections of ectopic neurones. Haematoxylin and eosin
(H&E). (Middle) A high powered H&E section from
postmortem liver biopsy in a 3 month old child with ZSAP
showing characteristic giant cell formation and marked
hepatic fibrosis. (Bottom) A low powered H&E section
from a postmortem renal biopsy of the same child as in the
top photograph showing subcapsular cortical cyst
formation.
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Zellweger syndrome and associated phenotypes

Figure 2 A clinical photograph of Lauren at 3 weeks
showing hypoplastic supraorbital ridges and a low and
broad nasal bridge, which constitute the typical
craniofacialfeatures of ZSAJ? (Photograph reproduced
with permission.)

criminant.26 There are very few published re-
ports of detailed neuroimaging in ZSAP. These
would, obviously, be useful data to determine
if a specific cortical phenotype could be de-
tected in living subjects. The craniofacial fea-
tures of ZS are striking and memorable (fig 2).
These are characterised by marked paucity of
facial movement with a large anterior fon-
tanelle, prominent forehead, hypoplastic sup-
raorbital ridges, and broad nasal root.

HEPATO-ADRENO-RENAL PHENOTYPE

Hepatomegaly is seen in - 80% of infants with
ZSAP associated with raised levels of liver en-
zymes and bilirubin in the serum. Liver biopsy
may show a micronodular cirrhosis and giant
cell formation with or without hepatic fibrosis
(fig 1, middle).27 Prenatal onset renal cortical
cysts of variable size are seen in - 70% of cases
(fig 1, bottom).28 Many of the cases also have
adrenal hypoplasia with striated reticularis
cells very similar to those seen in adreno-
leucodystrophy.29

SENSORY ORGANS
Around 90% of ZSAP children will have con-
genital sensorineural hearing impairment.30
Ocular findings include abnormal electro-
retinogram (ERG) (- 85%), cataracts
(- 70%), peripheral pigmentary retinopathy
( - 40%), and optic nerve hypoplasia
( ,40%).3

OTHER FEATURES
The main radiological finding in ZSAP is cal-
cific stippling of the patellae (fig 3) with syn-

Figure 3 Whole body x ray of a male infant with ZSAP
showing calcific stippling of the patellae bilaterally.

chondrosis of the acetabulum.32 Of particular
interest is the association of thymic aplasia and
congenital outflow tract anomalies of the
heart,33 suggesting some phenotypic overlap
with DiGeorge syndrome (DGS). No per-
oxisomal genes are known to map in the DGS
critical region although the peroxisome pro-
liferator activated receptor (PPARa) gene has
been localised to chromosome 22q12-13.34

INHERITANCE AND VARIABILITY
Numerous sib pairs3536 and examples of par-
ental consanguinity have been reported in
ZSAP and autosomal recessive inheritance is
assumed in most cases. There have, however,
been two reports of ZSAP with karyotype ab-
normalities involving 7ql 1.23. It is not clear
if these represent examples of haplo-
insufficiency or unmasking a recessive muta-
tion.

It should be noted that although most cases
of ZSAP are lethal in early childhood there
are now several reports of affected subjects
surviving into late childhood and adult-
hood.303839 In these subjects the neurodevelop-
mental and craniofacial phenotypes tend to be
less distinctive30 38 and the diagnosis should
be considered in any developmentally delayed
child with sensorineural deafness, retinal dys-
function, or hepatomegaly.30 Facial features
such as low/broad nasal bridge, large anterior
fontanelle, and shallow orbital ridges also ap-
pear to be relatively discriminant. It is im-
portant that we consider ZSAP in the
differential diagnosis of such cases, as relatively
straightforward, inexpensive biochemical diag-
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Clinical suspicion:
developmental delay, Measure VLCFA normal
sensorineural deafness, -_ VLCFA _ DHAP-AT*
retinal dysfunction, DHAP-AT
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DHAP-AT Normal

Particulate _ ,Boxidation enzyme defect,
catalase perform specific assays

Cytosolic ~~Peroxisomal assemblyCytosolic * defect, do complementation
catalase ~~~~analysis

Punctate staining of thiolase + Isolated
in cultured cells DHAP-AT deficiency

Cytosolic staining of Probable RCDP
thiolase in cultured cells

ZSAP unlikely but if clinical
suspicion strong then measure
other peroxisomal indicators
and look in different tissues

Figure 4 Clinical algorithm for the diagnosis and investigation of a child suspected of having ZSAR

nostic tests are available. A simple clinical diag-
nostic algorithm is presented in fig 4 and
discussed below.

DIAGNOSIS AND TREATMENT
All patients suspected of having ZSAP on ne-
urodevelopmental or dysmorphic grounds or
both should have clinical photographs, ERG,
brainstem auditory evoked potentials (BAER),
and skeletal survey performed as first line in-
vestigations (fig 4). Histological examination
of biopsied material can be used to identify
peroxisomes using either electron microscopy
combined with diaminobenzene cytochemical
staining40 or immunofluorescence. However,
with the development of simple biochemical
tests of peroxisome assembly, such as the par-
ticulate catalase assay4l (this indicates if catalase
activity is organellar or cytosolic after cent-
rifugation of permeabilised cells), mor-
phological diagnosis has become less
important.
The mainstay of biochemical diagnosis of

ZSAP, however, is the measurement of sat-
urated VLCFA.42 VLCFA have a chain length
of 22 carbon atoms or greater and are derived
from both dietary sources and chain elongation
processes (predominantly microsomal) within
the cell. Mitochondria are able to metabolise
VLCFA but the flux through this pathway is
considerably less than peroxisomal P-oxidation.
Several different methods for the measurement
of VLCFA in plasma, red blood cells, leuco-
cytes, fibroblasts, and tissue specimens have
been described.43 Normal levels of C26:0 in
plasma are -0.33 ptg/ml with levels in ZSAP
more than five times this level with markedly
raised C24:0/C22:0 and C26:0/C22:0 ratios.
Plasmalogen biosynthesis can be assessed by

Table 2 Genes associated with the ZSAP phenotype
Gene Locus Structure and function Complement' Gp

PAF1 8q21.1 35 kDa, cysteine rich RING-finger 10
PAF2 ? ATPase (AAA proteins) ?4
PXR1 ? PTS import receptor 2
PMP70 1 ATP binding cassette, 6 transmembrane ?1

domains
ACOX 17q25 Acyl CoA oxidase OXIDASE*
ECH/HACD 3q26-28 Peroxisomal ,-oxidation trifunctional BIFUNCTIONAL

enzyme 1 & 2*
OACT 3p23 Peroxisomal 3-oxyacyl-CoA thiolase ?

From McGuiness et al.55

assay of dihydroxyacetone phosphate acyl
transferase (DHAP-AT) activity or by analysis
of red blood cell plasmalogens.43 Other clin-
ically useful assays exist for phytanic acid44 and
piperocolic acid.45 Prenatal diagnosis has been
successfully performed using several of these
methods.46
No effective treatment is available for ZSAP.

Recently, partial biochemical normalisation of
the VLCFA profiles in patients with ZSAP has
been achieved using dietary supplementation
with glyceral trioleate (GTO is thought to in-
hibit microsomal chain elongation systems)47
or ether lipids48 with no apparent alteration in
the clinical course of the disease. There is one
interesting report of clinical improvement in a
6 year old boy with ZSAP after administration
of oral docosohexaenoic acid (DHA).49 The
rationale for this therapy is the importance of
this fatty acid in neuronal and photoreceptor
membranes and the severe deficiency of DHA
in ZSAP. Control trials of these therapies are
currently under way.

GENETIC PATHOLOGY AND MODEL SYSTEMS
Complementation assays using patient fibro-
blast cell lines suggest that there are at least
10 (probably more50) different human genes
involved in peroxisome assembly. The genes
defining two of these complementation groups
(CG) have been unequivocally identified
(PAF1 [CG4]5' and PXR1 [CG2]52) and one
other gene (PXMP1) is mutated in one allele
of two patients from CG1.53 In ZSAP patients
with isolated disorders of peroxisomal ,B-ox-
idation there are at least four complementation
groups owing to loss of function mutations
in the genes encoding acyl CoA oxidase, 3-
oxoacyl-thiolase, and the enoyl-CoA hydratase
and hydroxyacyl-CoA dehydrogenase domains
of the peroxisomal trifunctional enzyme.54 De-
tails of all these genes are given in table 2.

Studies of peroxisomal assembly mutants in
lower eukaryotic organisms such as Sac-
charomyces cerevisiae and Pichia pastoris have
enabled cloning of many genes involved in
organelle biogenesis. Indeed this work led dir-
ectly to the identification of one of the disease
causing human genes mentioned above
(PXR1) by sequence homology searching of
the public database of expressed sequence tags

FitzPatnick
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from a fetal brain cDNA library. Although
mammalian model systems have been more

difficult to generate, cDNA complementation
of chinese hamster ovary (CHO) cell per-

oxisomal mutants has been successful in iden-
tifying the PAF 1 gene and has recently enabled
cloning of another gene involved in peroxisome
assembly, PAF2.'7 Other approaches to cloning
mammalian peroxisomal genes have involved
making subtracted libraries from cells induced
with peroxisomal proliferators, 8 developing
new mutant selection and complementation
assays,59 and cDNA cloning using antibodies
raised against proteins purified from induced
peroxisomes.'6

Conclusions
ZSAP are fascinating disorders from many

points of view. They were among the first
dysmorphic syndromes subsequently shown to

result from an inborn error of metabolism and
are currently the only human diseases caused
by agenesis of an intracellular organelle. Ad-
vances in our understanding of ZSAP have
been the result of international collaborations
between paediatric neurologists, clinical bio-
chemists, and human and yeast geneticists, and
the quest for a full understanding of the biology
of peroxisomes continues apace. Continued
cloning of genes involved in human per-

oxisomal disease combined with the knock out

technology in mice will elucidate the role that
these organelles play in development, par-

ticularly of the nervous system, and enable
us to assess the effect of different treatment

strategies. Clinical geneticists will play im-
portant roles in further clinical delineation of
ZSAP and working towards a sensible and
effective therapeutic plan for affected subjects.
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