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Germline and somatic mosaicism in a female

carrier of Hunter disease
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Abstract

Carrier detection in a mucopolysacchari-
dosis type II family (Hunter disease)
allowed the identification of germline and
somatic mosaicism in the patient’s
mother: the R443X mutation was found in
a varying proportion in tested tissue (7%
in leucocytes, lymphocytes, and lymphob-
lastoid cells, and 22% in fibroblasts). The
proband’s sister carries the at risk allele
(determined by haplotype analysis), but
not the mutation. In sporadic cases of X
linked diseases, germline mosaicism of
the proband’s mother is difficult to ex-
clude and should be considered in genetic
counselling.

(F Med Gener 1997;34:137-140)
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Hunter disease or mucopolysaccharidosis type
II (MPS 1I) is an X linked lysosomal storage
disease resulting from the deficiency of
iduronate-2-sulphatase (IDS, EC 3.1.6.13).!
The IDS gene has been mapped to Xq28.> A
full length cDNA clone containing an open
reading frame of 1650 bp has been isolated and
sequenced.” The IDS gene spans 24 kb and
contains nine exons® > and has been completely
sequenced’® (GenBank accession number
L43581). A pseudogene located 20 kb distal to
the active gene has been characterised® and is
involved in recombinations with the IDS
gene.”® Various IDS locus alterations have
been described,”" such as large deletions and
rearrangements, but about 80% of the muta-
tions are point mutations, minor deletions, or
insertions. Most of them are private except for
some that more frequently occur on CpG
dinucleotides.

Female carriers of MPS II are asymptomatic
though they often show decreased levels of IDS
activity in serum or leucocytes or both. Cloned
fibroblasts" or hair roots'* have also been stud-
ied for carrier detection. However, attempts to
identify carriers by enzyme assays have often
led to ambiguous results because of non-
random X inactivation. Indirect genotype
analysis using intragenic and closely linked
flanking polymorphisms, combined with enzy-
matic and pedigree analyses, allows carrier
detection in some but not all families." Identi-
fication of the mutation in a patient with MPS
II allows fast and reliable carrier detection in
related at risk females.

The carrier status of females in a family with
an isolated case of Hunter disease was studied

by haplotype, enzyme analysis, and mutation
identification. This study led to the identifica-
tion of germline and somatic mosaicism in the
proband’s mother.

Material and methods

CASE REPORT

The patient was the first child of healthy
parents. The diagnosis was suspected at 3 years
but was assessed at 6 years; increased excretion
of glycosaminoglycans (heparan sulphate and
dermatan sulphate) in urine was found as well
as IDS deficiency in serum. He is now 17 years
old and presents with coarse facial features,
enlarged tongue, kyphosis, joint stiffness that
has required surgery, short stature, hepato-
splenomegaly, cardiopathy (mitral and aortic
insufficiency, mitral stenosis), deafness, and
mental retardation. The pedigree of the family
is shown in fig 1.

IDS ACTIVITY

IDS activity was determined using the reagent
kit provided by The Hospital for Sick Children,
Toronto, Canada as previously described."® '’

POLYMORPHIC MARKERS
Genomic DNA was extracted from leucocytes,
lymphocytes, fibroblasts, or lymphoblastoid
cells according to Jeanpierre.'®* Genomic DNA
from leucocytes was digested by Stul, Tagl, and
Banl. Southern blotting was carried out using
standard procedures. DNA probes, radiola-
belled with ¢”P-dCTP by random priming,
included: IDS c¢cDNA (1.7 kb Notl/Xhol
fragment from the cDNA clone pB2Sc17 con-
taining the complete coding region of IDS),
probe II-10 at locus DXS466," probe U6.2-
20E at locus DXS304,” and probe VK21A at
locus DXS296.”' Haplotypes were determined
with the Srul intragenic polymorphism (in
intron 8) and three extragenic polymorphisms,
Banl (U6.2-20E) and Tagl II-10 and
VK21A).

A microsatellite at locus DXS1113, located
10 kb distal to the IDS gene, was analysed as
described by Weber et al.*

AMPLIFICATION OF GENOMIC DNA

Exon 9 was amplified as a 580 bp fragment
with oligonucleotides 5T: 5'-
CCATTCTGCTCTGTCGCTTC-3' (nt
54371-54352 in intron 8) and V6: 5'-
CAAAACGACCAGCTCTAACTC-3' (nt
53792-53812 in exon 9). PCR conditions
were: 94°C for 30 seconds, 61°C for 30
seconds, and 72°C for 45 seconds, for 30
cycles.
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Figure 1 Family pedigree showing the segregation of the haplotypes and R443X

mutation.

Amplification of genomic DNA from hair
roots was performed as follows: each hair root
was rinsed in distilled water and in 100% etha-
nol, then heated to 94°C for 30 minutes in
PCR buffer. Amplification was performed with
two sets of primers: 5'1/V6 and microsatellite
DXS1113 primers® for 30 seconds at 94°C, 45
seconds at 60°C, and one minute at 72°C, for
30 cycles.

EXON 9 SEQUENCING

After amplification, PCR products were puri-
fied on a 5% acrylamide gel and directly
sequenced with the Thermosequenase cycle
sequencing kit (Amersham) using y*’P-ATP.

R443X MUTATION ANALYSIS

Allele specific oligonucleotide (ASO)

hybridisation

The PCR products were analysed by ASO
hybridisation. ASO used for the detection of
the normal and mutant R443X sequences were
5-AGCATTTTCGATTCCG-3' and 5'-
AGCATTTTTGATTCCG-3' respectively.
Washing conditions were 5 x SSC at 37°C for
2 x 10 minutes, and 2 x SSC at 42°C for 3 x 15
minutes.

Taql digestion

The R443X mutation abolishes a Tagl site.
After digestion of the PCR products, the muta-
tion is detected by the presence of an abnormal

Table 1 IDS activity in various samples of the patient and his family

Serum Leucocytes Lymphoblastoid cells
(pmol.h™'.ml™") (pmol.h™'.mg™") (pmol.h™'.mg™")

Patient 0.5

Mother 1355 77 44

Sister 62

Grandmother 1785 152

Control 1301 118 44

Normal 1185-1900 75-158 20-65

range
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580 bp band instead of the normal 410 and
170 bp bands.

Quantitative PCR

To assess the relative proportion of mutant
(R443X) and normal DNA, exon 9 was ampli-
fied as described previously for 29 cycles, and 1
uCi of o’P-dCTP was added before the last
cycle. Radiolabelled PCR products were di-
gested by 7agl and separated on an 8% acryla-
mide non-denaturing gel. The gel was dried
and autoradiographed. Radioactivity of each
band was quantified by scanning the film. Then
the bands were cut from the dried gel and
radioactivity content estimated by scintillation
counting.

Results

IDS ACTIVITY

IDS activity was borderline in the mother’s
leucocytes and within the normal range in
serum and lymphoblastoid cells (table 1). IDS
activity was found to be normal in the
grandmother’s leucocytes and serum and in the
sister’s lymphoblastoid cells. Study of 25
fibroblast clones from the sister did not show
any deficient clone (data not shown).

HAPLOTYPE ANALYSIS

The results of haplotype analysis are shown in
fig 1: microsatellite DXS1113 was the only
informative marker. Unexpectedly, the pa-
tient’s sister had inherited from her mother the
same X chromosome as her brother.

MUTATION R443x

Exon 9 was systematically sequenced (presence
of several mutational hot spots® '° * ), allowing
the identification of the R443X mutation in the
patient’s genomic DNA. The presence of this
mutation was tested in the mother’s leucocytes
by Tagl digestion of exon 9 PCR product: this
showed an abnormal distribution of digested
and undigested PCR products (not shown).
The mother’s genomic DNA extracted from
various sources (leucocytes, lymphocytes, lym-
phoblastoid cells, fibroblasts, and hair roots)
was analysed by ASO hybridisation to test the
hypothesis of somatic mosaicism: the mutant
allele was present with a low and varying inten-
sity (fig 2). The mutation was not detected in
the grandmother’s leucocytes nor in the leuco-
cytes of the sister who had inherited the at risk
haplotype.

DNA from 35 separate hair roots of the
mother was used as template for PCR and
R443X analysis: only one of them hybridised
with both normal and mutant probes. Micro-
satellite analysis (DXS1113) was performed on
each hair root and confirmed the presence of
the two alleles (mother’s karyotype 46,XX).

The relative proportion of mutant and
normal DNA in the mother’s cells was assessed
by quantitative PCR (fig 3). In control DNA,
only the 410 and 170 bp bands were detected,
and in the DNA from an obligate carrier radio-
activity of the abnormal 580 bp band repre-
sented about 50% of the total radioactivity, as
expected. For the patient’s mother, the
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Figure 2 Detection of the R443X muztation by allele specific oligonucleotide hybridisation.
After amplification of exon 9 as a 580 bp fragment, the R443X mutation was tested for
after hybridisation with the normal and the mutant probes. Mother’s hair roots (A1 to
C11). Patient’s fibroblasts (D1). Mother’s leucocytes (D2), lymphocytes (D3),
lymphoblastoid cells (D4), fibroblasts (DS5). Grandmother’s leucocytes (D6), fibroblasts
(D7). Sister’s lymphoblastoid cells (D8), fibroblasts (D9). Control leucocytes (D10).
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Figure 3 Quantitative PCR. Exon 9 was radiolabelled during the PCR and digested with
Tagql. In normal DNA, the 580 bp fragment is cut into 410 and 170 bp fragments. The
R443X mutration abolishes a Taql site and is detected by the presence of a 580 bp fragment.
The relative proportion of mutant and normal DNA was quantified by autoradiography
and scintillation counting. Patient’s fibroblasts (lane 1), mother’s leucocytes (lane 2),
mother’s lymphocytes (lane 3), mother’s lymphoblastoid cells (lane 4), mother’s fibroblasts
(lane 5), heterozygote’s leucocytes (lane 6), control leucocytes (lane 7). DNA fragment
sizes are given in base pairs.

proportion of the abnormal 580 bp band was
about 7% in leucocytes, lymphocytes, and
lymphoblastoid cells, and 22% in fibroblasts.

Discussion

Carrier detection in this family was first
performed by measurement of IDS activity and
haplotype analysis: the results of IDS activity
were inconclusive for the mother, and the car-
rier status of the patient’s sister could not be
determined.

The R443X mutation was later identified in
the patient. This mutation, which occurs on a
CpG dinucleotide, introduces a stop codon at
position 443 and creates a truncated, non-
functional protein.”’ This mutation has been
described in several patients of different ethnic
origin.”> Haplotype and mutation analysis
showed that the mother carries a mutant or
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wild type sequence on the same chromosome.
The low proportion of mutant chromosomes
varied from tissue to tissue but remained lower
than in a normal carrier (the highest
proportion was observed in fibroblasts). These
results suggest somatic mosaicism in the
mother. Her daughter, who inherited the at risk
haplotype, does not carry the R443X mutation
and could be excluded as a carrier. Therefore,
our findings strongly support the existence of
both germinal and somatic mosaicism in the
mother.

Somatic mosaicism can be easily detected
when the proportion of mutant cells is very dif-
ferent from 50%. However, the finding of a
classical heterozygote status in leucocytes does
not rule out mosaicism and, in some instances,
both haplotype and sequence analysis have
been necessary to recognise mosaicism.”

To date, no case of somatic and germinal
mosaicism in Hunter disease has been re-
ported. In a previous report, Ben Simon-Schiff
et al’’ suggested the presence of germinal
mosaicism in an obligate carrier, based on dis-
cordance of normal IDS activity in serum and
random X inactivation, but no clear evidence of
germline mosaicism was obtained.

Several mechanisms have been proposed for
the occurrence of somatic and germline mosai-
cism. The most likely explanation for the exist-
ence of two populations of cells in the mother is
that the mutation occurred as a result of a
mitotic error at an early embryonic stage; the
postzygotic mitotic mutation must have oc-
curred early enough to be transmitted to her
germline cells, most probably before differen-
tiation of the three major germ layers (endo-
derm, mesoderm, ectoderm), and therefore
after the first cell division and before the late
blastocyst stage of development.”® Alterna-
tively, an uncorrected half chromatid mutation
in one of the parental gametes could have
established mosaicism after the first mitotic
division after conception. As a third
possibility, the mother could be a chimera con-
sisting of two fertilised eggs, one carrying the
mutation® ; in this case, the grandmother could
also be a carrier. In our study, the grandmother
was not a carrier as she does not carry the at
risk allele.

In the probands’ mother, germline mosai-
cism, either isolated’'* or as part of somatic
mosaicism,” *** has been documented in a
growing number of X linked disorders and
germline mosaicism cannot be excluded in the
non-carrier mothers of sporadic cases. There-
fore, the risk for mosaicism in families with
isolated cases might be higher than previously
reported. Bakker et al’” estimated that the inci-
dence of gonadal mosaicism could be as high as
14% for the at risk haplotype in new cases of
DMD. Forty three families with a sporadic case
of Hunter disease were studied in our labora-
tory. In four cases the proband’s mother was
not found to be a carrier of the mutation and
germinal mosaicism could not be excluded.
Prenatal diagnosis should consequently be
offered to every mother of a sporadic case.
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