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SUMMARY

The somatic mutations found in a cancer genome are imprinted by different mutational processes. 

Each process exhibits a characteristic mutational signature, which can be affected by the 

genome architecture. However, the interplay between mutational signatures and topographical 

genomic features has not been extensively explored. Here, we integrate mutations from 5,120 

whole-genome-sequenced tumors from 40 cancer types with 516 topographical features from 

ENCODE to evaluate the effect of nucleosome occupancy, histone modifications, CTCF 

binding, replication timing, and transcription/replication strand asymmetries on the cancer-specific 

accumulation of mutations from distinct mutagenic processes. Most mutational signatures are 

affected by topographical features, with signatures of related etiologies being similarly affected. 

Certain signatures exhibit periodic behaviors or cancer-type-specific enrichments/depletions near 

topographical features, revealing further information about the processes that imprinted them. Our 

findings, disseminated via the COSMIC (Catalog of Somatic Mutations in Cancer) signatures 
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database, provide a comprehensive online resource for exploring the interactions between 

mutational signatures and topographical features across human cancer.

Graphical Abstract

In brief

Comprehensive topography analysis of mutational signatures encompassing 82,890,857 somatic 

mutations in 5,120 whole-genome-sequenced tumors across 40 cancer types. Otlu et al. provide 

an online resource, through the COSMIC signatures database, that allows researchers to explore 

the interactions between somatic mutational processes and genome architecture within and across 

cancer types.

INTRODUCTION

Cancer genomes are peppered with somatic mutations imprinted by the activities of different 

endogenous and exogenous mutational processes.1,2 Due to their intrinsic biophysical 

and biochemical properties, each mutational process engraves a characteristic pattern of 

somatic mutations, known as a mutational signature.3 Our previous analyses encompassing 

more than 5,000 whole-genome- and 20,000 whole-exome-sequenced human cancers 

have revealed the existence of at least 78 single-base substitution (SBS), 11 doublet-

base substitution (DBS), and 18 insertion or deletion (ID) mutational signatures.4–7 

Through statistical associations and further experimental characterizations, etiology has 
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been proposed for approximately half of the identified signatures.4,8–15 Prior studies have 

also explored the interactions between somatic mutations imprinted by different mutational 

processes and the topographical features of the human genome for certain cancer types 

and for a small subset of topographical features. However, previously, there has been no 

comprehensive evaluation that examined the effect of genome architecture and topographical 

features on the accumulation of somatic mutations from different mutational signatures 

across human cancer.

Early studies have shown that late-replicating regions and condensed chromatin regions 

accumulate more mutations when compared with early-replicating regions, actively 

transcribed regions, and open chromatin regions.16–19 Subsequent analyses of hundreds 

of cancer genomes have revealed that differential DNA repair can explain variations in 

mutation rates across some cancer genomes20 as well as that chromatin features originating 

from the cell of origin, which gave rise to the tumor, can affect mutation rate and the 

distribution of somatic mutations.17 Recently, Morganella et al. examined the effect of the 

genomic and the epigenomic architecture on the activity of 12 SBS signatures in breast 

cancer.21 These analyses demonstrated that mutations generated by different mutational 

processes exhibit distinct strand asymmetries and that mutational signatures are differently 

affected by replication timing and nucleosome occupancy.21 Pan-cancer exploration of 

strand asymmetries was also conducted for different mutation types across multiple cancer 

types,22 as well as for different mutational signatures.23 In particular, pan-cancer analyses 

of more than 3,000 cancers have revealed the strand asymmetries and replication timings 

of the 30 SBS mutational signatures from the Catalog of Somatic Mutations in Cancer 

v.2 signatures database (COSMICv.2).23 Similarly, more than 3,000 cancer genomes were 

used to elucidate the effect of nucleosome occupancy for the 30 substitution signatures 

from COSMICv.2.24 More recently, a study has also shown the interplay between the 

three-dimensional genome organization and the activity of certain mutational signatures.25,26

Here, we report the most comprehensive evaluation of the effect of nucleosome occupancy, 

histone modifications, CCCTC-binding factor (CTCF) binding sites, replication timing, 

transcription strand asymmetry, and replication strand asymmetry on the cancer-specific 

accumulation of somatic mutations from distinct mutational signatures. Our analysis 

leverages the complete set of known COSMICv.3.3 signatures (78 SBS, 11 DBS, and 

18 ID), and it examines 5,120 whole-genome-sequenced cancers while simultaneously 

utilizing 516 unique tissue-matched topographical features from the ENCODE project 

(Table S1).27 In all analyses, the observed patterns of somatic mutations are compared to 

background simulation models of mutational signatures that mimic both the trinucleotide 

pattern of these signatures as well as their mutational burden within each chromosome in 

each examined sample (STAR Methods). Our results confirm many of the observations 

previously reported for strand asymmetry, replication timing, and nucleosome periodicity 

for the original COSMICv.2 signatures. Further, the richer and larger COSMICv.3.3 dataset 

allowed us to elucidate novel biological findings for some of these 30 SBS signatures, 

revealing previously unobserved pan-cancer and cancer-specific dependencies. Additionally, 

this resource provides the first-ever map of the genome topography of ID, doublet-base, 

and another 24 substitution signatures in human cancer. Moreover, our study is the first to 

examine the tissue-specific effect of CTCF binding and 11 different histone modifications 
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on the accumulation of somatic mutations from different mutational signatures. As part of 

the results, we provide a global view of the topography of mutational signatures across 

5,120 whole-genome-sequenced tumors from 40 types of human cancer, and we include 

cancer-type-specific examples. As part of the discussion, we zoom in on two distinct 

case studies: (1) the topography of different types of clustered somatic mutations and (2) 

using the topography of mutational signatures to separate mutational signatures with similar 

patterns. Lastly, the reported results are released as part of the COSMICv.3.3 signatures 

database, https://cancer.sanger.ac.uk/signatures, providing an unprecedented online resource 

for examining the topography of mutational signatures within and across human cancer 

types.

RESULTS

Transcription strand asymmetries

Transcription strand asymmetries have been generally attributed to transcription-coupled 

nucleotide excision repair (TC-NER) since bulky adducts (e.g., ones due to tobacco 

carcinogens) in actively transcribed regions of the genome will be preferentially repaired 

by TC-NER.28 Additionally, TC damage may also lead to transcription strand asymmetry 

due to one of the strands being preferentially damaged during transcription.22

Mutational signatures with similar etiologies generally exhibited consistent patterns of 

transcription strand asymmetries across cancer types. Specifically, most signatures attributed 

to exogenous mutational processes showed transcription strand bias with mutations 

usually enriched on the transcribed strand (Figures 1A and 1E). This included signatures 

SBS4/DBS2 (both previously attributed to mutagens in tobacco smoke), SBS16 (alcohol 

consumption), SBS24 (aflatoxin), SBS29 (tobacco chewing), SBS25/SBS31/SBS35/DBS5 

(prior chemotherapy), and SBS32 (prior treatment with azathioprine). Nevertheless, for 

some exogenous signatures, strand asymmetries could differ between cancer types. For 

example, while transcriptional asymmetries for C>A and T>A mutations from SBS4 were 

observed across most cancer types, asymmetries for C>G mutations were only observed 

in lung adenocarcinoma and cancers of the head and neck (Figure 1C). Interestingly, 

C>T mutations attributed to SBS4 had strand asymmetry only in lung adenocarcinoma. In 

contrast, mutational signatures due to direct damage from ultraviolet light (viz., SBS7a/b/c/d 

and DBS1) were the only known exogenous mutational processes to exhibit transcription 

strand asymmetry with strong enrichment of mutations on the untranscribed strand, 

consistent with damage from ultraviolet light on cytosine (Figures 1A and 1E).

Transcription strand asymmetry with consistent enrichment of mutations on the transcribed 

strand was also observed for clock-like signature SBS5 and for multiple mutational 

signatures with unknown etiology, including SBS12, SBS19, and ID14 (Figures 1A and 1E). 

Strand bias with preferences for the untranscribed strand was observed for signatures ID11 

and SBS33 (both with unknown etiology). Lastly, other mutational signatures exhibited 

transcription strand asymmetry in only a small subset of cancer types (Figures 1A and 1E).
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Mutational signatures in genic and intergenic regions

Except for SBS16 and ID11, all other signatures were enriched in intergenic regions across 

most cancer types, with the enrichment ranging from 1.30-fold (e.g., SBS24) to more than 

2-fold (e.g., SBS17a/b; Figures S1A–S1C). The observed depletion of mutations in genic 

regions was not due to transcription strand asymmetries, as correcting the asymmetries, 

by assigning the number of mutations on both transcribed and untranscribed strands to 

their highest value, resulted in only minor alterations of the fold change increases (Figures 

S1D and S1E). Overall, these results suggest that transcription strand asymmetry, usually 

attributed to the activity of TC-NER, does not account for the high enrichment of somatic 

mutations in intergenic regions.

SBS16 and ID11 showed enrichment of mutation in genic regions in liver and esophageal 

cancers, while ID11 was also enriched in genic regions in cancers of the head and 

neck. SBS16 has been previously associated with exposure to alcohol29–31 and has been 

attributed to the activity of TC damage.22 Prior studies have also associated ID11 with 

alcohol consumption in esophageal cancers.7 Re-examining ID11 in the current cohort of 

whole-genome-sequenced liver cancers, by comparing the mutations attributed to ID11 in 

32 heavy drinkers with the mutations attributed to ID11 in 94 light drinkers, reveals a 

2-fold enrichment in heavy drinkers (p = 1.31 × 10−3; Mann-Whitney Utest). This and the 

prior associations in esophageal cancers7 strongly suggest a similar exogenous mutational 

processes, related to alcohol consumption, accounting for the enrichment of mutation in 

genic regions for both signatures SBS16 and ID11.

Replication strand asymmetries

Replication strand bias was consistently observed in most signatures attributed to aberrant 

or defective endogenous mutational processes with strand bias either on the leading or 

on the lagging strand (Figures 1B and 1F). Strong replication strand asymmetries with 

enrichment of mutations on the leading strand were observed for signatures previously 

attributed to the defective activity of polymerases, including (1) SBS10a/SBS10b/DBS3 

found in samples with exonuclease domain mutations in DNA polymerase epsilon (POLE); 

(2) SBS9, attributed to infidelity of polymerase eta (POLH); and (3) SBS10c due to 

defective polymerase delta (POLD1). Interestingly, SBS28 (unknown etiology) exhibited 

a strong replication strand bias when found at high levels in POLE-deficient samples.

Mutational signatures associated with defective DNA mismatch repair exhibited statistically 

significant replication strand bias either predominately on the leading strand (viz., SBS6) 

or on the lagging strand (viz., SBS14, SBS15, SBS20, SBS21, SBS26, SBS44, ID1). There 

were some minor inconsistencies of replication strand bias across cancer types. For example, 

SBS44 did not have replication strand asymmetry for C>T, T>A, and T>C mutations in 

esophageal squamous cell carcinoma (Figure 1D). Somatic mutations due to signatures 

SBS2 and SBS13, both attributed to the aberrant behavior of the APOBEC3 family of 

deaminases,32 were found enriched on the lagging strand in all cancer types. This result is 

consistent with the observation that single-stranded DNA formed during DNA replication on 

the lagging strand is a major substrate for the APOBEC3 family of deaminases.33,34 Lastly, 
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several other mutational signatures, most with unknown etiology, exhibited replication 

strand bias within a small set of cancer types (Figures 1B and 1F).

Strand-coordinated mutagenesis

Prior analyses have shown that certain types of mutations on the same reference allele 

were observed on the same strand more frequently than expected by chance.21,34,35 These 

strand-coordinated clustered mutations usually arise due to damage on single-stranded DNA, 

and they are often indicative of the formation of hypermutable loci in the genome.33,34

SBS7a, attributed to ultraviolet (UV) light, attained the highest strand-coordinated 

mutagenesis with lengths of subsequent mutations up to 40 consecutive mutations (Figure 

1G). In contrast, other mutational signatures attributed to UV light, mainly SBS7b/c/d, 

either did not exhibit or exhibited much lower strand-coordinated mutagenesis. APOBEC3-

attributed SBS2 and SBS13 showed strand-coordinated mutagenesis with as many as 21 

consecutive strand-coordinated mutations. Additionally, strand-coordinated mutations were 

observed for SBS17b (unknown etiology), SBS10a/b (POLE deficiency), SBS4 (tobacco 

smoking), SBS26 (defective mismatch repair), and SBS28 (unknown etiology).

The effect of DNA replication timing

Consistent with prior reports,18,36–38 the aggregated set of somatic mutations was shown 

to be enriched in late-replicating regions for most cancer types (Figure 2A). Specifically, 

from the examined 40 cancer types, SBSs were found to be more common in regions of 

the genome that undergo late replication in 39/40 cancer types and were not associated 

with replication only in uveal melanoma (Figure 2A). Similarly, DBSs and IDs were 

enriched in late-replicating regions in 18/18 and 30/32 cancer types, respectively. Note 

that due to their lower mutational burdens, we could confidently evaluate DBSs and 

IDs only in a subset of cancer types. In agreement with the aggregated analysis, most 

mutational signatures imprinted somatic mutations with an increased normalized mutational 

density from early- to late-replicating regions (Figure S2). For example, SBS3 (defective 

homologous recombination) was enriched in late-replicating regions in all 14 cancer types 

where the signature can be confidently evaluated. Other examples include signatures DBS2 

and ID1, which were also consistently enriched in all examined cancer types (Figure 2B).

Nevertheless, at least seven mutational signatures were found predominately enriched in 

early-replicating regions, including ID17, likely due to TOP2A mutations; SBS11, due to 

temozolomide therapy; SBS16 and ID11, both associated with alcohol consumption; SBS6 

and SBS15, both attributed to mismatch repair deficiency; and SBS84 due to the aberrant 

activities of activation-induced (AID) cytidine deaminases (Figures 2C and S2). Moreover, 

multiple mutational signatures were generally unaffected by replication timing, including 

SBS7b (UV light); SBS20, SBS21, and SBS44 (attributed to failure of mismatch repair); 

SBS30 (deficient base excision repair); and SBS39 and ID12 (unknown etiology; Figures 

2D and S2). The lack of association with replication timing for some of these mutational 

signatures can be potentially attributed to the activity of DNA translesion polymerases.39,40

Interestingly, a number of mutational signatures exhibited cancer-type-specific associations 

with replication timing (Figures 2E and Figure S2). For example, signature ID8 was 
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enriched with replication timing in 5 cancer types, was depleted in 6 cancer types, and 

was unaffected by replication timing in 7 cancer types (Figure 2E). Multiple etiologies have 

been associated with ID8,4,41 including mutations resulting in K743N amino acid change in 

TOP2A. All samples harboring such mutations in TOP2A exhibited an enrichment of ID8 in 

early-replicating regions (Figure 2E). The other cancer-type-specific mechanisms resulting 

in different associations with replication timing for ID8 remain unknown.

Another notable example of cancer-type-specific associations with replication timing is the 

APOBEC3-associated SBS13 (Figure S2). SBS13 showed no dependence on replication 

timing in 7/17 cancer types (viz., bladder, breast, uterus, cervix, ovary, thyroid, and acute 

lymphocytic leukemia; Figure 2F). This behavior is consistent with prior reports where 

SBS13 was attributed to uracil excision of deaminated cytosine followed by processing 

by DNA translesion polymerases in breast cancer.39,40 Surprisingly, in 10/17 cancer types, 

SBS13 was highly enriched in late-replicating regions. Using a previously defined approach 

for separating the cancer samples into ones where SBS13 is not a hypermutator (low 

APOBEC3) and ones where SBS13 is a hypermutator (high APOBEC3) revealed that the 

lack of dependence on replication timing is predominately characteristic for hypermutated 

samples (Figure 2F). This result indicates that DNA translesion polymerases may play a 

significantly larger role in APOBEC3 hypermutators than previously anticipated.

The effect of nucleosome occupancy

Nucleosomes are the basic packing units of chromatin, with each nucleosome consisting 

of ~147 base pair (bp) DNA wrapped around a histone octamer with 60–80 bp linker 

DNA between consecutive nucleosomes.42,43 Previous analyses have revealed dependencies 

between mutational signatures operative in breast cancer and nucleosome occupancy21 as 

well as a pan-cancer periodicity of mutation rates within nucleosomes due to multiple 

substitution signatures.24 However, beyond breast cancer, there has been no cancer-specific 

examination of the effect of nucleosome occupancy on different mutational signatures.

Aggregated somatic mutations and mutations attributed to most mutational signatures were 

depleted near nucleosomes compared to simulated data that mimic the mutational landscapes 

of the examined cancer genomes (Figure 3A). Remarkably, the majority of SBS, DBS, and 

ID mutational signatures were similarly affected by nucleosome occupancy across most 

cancer types (Figure S3). Some signatures were consistently enriched in the vicinity of 

nucleosomes. For example, clock-like signature SBS1 exhibited a pattern closely mimicking 

simulated data and showing a higher number of mutations at nucleosomes in 36/36 cancer 

types, including cancers of the lung, head and neck, liver, and esophagus (Figure 3B). In 

contrast, some signatures were markedly different from the simulated data (Figure S3), 

including signature DBS2, which was consistently depleted across 13/13 cancer types 

(Figure 3C). Moreover, some signatures were depleted in nucleosomes and, strikingly, 

appeared at linker DNA (Figure S3). For example, clock-like signature ID1 was depleted 

when compared to simulated data, and it exhibited depletion in nucleosomes in 24/24 of 

the examined cancer types (Figure 3D). The mutations engraved by most flat mutational 

signatures (e.g., SBS5, SBS8, SBS40) were generally unaffected by nucleosomes (Figure 

S3).
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Different types of periodicities of mutation rates around the nucleosome structure were 

observed for signatures associated with tobacco smoking (SBS4 and ID3), UV light 

(SBS7a/b/c/d), POLE deficiency (SBS10a), aristolochic acid (SBS22), and reactive oxygen 

species (SBS18, SBS36, and SBS38; Figures 3E and S3). Interestingly, signatures SBS17a/b 

also showed similar periodic dependencies (Figure 3E), providing further circumstantial 

evidence for the hypothesis that SBS17a/b may also be due to reactive oxygen species 

damage of the deoxyribonucleoside triphosphate pools.23,44–48 With the exception of 

signatures SBS22 and ID3, all other periodic signatures exhibited enrichment of mutations 

at nucleosomes (Figures 3E and 3G). Further, for most signatures, periodicity of mutation 

rates was observed in each cancer type where the signature was operative (Figure S3). 

Nevertheless, signature SBS4 showed strong periodicity in cancers of the lung and head 

and neck but not in cancers of the liver or esophagus (Figure 3F). Similarly, signature ID3 

exhibited periodic behavior only in cancers of the lung but not in any other cancer type 

(Figure 3G).

The effect of CTCF binding

CTCF is a multi-purpose, sequence-specific DNA-binding protein with an essential role in 

transcriptional regulation, somatic recombination, and chromatin architecture.49 The human 

genome harbors many CTCF binding sites with prior studies reporting that mutations due to 

UV light are enriched in CTCF binding sites.50

Somatic mutations exhibited clear patterns of both enrichment and/or periodicity for 

multiple mutational signatures and CTCF binding sites (Figure 4). While some signatures 

were consistently depleted at CTCF biding sites across the majority of cancer types when 

compared to simulated data (SBS1, SBS9, SBS10a/b, SBS15, SBS37, SBS84, and SBS85), 

others were commonly enriched (SBS3, SBS5, SBS7a/b/d, SBS12, SBS17a/b, SBS18, 

SBS22, and SBS40; DBS1; ID5, ID6, ID8, and ID9; Figure 4A).

Aggregated SBSs exhibited an inconsistent behavior across cancer types with enrichment in 

some cancers (e.g., liver cancers) and depletions in others (e.g., lymphomas). In contrast, 

IDs were enriched at CTCF binding sites in the majority of cancer types (Figure 4A). 

Remarkably, the effect of CTCF occupancy tended to be also consistent for many signatures 

with similar etiologies. Strong periodicities of mutation rates around CTCF binding sites 

were observed for UV-associated signature SBS7a but not for UV-associated signatures 

DBS1 and SBS7b/c/d (Figure 4B).

Mutations due to SBS9, associated with defective POLH-driven replication errors, and 

signatures SBS10a/b, found in samples with mutations in POLE and/or POLD1, were 

strikingly depleted at CTCF binding sites. Signature SBS15, associated with microsatellite 

instability, was strongly depleted at CTCF binding sites (Figure 4A).

Only one of the clock-like signatures, SBS1, exhibited a depletion of mutations at CTCF 

binding sites (Figure 4A), while simulated data indicated that SBS1 should be enriched at 

these sites (Figure 4B). Signature SBS3, attributed to defective homologous recombination, 

was highly elevated in CTCF binding sites for breast, ovarian, stomach, and esophageal 

cancers. Signatures SBS17a/b exhibited a striking enrichment at CTCF binding sites 
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in all cancer types with a sufficient number of mutations from each signature (Figure 

4A). SBS17a showed enrichment in stomach and esophageal cancers, while SBS17b 

showed enrichment for stomach, esophageal, breast, pancreatic cancers, and non-Hodgkin’s 

lymphomas. In contrast, simulated data indicate that CTCF binding should have no effect on 

the accumulation of mutations from signatures SBS17a/b (Figure 4B).

The effect of histone modifications

Each nucleosome consists of four pairs of core histones: H2A, H2B, H3, and H4. Post-

translational modifications of histone tails play a key role in regulating DNA replication, 

gene transcription, and DNA damage response.51 To evaluate the effect of histone 

modifications on the accumulation of mutations from different mutational signatures, 

we mapped the depletion or the enrichment of mutations compared to simulated data 

in the context of the tissue-specific positions of 11 histone modifications: (1) H2AFZ, 

a replication-independent member of the histone H2A family that renders chromatin 

accessible at enhancers and promoters, regulating transcriptional activation and repression52; 

(2) H3K4me1, a histone mark often associated with enhancer activity53; (3) H3K4me2, 

a histone post-translational modification enriched in cis-regulatory regions, including both 

enhancers and promoters54; (4) H3K4me3, a post-translational modification enriched in 

active promoters near transcription start sites55; (5) H3K9ac, associated with active gene 

promoters and active transcription56; (6) H3K9me3, a silencer and a typical mark of 

constitutive heterochromatin57; (7) H3K27ac, a histone modification generally contained 

at nucleosomes flanking enhancers55; (8) H3K27me3, which is repressive and associated 

with silent genes58; (9) H3K36me3, associated with transcribed regions and playing a role 

in regulating DNA damage repair59; (10) H3K79me2, detected in the transcribed regions 

of active genes60; and (11) H4K20me1, found in gene promoters and associated with gene 

transcriptional elongation and transcription activation.61

Aggregated substitutions, dinucleotides, and IDs exhibited dissimilar behavior for 

different histone modifications across cancer types (Figure S4). Aggregated substitutions 

were predominately depleted around H2AFZ, H3K4me2, H3K4me3, and H3K27ac in 

approximately half of the examined cancer types (Figure S4A). Aggregated doublets 

and IDs did not have any clear pan-cancer preference but showed cancer-type-specific 

enrichments and depletions (Figures S4B and S4C). In contrast, the majority of mutational 

signatures had generally similar behavior in the vicinity of different histone modifications, 

revealing that histone modifications have similar effects on mutagenesis across cancer types 

(Figure S4). Most SBS mutational signatures were either unaffected or were depleted near 

histone marks (Figure S4A). Notable exceptions were APOBEC3-associated signatures 

SBS2 and SBS13, AID-associated signatures SBS84 and SBS85, and POLH-attributed 

SBS9, which were generally enriched near most histone modifications (Figure S4A). 

Doublet signatures DBS1, DBS2, DBS3, DBS4, and DBS5 were also predominately 

depleted near most histone marks (Figure S4B). In contrast, signatures DBS7, DBS9, and 

DBS11 were highly enriched near most histone marks. Most ID mutational signatures were 

either unaffected or very highly enriched near histone marks (Figure S4C), with the only 

exceptions being depletions of (1) ID1 and ID6 near H2AZ, (2) ID3 in the vicinity of 

H3K4me3, (3) ID5 near H3K27me3, and (4) ID14 in the vicinity of H3K36me3. While 
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enrichments and depletions of somatic mutations in the vicinity of histone marks were 

commonly observed for different mutational signatures (Figures S4A–S4C), there was no 

specific pattern of mutations within 1,000 bp for any of the examined histone modifications. 

Exemplars of typically observed patterns of enrichments, depletions, or no changes around 

different histone modifications are provided for signatures SBS7a and ID1 across several 

histone modifications (Figure S5D).

Next, we examine two mutational signatures that exhibited inconsistent enrichments 

and depletions near specific histone marks. Clock-like signature SBS1 was consistently 

depleted across cancer types for multiple histone marks, including H3K9me3 (Figure 5A). 

Nevertheless, SBS1 exhibited enrichment of mutations near H3K9me3 in two cancer types 

of the central nervous system, depletion of mutations near H3K9me3 in three hematological 

malignancies, and no effect in all other solid tumor types (Figure 5A). Similarly, signature 

ID1 exhibited dissimilar behavior near H3K27ac with enrichments in medulloblastoma and 

lymphoma, depletions in stomach and prostate cancer, and no change in most other cancer 

types (Figure 5B).

DISCUSSION

Our analysis provides a comprehensive resource that maps the effects of topographical 

genomic features on the accumulation of somatic mutations from distinct mutational 

signatures. The reported results confirmed many of the prior observations for strand 

asymmetry, replication timing, and nucleosome periodicity for some of the original 30 

COSMICv.2 SBS signatures.21,23,24 The examined larger dataset provided us with a greater 

resolution to identify previously unobserved pan-cancer and cancer-specific dependencies 

for some of these 30 signatures as well as to reveal the effect of genome architecture on 

the accumulation of another 46 mutational signatures across human cancer. Importantly, this 

report also provides the first-ever examination of the tissue-specific effect of CTCF binding 

and 11 different histone modifications on the accumulation of somatic mutations from 

different mutational signatures. In addition to the comprehensive global view in the results 

section, in this discussion, we zoom in on two specific case studies to further illustrate the 

power of using this resource for examining the topography of mutational signatures.

First, analysis of SBS28 in POLE-deficient samples (POLE−) and POLE proficient samples 

(POLE+) revealed a distinct behavior (Figure 6). While the trinucleotide patterns of SBS28 

in POLE+ and POLE− samples were similar (cosine similarity: 0.96), SBS28 in POLE− 

samples accounted for 97.7% mutations of all SBS28 mutations, and it exhibited a clear 

enrichment in late-replicating regions as well as depletions at nucleosomes and at CTCF 

binding sites (Figures 6B–6D and 6F). Moreover, SBS28 in POLE− samples showed a 

strong replication strand bias on the leading strand and exhibited a strand-coordinated 

mutagenesis with as many as 11 consecutively mutated substitutions (Figures 6E and 6G). 

In contrast, SBS28 in POLE+ samples were enriched in early replication regions, lacked 

depletion of mutations at nucleosomes or CTCF binding sites, had weak replication strand 

bias on the lagging strand, and did not exhibit much of a strand-coordinated mutagenesis 

(Figure 6). Based on these topographical differences, we have now split SBS28 into 

two distinct signatures: (1) SBS28a due to POLE deficiency found in ultra-hypermutate 
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colorectal and uterine cancers and (2) SBS28b with unknown etiology found in lung and 

stomach cancers.

Second, our analyses revealed striking differences in topographical features of clustered 

and non-clustered somatic mutations in 288 whole-genome-sequenced B cell malignancies.4 

In particular, the topographical behaviors of SBSs were examined after separating them 

into non-clustered mutations, diffuse hypermutation of substitutions termed omikli,62 and 

longer clusters of strand-coordinated substitutions termed kataegis.34,35,63 In contrast to 

most cancer types, where omikli and kataegis are predominately generated by APOBEC3 

deaminases,64 in B cell malignancies, these clustered events are almost exclusively 

imprinted by the activity of AID.64 Further, the overall pattern of non-clustered mutations 

was very different than the ones of omikli or kataegis. A representative example is 

provided using a single malignant B cell lymphoma (Figure 7A) where non-clustered 

and clustered mutations have very different trinucleotide patterns (Figures 7B–7D). Non-

clustered mutations exhibited different topographical features when compared to omikli or 

kataegis. Specifically, while non-clustered mutations had some minor periodicity in regard to 

nucleosome occupancy, such periodicity was not observed for any type of clustered events 

(Figure 7E). Similarly, non-clustered mutations were slightly depleted around CTCF binding 

sites, while omikli and kataegis were very highly depleted (Figures 7F and 7H). Further, 

non-clustered and omikli events were clearly enriched in late replication regions, while 

kataegis was highly enriched in early replication regions (Figure 7G). Distinct patterns of 

enrichments were also observed for both omikli and kataegis mutations in the vicinity of 

promoter and enhancer sites delineated by histone marks of H3K4me3, H3K9ac, H3K27ac, 

H3K36me3, and H4K20me1(Figure 7H). Only very minor differences were observed for 

transcription or replication strand asymmetries between clustered and non-clustered somatic 

mutations across the 288 whole-genome-sequenced B cell malignancies (Figure S5).

In summary, in this resource, we have performed a comprehensive topography analysis of 

mutational signatures encompassing 82,890,857 somatic mutations in 5,120 whole-genome-

sequenced tumors integrated with 516 tissue-matched topographical features from the 

ENCODE project. Our evaluation encompassed examining the effects of nucleosome 

occupancy, histone modifications, CTCF binding sites, replication timing, transcription 

strand asymmetry, and replication strand asymmetry on the accumulation of somatic 

mutations from more than 70 distinct mutational signatures. The results from these analyses 

have been provided as an online resource as a part of COSMIC signatures database, https://

cancer.sanger.ac.uk/signatures/, where researchers can explore each mutational signature as 

well as each topographical feature in a cancer-specific manner.

Limitations of the study

As in the majority of previous examinations, the performed topography analyses relied 

on previously generated ENCODE experimental datasets for the presence or absence of 

each topographical feature. Thus, these topographical features were mapped in samples 

unrelated to the examined cancers and do not provide a perfect representation of the 

genome topography throughout the lineage of a cancer cell. Future studies will be required 

to evaluate whether genome topography changes during cancer evolution and whether 
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these changes have any effect on the accumulation of mutations from different mutational 

processes.

STAR★METHODS

Detailed methods are provided in the online version of this paper and include the following:

RESOURCE AVAILABILITY

Lead contact—Further information and requests for resources should be 

directed to and will be fulfilled by the lead contact, Ludmil B. Alexandrov 

(L2alexandrov@health.ucsd.edu).

Materials availability—This study did not generate new unique reagents beyond the 

analyzed data and the developed source code (see below).

Data and code availability

• All topographical data and figures regarding topography of mutational signatures 

in human cancer generated in this study have been deposited at COSMIC, 

Catalog of Somatic Mutations in Cancer (https://cancer.sanger.ac.uk/signatures/), 

through COSMIC Signatures v3.3, released on May 27th, 2022 and are currently 

publicly available.

• All original Python code has been deposited on GitHub and is publicly available 

as of the date of publication. Links to GitHub repositories are listed in the key 

resources table.

• This paper analyses existing publicly available datasets. Accession numbers for 

the datasets are listed in the key resources table.

• Any additional information required to reanalyse the data reported in this paper 

is available from the lead contact upon request.

METHOD DETAILS

Simulating synthetic cancer datasets—Synthetic cancer datasets were simulated 

using SigProfilerSimulator.66 Briefly, the tool randomly generated single base substitutions 

(SBSs), doublet base substitutions (DBSs), and small insertions and deletions (IDs) while 

maintaining the patterns of the original somatic mutations in each sample at a preselected 

resolution. Simulations were performed 100 times for each examined cancer genome while 

maintaining the mutational burden on each chromosome in each sample. All simulations 

were performed using SBS-96, DBS-78, and ID-83 mutational classification schemas.65 

Briefly, SBS-6 represents single base substitutions in 6 mutational classes (C>A, C>G, 

C>T, T>A, T>C, T>G) considering the pyrimidine base of the Watson-Crick base-pair for 

each somatic mutation. SBS-96 is a further expansion of SBS-6 mutational classification 

by adding the immediate 5′ and-3′ adjacent bases for each somatic mutation within 

the representation of every mutation. DBS-78 catalogs doublet-base substitutions in 78 

mutational channels using the maximum pyrimidine context of the Watson-Crick base-

pairs,65 whereas ID-83 classifies small insertions and deletions into 83 mutational channels 
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by considering the size of the ID event and the repeat size surrounding the insertion or 

deletion event.65

Assigning signature probabilities to somatic mutations—The performed 

topography analyses are based on the assignment of signature probabilities to each 

individual somatic mutation. For this purpose, SigProfilerExtractor was utilized for de 
novo extraction of mutational signatures and decomposition of de novo extracted signatures 

to the set of reference COSMIC mutational signatures.4,5 After Poisson resampling and 

normalization of the original mutational matrix for each replicate, SigProfilerExtractor 

performs nonnegative matrix factorization for multiple iterations to identify an optimal 

solution. Briefly, SigProfilerExtractor identifies the optional decomposition rank k by 

performing decompositions with different ranks and applying consensus clustering to 

identify a stable solution that best explains the underlying data.4,5 After extracting de novo 
mutational signatures, each de novo signature is matched to a COSMIC mutational signature 

and the COSMIC signatures are assigned using a penalized nonnegative least square 

approach.4,5 Moreover, SigProfilerExtractor automatically assigns a probability for each 

operative signature to generate every individual mutation within all examined samples.4,5

Matching cancer types with ENCODE datasets—Experimental data were 

downloaded from ENCODE for each evaluated topographical feature (Table S1). When 

multiple ENCODE datasets were used for the same topographical feature in a cancer 

type, analyses were performed for all ENCODE datasets and the results were averaged 

across the examined datasets. Any ENCODE genomic coordinates reported using GRCh38 

annotations were first remapped to GRCh37 annotations using liftOver with exclusion of 

any ambiguously mapping regions.67 ENCODE files in bigWig file format were converted 

into wig files using bigWigToWig file format conversion software.67

We analyzed a total of 82,890,857 somatic mutations (79,269,539 single base substitutions, 

429,179 doublet-base substitutions, and 3,192,139 small insertions and deletions) from 40 

cancer types derived using 5,120 whole-genome sequenced samples from PCAWG, PCAWG 

other, and MUTOGRAPHS projects.4,7 Cancer types were matched to the closest available 

ENCODE datasets (Table S1). Topography analyses were performed both across all cancer 

types as well as within each individual cancer-type. The global pan-cancer analyses are 

shown in the manuscript while all individual cancer-type analyses are available through the 

COSMIC database: https://cancer.sanger.ac.uk/signatures/

Annotating somatic mutations based on cellular transcription—Somatic 

mutations were called with respect to + strand of the reference genome and 

annotated in regard to the pyrimidine base of the mutated base pair.65 Specifically, 

SigProfilerMatrixGenerator65 was used for examining transcriptional strand asymmetry for 

single base substitutions, doublet base substitutions, and small insertions and deletions. The 

tool evaluates whether a mutation occurs on the transcribed or the non-transcribed strand 

of well-annotated protein coding genes of the human reference genome. Mutations found 

in the transcribed regions of the human genome are further subclassified as transcribed or 

un-transcribed. Any mutations in bidirectionally transcribed regions were ignored in the 

current analysis. Additionally, mutation found outside the transcribed regions of the human 
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genome are subclassified as non-transcribed. In all cases, mutations were oriented based on 

the reference strand and their pyrimidine context.

Annotating somatic mutations based on cellular replication—For each cancer 

type of interest, genomic regions were annotated either as being on the leading or being 

on the lagging strand using our previously developed approach.21 Briefly, analyses were 

performed for tissue-matched wavelet-smoothed replication timing signal data incorporated 

with valleys (replication termination zones) and peaks (replication initiation zones) data. 

Valleys and peaks were sorted with respect to their genomic coordinate in ascending 

order. Each consecutive stretches of DNA of at least 10 kilobases long with positive 

slope corresponded to leading strand regions on the positive strand, whereas negative slope 

provided lagging strand regions on the positive strand. We discarded the latest 25 kilobases 

of the replication termination zones to be stringent in our annotations. Having annotated 

genome regions as leading regions (+slope) and lagging regions (− slope) on the positive 

strand, we automatically acquired leading regions (− slope) and lagging regions (+slope) on 

the negative strand. Mutations were counted as being on leading strand or lagging strand 

based on their occupancy in a leading or lagging region. Similar to the annotation for 

transcription, in all cases, mutations were first oriented based on the reference strand and 

their pyrimidine context.

Detecting strand asymmetries across cancer types—For each mutational signature 

and for all cancer types having this mutational signature, we retrieved the number of 

mutations on each strand/region in six mutational channels (C>A, C>G, C>T, T>A, T>C, 

and T>G). p values were calculated for the odds ratio between the ratio of real mutations and 

the ratio of simulated mutations. Specifically, for transcription strand asymmetry odds ratios 

were calculated between the ratios of real mutations and the ratios of simulated mutations, 

where each ratio is calculated using the number of mutations on the transcribed strand 

and the number of mutations on the untranscribed strand. Similarly, for replication strand 

asymmetry odds ratios were calculated between the ratios of real mutations and the ratios 

of simulated mutations, where each ratio is calculated using the number of mutations on 

the lagging strand and the number of mutations on the leading strand. Lastly, for genic 

and intergenic regions, odds ratios were calculated between the ratios of real mutations 

and the ratios of simulated mutations, where each ratio is calculated using the number of 

mutations in the genic regions and the number of mutations in the intergenic regions. p 

values were computed using Fisher’s exact test and corrected for multiple testing using 

Benjamini-Hochberg method. Only strand asymmetries with corrected p value ≤ 0.05 and 

odds ratios above 1.10 were considered and reported as part of the presented results.

Detecting strand-coordinated mutagenesis of mutational signatures—Analyses 

of strand-coordinated mutagenesis searched for consecutive single base substitutions on 

the same DNA strand with intermutational distance less than 10,000 base-pairs within the 

same sample as previously done for breast cancer in.21 To find the consecutive mutations, 

all the single base substitutions in a sample were first assigned to the SBS signature 

with the highest probability, and only the mutations with the probability greater than or 

equal to a pre-set cut-off value of at least 0.50 were retained (i.e., at least 50% chance 
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for a signature to have generated that mutation). Somatic mutations were sorted in an 

ascending order in regard to chromosomal positions and consecutive groups of substitutions 

with the same mutational context, on the same DNA strand, and attributed to the same 

substitution signature were identified. Where applicable, consecutive groups of substitutions 

were combined with the appropriate adjustments of their group lengths. Any consecutive 

groups of substitutions with length of 1 were discarded. All results coming across different 

samples were pooled. For each SBS signature and strand-coordinated mutagenesis group 

length, the observed number of groups for real mutations and the expected number of groups 

coming from 100 simulated datasets were compared with the simulated datasets serving 

as null hypotheses. p values were computed using z-tests evaluating whether the mean 

values of the expected number of groups for each simulated dataset were equal to the mean 

values of the observed number of groups for each observed dataset. The computed p values 

were corrected for multiple testing using Benjamini-Hochberg method. SBS signatures and 

strand-coordinated mutagenesis group lengths with corrected p value ≤ 0.05 were considered 

and reported as part of the presented results.

Analyses of replication timing—As previously done in breast cancer, wavelet-

smoothed signal data were used in the replication timing analysis.21 Briefly, cancer types 

were matched with ENCODE data from the most suitable tissue or cell line and the 

corresponding Repli-seq dataset was utilized in the analysis (Table S1). Given the Repli-

Seq signal data for a tissue of interest, a higher replication time signal reflects an earlier 

replication timing. The replication time signals were each sorted in a descending order 

and, subsequently, the sorted replication time signals were divided into deciles. Each decile 

contains approximately 10% of each replication time signal. Somatic mutations of interest 

were distributed within the corresponding deciles based on their overlap with the replication 

domains in the examined deciles. To correct for genomic size, mutation densities were 

calculated by dividing the numbers of somatic mutations within each decile by the number 

of attributable bases of adenine, thymine, guanine, and cytosine (excluding any ambiguous 

genomic annotations in the reference genome). To compare replication timing of different 

mutational signatures with each other, mutation densities were further normalized with 

respect to the highest mutation density observed for each respective signature. Lastly, 

as with other analyses, the reported replication timing analyses included only signatures 

with at least 1,000 somatic mutations unambiguously attributed to an individual mutational 

signature.

Mutational signature and cancer type specific replication timing analysis
—To compare the replication timing between real and simulated somatic mutations, 

cancer-type specific normalized mutation densities were calculated for real mutations, 

xreal = xreal
1 , xreal

2 , …, xreal
10 ⊤, and for each of the 100 simulated synthetic cancer datasets, 

Xsim_i = xsim_i
1 , xsim_i

2 , …, Xsim_i
10 ⊤, where sim− i = 1,2, …, 100. Normalized mutation density 

vectors generated based on each simulated dataset were combined and the matrix 

Xsims = Xsim_1, Xsim_2, …, Xsim_100
⊤ was generated. Mean simulated vector, X‾ sims, standard 

deviation vector, σsims
x , and their 95% confidence intervals were calculated using SciPy. As a 

result, normalized mutation densities of real mutations across replication timing deciles, xreal; 
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were compared to the averaged normalized mutation densities of simulated mutations across 

replication timing deciles, x‾sims. Results were further averaged across all cancer types in order 

to generate the summary plots presented in the manuscript.

To classify whether the mutation density was increasing, flat, or decreasing in regards to 

replication timing, we fitted a linear regression model to the values of the normalized 

mutation densities, xreal. A mutational signature was considered to be increasing from early 

to late replicating regions if the slope m was statistically significant from a flat line and the 

values of xreal were monotonically increasing. A mutational signature was considered to be 

decreasing from early to late replicating regions if the slope m was statistically significant 

from a flat line and the values of xreal were monotonically decreasing. Lastly, a mutational 

signature was considered to be generally unaffected by replication timing if the slope m was 

not statistically significant from a flat line.

Occupancy analysis of topographical features—Genomic occupancy analysis 

evaluated the relationship between mutational signatures and the genomic locations of 

different topographical features, including: (i) nucleosomes; (ii) transcription factors; 

and (iii) histone modifications. Specifically, occupancy analysis of topographical features 

focused on mutations within a specific genomic window, and it evaluated the average 

experimental signal of a particular topographical feature. In all cases, this window was 

centered on a somatic mutation, and the window began 1,000 base-pair (bp) 5′ of a mutation 

and ended 1,000 bp 3′ of a mutation; for example, this resulted in a region 2,001 bp for each 

examined somatic single base substitution. For a given topographical feature, the analysis 

evaluated the experimental signal for a set of cancer-matched datasets from ENCODE by 

averaging the signal across the regions of interest. For example, to evaluate the connection 

between SBS2 and CTCF binding in breast adenocarcinoma, our analysis utilized 4 datasets 

of chromatin immunoprecipitation followed by sequencing (ChIP–seq) from breast tissues in 

ENCODE (Table S1); for each mutation unequivocally attributed to SBS2 in the examined 

breast cancers, the CTCF signals within 2,001 bp around the mutation were averaged across 

the 4 examined datasets. As in other analysis, the reported occupancy results included only 

signatures with at least 1,000 unequivocally attributed somatic mutations to that specific 

mutational signature within each examined cancer type.

Next, we averaged both the real and simulated mutations in two rounds where the first 

round of accumulation and averaging was across all mutations for each cancer-type 

matched ENCODE dataset and the second round of accumulation and averaging was across 

all cancer-type matched ENCODE datasets. For real mutations, in the first round, for 

each cancer-type matched ENCODE dataset, we accumulated the average signal vectors 

coming from all real somatic mutations. This resulted in a cancer-type specific vector 

Kreal = kreal
0 , kreal

1 , …, kreal
2000 ⊤, where Kreal is the average signal of the topographical feature of 

interest in a 2,001 bp window using all real mutations. In the second round, we accumulated 

the average signal vectors Kreal that were attained in the first round coming from each 

cancer-type matching ENCODE dataset and derived their average for the total number of 

considered ENCODE datasets. This results in a global vector Mreal = mreal
0 , mreal

1 , …, mreal
2000 ⊤, 

where Mreal represents the average signal of the topographical feature in a 2,001 bp window 
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using all cancer-type matching ENCODE datasets. The same procedure was repeated for 

each of the 100 simulated synthetic cancer datasets resulting in an average Ksims for a 

signature and topographical feature within each cancer type as well as an average Msims

for a signature and topographical feature across all cancer types. For each signature and 

topographical feature, comparisons between Kreal and Ksims were performed within each cancer 

type while a global comparison was performed between Mreal and Msims. Linear correlations 

were performed to evaluate whether the occupancy signal within ±500 base-pair windows 

around a somatic mutation for a cancer type, Kreal, is correlated with the average signal 

across all cancer types Mreal. Any statistically significant Pearson’s correlations, based on 

Benjamini-Hochberg corrected and z-test computed p value ≤ 0.05, were reported as part of 

the presented results.

Abundance analysis of mutational signatures and topographical features—
In addition to performing occupancy analysis, our abundance analysis evaluated the 

enrichment, depletion, or no relationship between mutational signatures and topography 

features of interest. Specifically, we investigated the relationships between mutational 

signatures and the following topographical features: (i) nucleosomes; (ii) transcription 

factors; and (iii) histone modifications. For each mutational signature and topography 

feature, we examined whether there is an enrichment, depletion, or no statistically 

significant relation between the mutational signature and the topography feature of interest 

by comparing the real somatic mutations with the sets of simulated somatic mutations. 

Specifically, the average signal vector of real mutations for each cancer-type matched 

ENCODE dataset, Kreal, was obtained as described in the occupancy analysis. An average 

value, Sreal; was derived for ±50 bp window centered at the somatic mutations for each 

cancer-type matched ENCODE dataset. Similar analysis was performed for the 100 

simulated cancer datasets, which allowed deriving a Ksim average vector and ssim average 

value.

To evaluate whether this average signal value of real mutations, sreal, was expected by 

chance given the average signal values coming from 100 simulations, ssim_i for i = 1,2, …, 100, 

we assessed the statistical significance of each fold change and associated it with a p 

value. Average signal value for real mutations was determined as observed value, Sreal, and 

average signal values coming from 100 simulations were determined as expected values, 

Ssim_1, Ssim_2, …, Ssim_1100 ⊤. Z-test was applied to test whether the observed value was the 

mean of expected values under null hypothesis and a p value together with a test statistic 

were obtained. The computed p values were corrected for multiple testing using Benjamini-

Hochberg method and only p values ≤ 0.05 were considered and reported as part of the 

presented results. In case of multiple ENCODE datasets availability for a certain cancer 

type and topography feature of interest, the calculated p values coming from each cancer-

type matched ENCODE dataset were pooled and combined using Fisher’s method. In this 

cases, p values were corrected for multiple testing using Benjamini-Hochberg method after 

combining. Likewise, calculated fold changes acquired from each ENCODE dataset were 

averaged and average fold change was obtained.
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Classifying cancers into ones with low and ones with high APOBEC3 
mutations—Each cancer sample with operative APOBEC3-associated signatures SBS2 

or SBS13 was classified as either having low, mid, or high APOBEC3 presence. Specifically, 

we utilized a previously developed scheme for calculating APOBEC3 presence,73 where a 

ratio was derived as the natural logarithm of the total number of mutations attributed to the 

APOBEC3-associated signatures SBS2 or SBS13 divided by the natural logarithm of the 

total number of mutations excluding ones due to APOBEC3-associated signatures SBS2 or 

SBS13. Thus, for each sample the ratio was calculated in the following manner:

ratio = loge number of mutations attributed to SBS2 or SBS13
loge total number of mutations NOT attributed to SBS2 and SBS13

Cancers with ratios ≥ 0.90 were classified as samples with high APOBEC3 presence and 

cancers with ratios ≥ 0.75 were classified as samples with low APOBEC3 presence. All 

samples with ratios between 0.75 and 0.90 were classified as mid APOBEC3 presence 

and were not considered in our subsequent replication timing re-analysis. Specifically, we 

repeated the replication timing for all cancer types by separately examining samples with 

low APOBEC3 presence and separately examining samples with high APOBEC3 presence. 

As done in the prior analysis in this manuscript, all results were averaged within and across 

the examined cancer types.

QUANTIFICATION AND STATISTICAL ANALYSIS

All statistical analysis were performed in Python using NumPy, SciPy, statsmodels, and 

other standard statistical modules. Statistical significance was analyzed by Fisher’s exact test 

and z-test. Where applicable, p values were combined with Fisher’s method. All p values 

were corrected for multiple testing using Benjamini and Hochberg method. All adjusted p 

values of * ≤ 0.05; ** ≤ 0.01; *** ≤ 0.001 were considered significant. Statistical parameters 

and details of the analyses can be found in the figure legends and “method details”.

ADDITIONAL RESOURCES

All topographical data and figures regarding topography of mutational signatures in human 

cancer generated in this study were deposited at COSMIC, Catalog of Somatic Mutations in 

Cancer (https://cancer.sanger.ac.uk/signatures/), through COSMICv3.3, May 27th, 2022.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Highlights

• Mutations imprinted by mutational signatures are affected by topographical 

genomic features

• Mutational signatures with related etiologies are similarly affected by 

genomic topography

• Periodicity and cancer-type-specific enrichments/depletions are observed for 

some signatures

• Updated COSMIC database links 76 signatures in 40 cancer types with 516 

topography features
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Figure 1. Strand asymmetries and strand-coordinated mutagenesis
(A) Transcription strand asymmetries of signatures of single-base substitutions (SBSs). 

Rows represent the signatures, where n reflects the number of cancer types in which each 

signature was found. Columns display the six substitution subtypes based on the mutated 

pyrimidine base: C>A, C>G, C>T, T>A, T>C, and T>G. SBS signatures with transcription 

strand asymmetries on the transcribed and/or the untranscribed strands with adjusted p 

values ≤ 0.05 (Fisher’s exact test corrected for multiple testing using Benjamini-Hochberg) 

are shown in circles with blue and green colors, respectively. The color intensity reflects 

the odds ratio between the ratio of real mutations and the ratio of simulated mutations, 

where each ratio is calculated using the number of mutations on the transcribed strand 

and the number of mutations on the untranscribed strand. Only odds ratios above 1.10 are 

shown. Circle sizes reflect the proportion of cancer types exhibiting a signature with specific 

transcription strand asymmetry.
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(B) Replication strand asymmetries of SBS signatures. Rows represent the signatures, where 

n reflects the number of cancer types in which each signature was found. Columns display 

the six substitution subtypes based on the mutated pyrimidine base: C>A, C>G, C>T, T>A, 

T>C, and T>G. SBS signatures with replicational strand asymmetries on the lagging strand 

or on the leading strand with adjusted p values ≤ 0.05 (Fisher’s exact test corrected for 

multiple testing using Benjamini-Hochberg) are shown in circles with red and yellow colors, 

respectively. The color intensity reflects the odds ratio between the ratio of real mutations 

and the ratio of simulated mutations, where each ratio is calculated using the number 

of mutations on the lagging strand and the number of mutations on the leading strand. 

Only odds ratios above 1.10 are shown. Circle sizes reflect the proportion of cancer types 

exhibiting a signature with specific replication strand asymmetry.

(C) Transcription strand asymmetries of signature SBS4 across cancer types. Data are 

presented in a format similar to the one in (A).

(D) Replication strand asymmetries of signature SBS44 across cancer types. Data are 

presented in a format similar to the one in (B).

(E) Transcription strand asymmetries of signatures of doublet-base substitutions (DBSs) and 

of small insertions or deletions (IDs). Data are presented in a format similar to the one in 

(A).

(F) Replication strand asymmetries of DBS and ID mutational signatures. Data are presented 

in a format similar to the one in (B).

(G) Strand-coordinated mutagenesis of SBS signatures. Rows represent SBS signatures and 

columns reflect the lengths, in numbers of consecutive mutations, of strand-coordinated 

mutagenesis groups. SBS signatures with statistically significant strand-coordinated 

mutagenesis (adjusted p values ≤ 0.05, z-test corrected for multiple testing using Benjamini-

Hochberg) are shown as circles under the respective group length with a minimum length of 

5 consecutive mutations. The size of each circle reflects the number of consecutive mutation 

groups for the specified group length normalized for each signature. The color of each circle 

reflects the statistical significance of the number of subsequent mutation groups for each 

group length with respect to simulated mutations.

See also Figure S1.
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Figure 2. Interplay between replication timing and mutational signatures
Replication time data are separated into deciles, with each segment containing exactly 10% 

of the observed replication time signal (x axes). Normalized mutation densities per decile 

(y axes) are presented for early (left) to late (right) replication domains. Real data for 

SBS signatures are shown as blue bars, for DBS signatures as red bars, and for small ID 

signatures as green bars. Simulated somatic mutations are shown as dashed lines. Where 

applicable, the total number of evaluated cancer types for a particular mutational signature 

is shown on top of each plot (e.g., 18 cancer types were evaluated for ID8 in E). For each 

signature, the number of cancer types where the mutation density increases with replication 

timing is shown next to the slanted up arrow (↗; e.g., 5 cancer types for ID8). Similarly, 

the number of cancer types where the mutation density decreases with replication timing is 

shown next to the slanted down arrow (↘; e.g., 6 cancer types for ID8). Lastly, the number 
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of cancer types where the mutation density is not affected by replication timing is shown 

next to the right-pointing arrow (→ e.g., 7 cancer types for ID8).

(A) All SBSs, DBSs, and IDs across all examined cancer types with each cancer type 

examined separately.

(B) Exemplar signatures consistently associated with late replication timing.

(C) Exemplar signatures consistently associated with early replication timing.

(D) Exemplar signatures consistently unaffected by replication timing.

(E) ID8 as a mutational signature inconsistently affected by replication timing.

(F) The effect of replication timing on APOBEC3-associated signature SBS13 in samples 

with low and high APOBEC3 mutational burden.

See also Figure S2.
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Figure 3. Relationship between mutational signatures and nucleosome occupancy
In all cases, solid lines correspond to real somatic mutations, with blue solid lines reflecting 

SBSs, red solid lines reflecting DBSs, and green solid lines reflecting small IDs. Simulated 

somatic mutations are shown as dashed lines. Solid lines and dashed lines display the 

average nucleosome signal (y axes) along a 2 kb window (x axes) centered at the mutation 

start site for real and simulated mutations, respectively. The mutation site is annotated in the 

middle of each plot and denoted as 0. The 2 kb window encompasses 1,000 base pairs 5′ 
adjacent to each mutation as well as 1,000 base pairs 3′ adjacent to each mutation. Where 

applicable, the total number of similar and considered cancer types using an X/Y format, 

with X being the number of cancer types where a signature has similar nucleosome behavior 

(Pearson correlation ≥ 0.5 and adjusted p value ≤ 0.05, z-test corrected for multiple testing 

using Benjamini-Hochberg) and Y representing the total number of examined cancer types 

for that signature. For example, signature ID3 in (G) annotated with 6/9 reflects a total of 9 

examined cancer types with similar nucleosome behavior observed in 6 cancer types.

(A) All SBSs, DBSs, and IDs across all examined cancer types with each cancer type 

examined separately.
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(B–D) The nucleosome occupancy of signatures SBS1 (B), DBS2 (C), and ID1 (D) are 

shown across all cancer types as well as within cancers of the lung, head and neck, liver, and 

esophagus.

(E) Signatures with consistent periodicities of mutation rates around the nucleosome.

(F and G) Tobacco-associated SBS4 (F) and ID3 (G) exhibiting periodicities of mutation 

rates only in certain cancer types.

See also Figure S3.
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Figure 4. Relationship between mutational signatures and CTCF binding sites
(A) Enrichments and depletions of somatic mutations within CTCF binding sites. Heatmaps 

display only mutational signatures and cancer types that have at least one statistically 

significant enrichment or depletion of somatic mutations attributed to signatures of either 

SBSs, DBSs, or small IDs. Red colors correspond to enrichments of real somatic mutations 

when compared to simulated data. Blue colors correspond to depletions of real somatic 

mutations when compared to simulated data. The intensities of red and blue colors reflect 

the degree of enrichments or depletions based on the fold change. White colors correspond 
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to lack of data for performing statistical comparisons (e.g., signature not being detected in 

a cancer type). Statistically significant enrichments and depletions are annotated with an 

asterisk (*; adjusted p value ≤ 0.05, z-test combined with Fisher’s method and corrected for 

multiple testing using Benjamini-Hochberg).

(B) The top three panels reflect average CTCF occupancy signal for all SBSs, DBS, and 

IDs across all examined cancer types. Bottom panels reflect all somatic mutations attributed 

for several exemplar mutational signatures across all cancer types. In all cases, solid lines 

correspond to real somatic mutations, with blue solid lines reflecting SBSs, red solid lines 

reflecting DBSs, and green solid lines reflecting IDs. Solid lines and dashed lines display the 

average CTCF binding signal (y axes) along a 2 kb window (x axes) centered at the mutation 

start site for real and simulated mutations, respectively. The mutation start site is annotated 

in the middle of each plot and denoted as 0. The 2 kb window encompasses 1,000 base pairs 

5′ adjacent to each mutation as well as 1,000 base pairs 3′ adjacent to each mutation.
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Figure 5. Exemplar relationships between mutational signatures and histone modifications
The effect of histone modifications is shown for signatures SBS1 (A) and ID1 (B). For 

each signature, an evaluation was made for each of the 11 histone marks across all cancer 

types with sufficient numbers of somatic mutations with results presented as circles. Each 

circle is separated in red, blue, and gray segments proportional to the cancer types in which 

the signature has a specific behavior. A red segment in a circle reflects the signature being 

enriched in the vicinity of a histone modification (adjusted p value ≤ 0.05, z-test combined 

with Fisher’s method and corrected for multiple testing using Benjamini-Hochberg and 
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at least 5% enrichment). A blue segment in a circle reflects the signature being depleted 

in the vicinity of a histone modification (adjusted p value ≤ 0.05, z-test combined with 

Fisher’s method and corrected for multiple testing using Benjamini-Hochberg and at least 

5% depletion). A gray segment in a circle corresponds to neither depletion nor enrichment of 

the signature in the vicinity of a histone modification. The figure zooms in on the effect of 

H3K9me3 on SBS1 (A) and of H3K27ac on ID1 (B). Red colors correspond to enrichments 

of real somatic mutations when compared to simulated data. Blue colors correspond to 

depletions of real somatic mutations when compared to simulated data. The intensities of red 

and blue colors reflect the degree of enrichments or depletions based on the fold change. We 

further zoom in on the patterns of mutations around H3K9me3 and H3K27ac. Solid lines 

correspond to real somatic mutations, with blue solid lines reflecting SBSs and green solid 

lines reflecting IDs. Solid lines and dashed lines display the average histone mark signal (y 

axes) along a 2 kb window (x axes) centered at the mutation start site for real and simulated 

mutations, respectively. The mutation start site is annotated in the middle of each plot and 

denoted as 0. The 2 kb window encompasses 1,000 base pairs 5′ adjacent to each mutation 

as well as 1,000 base pairs 3′ adjacent to each mutation.

See also Figure S4.
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Figure 6. Topography of signature SBS28 in POLE-deficient (POLE−) and POLE-proficient 
(POLE+) samples
(A) Mutational patterns of signature SBS28 in POLE− and POLE+ samples displayed using 

the conventional 96 mutational classification schema for SBSs.

(B) Nucleosome occupancy of SBS28 in POLE and POLE+ samples. Blue solid lines and 

gray dashed lines display the average nucleosome signal (y axes) along a 2 kb window (x 

axes) centered at the mutation start site for real and simulated mutations, respectively. The 

mutation start site is annotated in the middle of each plot and denoted as 0. The 2 kb window 

encompasses 1,000 base pairs 5′ adjacent to each mutation as well as 1,000 base pairs 3′ 
adjacent to each mutation.

(C) CTCF occupancy of SBS28 in POLE− and POLE+ samples. Blue solid lines and gray 

dashed lines display the average CTCF binding signal (y axes) along a 2 kb window (x 

axes) centered at the mutation start site for real and simulated mutations, respectively. The 

mutation start site is annotated in the middle of each plot and denoted as 0. The 2 kb window 

encompasses 1,000 base pairs 5′ adjacent to each mutation as well as 1,000 base pairs 3′ 
adjacent to each mutation.

(D) Replication timing of SBS28 mutations in POLE− and POLE+ samples. Replication time 

data are separated into deciles, with each segment containing exactly 10% of the observed 

replication time signal (x axes). Normalized mutation densities per decile (y axes) are 

presented for early (left) to late (right) replication domains. Normalized mutation densities 

of real somatic mutations and simulated somatic mutations from early- to late-replicating 

regions are shown as blue bars and dashed lines, respectively.
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(E) Replication strand asymmetry of SBS28 mutations in POLE− and POLE+ samples. 

Bar plots display the number of mutations accumulated on the lagging strand and on the 

leading strand for six substitution subtypes based on the mutated pyrimidine base C>A, 

C>G, C>T, T>A, T>C, and T>G in red and yellow colors, respectively. Simulated mutations 

on lagging and leading strands are displayed in shaded bar plots. Statistically significant 

strand asymmetries are shown with stars: adjusted p values: *p ≤ 0.05; **p ≤ 0.01; ***p ≤ 

0.001 (Fisher’s exact test corrected for multiple testing using Benjamini-Hochberg).

(F) Enrichments and depletions of SBS28 somatic mutations in POLE− and POLE+ samples 

within CTCF binding sites, histone modifications, and nucleosome occupied regions. Red 

colors correspond to enrichments of real somatic mutations when compared to simulated 

data. Blue colors correspond to depletions of real somatic mutations when compared to 

simulated data. The intensities of red and blue colors reflect the degree of enrichments or 

depletions based on the fold change. White colors correspond to lack of data for performing 

statistical comparisons. Statistically significant enrichments and depletions are annotated 

with an asterisk (*; adjusted p value ≤ 0.05, z-test combined with Fisher’s method and 

corrected for multiple testing using Benjamini-Hochberg).

(G) Strand-coordinated mutagenesis of SBS28 mutations in POLE− and POLE+ samples. 

Rows represent SBS28 signature in POLE− and POLE+ samples across all cancer types and 

columns reflect the lengths, in numbers of consecutive mutations, of strand-coordinated 

mutagenesis groups. Statistically significant strand-coordinated mutagenesis (adjusted p 

value ≤ 0.05, z-test corrected for multiple testing using Benjamini-Hochberg) are shown 

as circles under the respective group length with a length starting from 2 to 11 consecutive 

mutations. The size of each circle reflects the number of consecutive mutation groups for the 

specified group length normalized for each SBS28 signature in POLE− and POLE+ samples. 

The color of each circle reflects the statistical significance of the number of subsequent 

mutation groups for each group length with respect to the simulated mutations using −log10 

(q value).
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Figure 7. Topography of non-clustered, omikli, and kataegis substitutions across 288 whole-
genome-sequenced B cell malignancies
(A) A rainfall plot of an example B cell malignancy sample, MALY-DE_SP116612, 

depicting the intra-mutational distance (IMD) distributions of substitutions across genomic 

coordinates. Each dot represents the minimum distance between two adjacent mutations. 

Dots are colored based on their corresponding classifications. Specifically, non-clustered 

mutations are shown in gray, DBSs in red, multi-base substitutions (MBSs) in black, omikli 
events in green, kataegis events in orange, and all other clustered events in blue. The red line 

depicts the sample-dependent IMD threshold for each sample. Specific clustered mutations 

may be above this threshold due to corrections for regional mutation density.

(B–D) The trinucleotide mutational spectra for the different catalogs of non-clustered, 

omikli, and kataegis mutations for the exemplar sample (DBSs and MBSs are not shown).
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(E) Nucleosome occupancy of non-clustered, omikli, and kataegis mutations of B cell 

malignancies. Blue solid lines and gray dashed lines display the average nucleosome signal 

(y axes) along a 2 kb window (x axes) centered at the mutation start site for real and 

simulated mutations, respectively. The mutation start site is annotated in the middle of each 

plot and denoted as 0. The 2 kb window encompasses 1,000 base pairs 5′ adjacent to each 

mutation as well as 1,000 base pairs 3′ adjacent to each mutation.

(F) CTCF occupancy of non-clustered, omikli, and kataegis mutations of B cell 

malignancies. Blue solid lines and gray dashed lines display the average CTCF signal (y 

axes) along a 2 kb window (x axes) centered at the mutation start site for real and simulated 

mutations, respectively. The mutation start site is annotated in the middle of each plot and 

denoted as 0. The 2 kb window encompasses 1,000 base pairs 5′ adjacent to each mutation 

as well as 1,000 base pairs 3′ adjacent to each mutation.

(G) Replication timing of non-clustered, omikli, and kataegis mutations of B cell 

malignancies. Replication time data are separated into deciles, with each segment containing 

exactly 10% of the observed replication time signal (x axes). Normalized mutation densities 

per decile (y axes) are presented for early (left) to late (right) replication domains. 

Normalized mutation densities of real somatic mutations and simulated somatic mutations 

from early- to late-replicating regions are shown as blue bars and dashed lines, respectively.

(H) Enrichments and depletions of non-clustered, omikli, and kataegis mutations of B cell 

malignancies within CTCF binding sites and histone modifications. Red colors correspond 

to enrichments of real somatic mutations when compared to simulated data. Blue colors 

correspond to depletions of real somatic mutations when compared to simulated data. The 

intensities of red and blue colors reflect the degree of enrichments or depletions based 

on the fold change. White colors correspond to lack of data for performing statistical 

comparisons. Statistically significant enrichments and depletions are annotated with an 

asterisk (*; adjusted p value ≤0.05, z-test combined with Fisher’s method and corrected for 

multiple testing using Benjamini-Hochberg).

See also Figure S5.
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KEY RESOURCES TABLE

REAGENT or RESOURCE SOURCE IDENTIFIER

Biological samples

PCAWG project (core WGS dataset) Somatic 
Mutations and Mutational Catalogs from PCAWG 
Project

Alexandrov et al.4 https://www.synapse.org/#!Synapse:syn11804058https://
www.synapse.org/#!Synapse:syn11804040

PCAWG project (additional WGS dataset) VCF like 
sample files and SBS signatures in samples

Alexandrov et al.4 https://www.synapse.org/#!Synapse:syn11801872
https://www.synapse.org/#!Synapse:syn11801496

MUTOGRAPHS project Moody et al.7 https://doi.org/10.6084/m9.figshare.22744733

Deposited data

Topography of Mutational Signatures in Human 
Cancer

This paper COSMIC Signatures v3.3https://cancer.sanger.ac.uk/
signatures

Software and algorithms

SigProfilerMatrixGenerator (v1.1.31) Bergstrom et al.65 https://github.com/AlexandrovLab/
SigProfilerMatrixGenerator

SigProfilerSimulator (v1.1.2) Bergstrom et al.66 https://github.com/AlexandrovLab/SigProfilerSimulator

SigProfilerExtractor (v1.1.0) Islam et al.5 https://github.com/AlexandrovLab/SigProfilerExtractor

SigProfilerClusters (v1.0.11) Bergstrom et al.63 https://github.com/AlexandrovLab/SigProfilerClusters

SigProfilerTopography (v1.0.70) This paper https://github.com/AlexandrovLab/SigProfilerTopography

Cancer-type specific and across all cancer-types 
combined topography analysis

This paper https://github.com/AlexandrovLab/
SigProfilerTopographyCombined

bigWigToWig tool (v446 April 2023) Kent et al.67 http://hgdownload.cse.ucsc.edu/admin/exe/

liftOver tool (v446 April 2023) Kent et al.67 http://hgdownload.cse.ucsc.edu/admin/exe/

Python (v3.7.0) Python Software 
Foundation

https://www.python.org/

Python package: pandas (v1.1.5) McKinney68 https://pandas.pydata.org

Python package: NumPy (v1.20.1) Harris et al.69 https://numpy.org

Python package: matplotlib (v3.4.2) Hunter70 https://matplotlib.org

Python package: SciPy (v1.6.3) Virtanen et al.71 https://scipy.org

Python package: statsmodels (v0.12.2) Seabold and Perktold72 https://www.statsmodels.org

Other

Transcription factors (TF) binding sites datasets (TF 
ChIP-seq assays)

ENCODE Project https://www.encodeproject.org/
Exact file name(s) for each utilized dataset is available as 
part of Table S1

Histone modifications sites datasets (Histone ChIP-
seq assays)

ENCODE Project https://www.encodeproject.org/
Exact file name(s) for each utilized dataset is available as 
part of Table S1

Nucleosome occupancy datasets (MNase-seq 
assays)

ENCODE Project https://www.encodeproject.org/
Exact file name(s) for each utilized dataset is available as 
part of Table S1

Replication timing datasets (Repli-seq assays) ENCODE Project https://www.encodeproject.org/
Exact file name(s) for each utilized dataset is available as 
part of Table S1
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