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Dear Editor,
Gymnosperms, naked-seed plants, are phylogenetically sister

to the flowering plants (angiosperms), of which the origin can be
traced back to the Devonian period. Despite their flourishing
diversity in the Mesozoic era, only ∼1000 living species of
gymnosperms exist in the modern flora (∼0.4% of the number
of angiosperms) [1]. However, they account for at least 39% of
the world’s forests [2] and hold great economic and cultural
importance in horticulture, medicine, and the timber industry [3].
Extant gymnosperms comprise five major lineages, i.e. Cycadidae,
Ginkgoidae, Cupressidae, Pinidae, and Gnetidae, which provide
an essential phylogenetic backbone for understanding plant
evolution [4]. Unfortunately, obtaining high-quality genomes and
annotations remains a major challenge for gymnosperm research
due to their genomic characteristics, e.g. huge genome size,
highly repetitive sequence content, and ultra-long introns. With
advances in sequencing technology and assembly algorithms,
an increasing number of gymnosperm species were sequenced.
Nevertheless, when assessing genome assembly and annotation
completeness, the dataset for land plants (embryophyta_odb10)
used in BUSCO (Benchmarking Universal Single-Copy Orthologs)
[5] is not applicable to gymnosperms due to the far evolution-
ary distance between the major lineages, especially between
angiosperms and gymnosperms. As a result, the average genome
completeness was estimated as low as 79% for 11 gymnosperm
species (Fig. 1c). To address this problem, we developed and
validated a BUSCO dataset of 1603 predefined single-copy genes
(hereafter BUSCOs) dedicated to gymnosperms based on seven
chromosome-level genomes representing all the five clades of
gymnosperms. This benchmarking gene set of gymnosperms is
available at https://github.com/jjwujay/Gymnosperm_odb10.

The current public BUSCO datasets were derived from the
predefined single-copy orthologs in OrthoDB, a database providing
orthologs identified across genomes [5]. Due to the paucity of
gymnosperm sequences in OrthoDB v11, single-copy orthologs
were identified in our study based on available gymnosperm
genomes. As of 30 June 2023, 22 gymnosperms have been

sequenced. Considering both the quality of the genome and the
representation of major lineages, we selected those gymnosperm
genomes that were assembled and anchored at the chromosome
level. In addition, as the number of available genomes grows, it
becomes increasingly challenging to identify reliable single-copy
orthologs present in more taxa [6]. Therefore, after screening, we
conservatively selected seven high-quality genomes from all the
five major clades of gymnosperms (Fig. 1e). Although the number
of gymnosperm genomes appeared small, the sampling rate
of our gymnosperm gene set (∼7/1000) was indeed remarkably
higher than that of flowering plant datasets, such as eudicotyle-
dons_odb10 (∼ 40/190000) and liliopsida_odb10 (∼ 18/20000). We
then identified the orthogroups among the annotated proteins of
these genomes using OrthoFinder [7] (version 2.5.1). By filtering
the gene counts of the OrthoFinder results (gene copy number = 1
or 2; total gene number per ortholog ≤9), we obtained a raw
gene set consisting of 552 single-copy orthologs and 1051 low-
copy orthologs. The latter were further partitioned into the
former using OrthoSNAP [6] (version 0.0.1), resulting in a total
of 1603 single-copy orthologs. To assure consistency with the
original dataset format, we generated the required profiles of 1603
predefined single-copy genes using both msa2prfl.pl in Augustus
[8] (version 3.4.0) and hmmbuild and hmmemit in HMMER [9]
(version 3.1b2). The HMMER cut-off for each ortholog was set as
90% of the value of the lowest score in the results of hmmseach
against itself, and the length range was set to the mean with twice
the standard deviation. Given the ultra-long length of introns and
genes in gymnosperms, we set the maximum values as 2200
and 1600 kb, respectively, according to the current longest gene
(∼2100 kb) and intron (∼1500 kb) length in gymnosperms.

To assess the reliability of the gymnosperm benchmark gene
set, we generated multiple data sets for BUSCO analyses by
randomly deleting different proportions of input sequences.
Briefly, we randomly removed 10/30/50% of the annotated protein
sequences or the single-copy orthologs of the tested species,
and masked the corresponding regions of the genome by coding
them as missing information (N). The modes of genome and
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Figure 1. Comparison of the gymnosperm gene set with the embryophyte gene set. a, b Expected and predicted missing values for the input sequence
(a) and BUSCOs (b) with different levels of depletion using the gymnosperm (yellow) and Embryophyta (blue) gene sets under genome (rectangle) and
protein (circle) modes in BUSCO (version 5.4.7). Solid orange lines indicate the expected missing values. c, d Estimates of mean completeness of the 11
chromosome-level gymnosperm genomes (c) and 204 gymnosperm transcriptomes (d) using the gymnosperm and Embryophyta gene sets. e Species
tree inferred from the 1603 gene trees based on the gymnosperm data set using ASTRAL. The rectangles on the species tree represent the
gymnosperm genomes used in the gymnosperm gene set. Two heat maps show the proportion of complete and missing BUSCOS using the
gymnosperm (GYM) and the Embryophyta (EMB) gene set in BUSCO (version 5.4.7); the color intensity indicates the proportion. Plant silhouettes of
Ginkgoidae, Cycadidae, Cupressidae, Gnetidae, and Pinidae were obtained from PhyloPic (http://phylopic.org).
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protein in BUSCO (version 5.4.7) [5] were used to estimate the
proportion of missing BUSCOs, and five replicates were set for
each level of depletion. We found a high level of concordance
between the estimated proportions of missing data in various
test sets and the expected values when utilizing our gymnosperm
benchmark gene set (average offset in genome mode = 1.7%;
average offset in protein mode = 1.9%), in contrast to the substan-
tial variation of the predictions derived from the Embryophyta
dataset (average offset in genome mode = 6.8%; average offset
in protein mode = 5.3%; Fig. 1a and b). These results showcased
that our gymnosperm benchmark gene set was more suitable
for gymnosperms, highlighting the importance of lineage-specific
data sets. We also assessed the completeness of all 11 currently
available chromosome-level gymnosperm genomes (average
completeness = 95%) and the 204 gymnosperm transcriptomes
(∼20% of living gymnosperms, average completeness = 82%) using
our dataset (Fig. 1c and d). Our results revealed that, compared
with the Embryophyta dataset, our dataset notably increased the
proportions of complete BUSCOs of gymnosperm genomes (aver-
age increase in completeness = 16%) and transcriptomes (average
increase in completeness = 11%) as well as remarkably reducing
the missing proportions (Fig. 1e). Phylogenetic reconstruction
based on the single-copy genes identified by BUSCO using
ASTRAL (version 5.7.8) generated a gymnosperm tree (Fig. 1e)
consistent with those in previous studies [10]. In conclusion,
we developed and validated the first robust benchmarking
gene set of gymnosperms for assessing genome and annotation
completeness in BUSCO. This benchmarking gene set can serve
as a vital resource for scientific researchers on gymnosperm
genomes, helping to fill the gap of high-quality, complete genomes
in the phylogeny of land plants.
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