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Abstract

The alkylation and heteroarylation of unactivated tertiary, secondary, and primary C(sp3)–H bonds 

was achieved by employing an acridinium photoredox catalyst along with readily available 

pyridine Noxides as hydrogen atom transfer (HAT) precursors under visible light. Oxygen-

centered radicals, generated by single-electron oxidation of the Noxides, are the proposed key 

intermediates whose reactivity can be easily modified by structural adjustments. A broad range of 

aliphatic C–H substrates with electron-donating or -withdrawing groups as well as various olefinic 

radical acceptors and heteroarenes were well tolerated.
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Visible-light-mediated photoredox catalysis has emerged as a powerful and reliable strategy 

for the functionalization of aliphatic C–H bonds in the past two decades. Typical approaches 

employ HAT catalysts that, upon single electron transfer (SET) with an excited photoredox 

catalyst, generate alkyl radicals by C(sp3)–H abstraction.1 The majority of previous C–H 

functionalization studies focused on substrates containing C–H bonds alpha to heteroatoms2 

or at aldehyde,3 benzylic,4 and allylic5 positions with common bond dissociation energies 

(BDE) of <95 kcal/mol.6 Although these reactions benefit from high selectivities toward 

the weakest hydridic bonds, the HAT catalysts employed often lack reactivity for substrates 

with C–H BDEs ≥ 95 kcal/mol including unactivated tertiary, secondary, and, in particular, 

primary C–H bonds.7

Aside from halogen-8 and nitrogen-centered radicals,9 oxygen-centered radicals are most 

widely known to abstract strong unactivated C(sp3)–H bonds because of their high 

electrophilicity.10 Typical precursors of these reactive species comprise, among others,11 

oxo compounds such as aromatic ketones12 and inorganic derivates (e.g., tetrabutyl 

ammonium decatungstate/TBADT),13 alcohols,14 benzoates,15 and phosphates,16 with the 

latter ones being employed by our group as well (Figure 1a).17

Our continuous interest in developing photoredox catalyzed C–H functionalization reactions 

that are operationally simple, sustainable, highly efficient and selective, and allow structural 

fine-tuning of the catalysts led to the discovery of pyridine N-oxides as organic precursors 

for oxygen-centered radicals that allow HAT processes (Figure 1b).18 Although these 

compounds had previously been utilized as substrates in a limited number of visible 

light-mediated transformations,19 their catalytic application under photoredox catalysis 

remained unprecedented to the best of our knowledge. Wu and coworkers first described 

the generation of pyridine N-oxy radicals by single electron oxidation with an acridinium 

photoredox catalyst.19c Based on this report and a study by the Zhang group who 

demonstrated the oxidation of water with pyridine N-oxides as HAT catalysts using 

electro-chemitry,20 we hypothesized that they could also abstract H atoms from strong 
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aliphatic C–H bonds using photoredox catalytic conditions. Moreover, pyridine N-oxides are 

commercially available and inexpensive or can be obtained in one step by simple oxidation 

of the corresponding pyridines with mCPBA or H2O2,21 resulting in a broad library of 

readily accessible and fine-tunable organic HAT catalysts.

Based on this vision, we found that cyclohexane as C–H substrate reacted with benzylidene 

malononitrile in the presence of 5 mol % of the photoredox catalyst Mes-AcrBF4 and 20 

mol % pyridine N-oxide A under irradiation with blue light (456 nm Kessil), providing 

product 1 in high NMR yield (Table 1, entry 1). Following this promising result, several 

other N-oxide derivatives were synthesized or purchased and subjected to the same reaction 

conditions. In general, electronrich pyridine N-oxides with Eox < +1.8 V showed incomplete 

conversion of the radical acceptors (entries 2–4), while more electron-deficient ones with 

Eox > +1.8 V readily provided product 1 in high NMR yields (entries 5–7), except for 

HAT H which exceeded the redox window of photoexcited Mes-AcrBF4 (E*red = +2.08 V) 

(entry 8). These results were also supported by DFT calculations22 providing lower BDEs 

of the O–H bond for the protonated HAT catalysts B-D (93–96 kcal/mol), while A and E-H 
showed significantly higher BDEs (99–109 kcal/mol) to efficiently abstract an H atom from 

cyclohexane with BDE(C–H, calc.) = 95 kcal/mol.

4-Acetylpyridine N-oxide G proved to be the most efficient catalyst generating 1 in 92% 

isolated yield (Table 1, entry 7). The catalytic activity of G was also confirmed by reducing 

its loading to 10 and 5 mol %, respectively, without loss of reactivity, albeit with slightly 

lower NMR yields (entries 9–10). Additionally, the choice of solvent is crucial in order to 

achieve high yields (entries 11–12), and control experiments revealed the necessity of light, 

the HAT catalyst, and the photocatalyst to observe reactivity (entries 13–15).

Various radical acceptors were investigated next (Chart 1a). Except for 1 and 2, which 

were synthesized in high yields, less electrophilic radical acceptors such as phenyl vinyl 

sulfone (product 3) provided poor results under the optimized conditions (Method A). It 

is noteworthy that previously reported C–H alkylation reactions using HAT and acridinium 

photoredox catalysts were generally limited to a very narrow radical acceptor scope, with 

mainly benzylidene malononitrile and other highly electron-deficient olefins being the only 

acceptors applicable.8d,f,9a After extensive additional optimization (see Table S3 in the 

Supporting Information (SI)), 50 mol % pyridine N-oxide A in a mixture of MeCN/HFIP 

(7:3) afforded sulfone 3 with an excellent isolated yield of 85% (91% NMR yield). Although 

similar results were obtained with only 20 and 10 mol % of A, we settled on 50 mol % 

due to partial deoxygenation/decomposition of the HAT catalysts during the course of the 

reactions. This observation including NMR experiments has been discussed in more detail in 

the SI.

The newly established reaction conditions (Method B) also provided better results for 

other olefins. Thus, simple vinyl ketones afforded products 4 and 5 in good to moderate 

yields. Moreover, less reactive 4-vinylpyridine was presumably activated by protonation 

with HFIP to deliver 6 in 37% yield. Other electron-poor olefins with substituents in the 

α- or β-position were well tolerated and gave rise to their corresponding products 7–9. 
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However, the additional steric hindrance of two methyl groups at the reactive β-position led 

to a diminished yield of dinitrile 10.

In order to fully explore the synthetic potential of the oxygen-centered radicals generated 

from pyridine N-oxides, we subjected several electronically and sterically different C–H 

substrates to our reaction conditions with benzylidene malononitrile as the radical acceptor. 

C–H substrates with α-heteroatoms including ethers, alcohols, and amides (11–13), as well 

as aldehydes (14), unsubstituted cyclic (15–16), and acyclic alkanes (17) readily reacted 

using Method A in typically excellent yields (Chart 1b,c). As expected, tertiary C–H bonds 

were favored over secondary ones (17), but only with moderate regioselectivity.

Applying the reaction conditions of Method A to substrates containing short alkyl chains 

and electron-withdrawing groups such as esters, however, resulted in lower product yields 

(Chart 1d). Unexpectedly, Method B also provided better results in these cases as shown by 

comparison of both Methods for benzoate 19 and methyl ester 23.

1-Chloro-3-methylbutane selectively afforded two detectable regioisomers of product 18, 

with the tertiary position (C3) being favored over the primary ones (C4). In contrast to 

compound 17, the adjacent secondary position (C2) was not functionalized due to its close 

proximity to the electron-withdrawing chloride.

Compounds 19 and 20 were synthesized from n-butyl benzoate and n-butyl acetate, 

respectively, with all four possible regioisomers and with the C3-alkylated product 

being the major one followed by functionalization at C1. Notably, previous H atom 

abstraction reactions of O-alkyl esters predominantly occurred at the most remote and least 

deactivated methylene site, while stronger C–H bonds (e.g., the CH3-group) often remained 

untouched.23 Thus, our results imply that pyridine N-oxy radicals can be classified as rather 

strong HAT species. Moreover, a difference in regioselectivity was obtained when ester 19 
was synthesized by Method A or B, with the latter one providing higher selectivities toward 

secondary over primary C–H bonds than under the conditions of Method A. The same trend 

was also observed for product 23.

Reducing the alkyl chain from n-butyl to n-propyl and ethyl acetate led to slightly lower 

yields of the corresponding esters 21 and 22 along with a change in regioselectivity favoring 

the C1–H bonds. Methyl valerate afforded 23 as three regioisomers in excellent overall 

yield using Method B and with good C4-selectivity. However, valeronitrile, carrying a more 

electron-withdrawing cyano instead of an ester group, reacted much slower to give rise 

to 24 in moderate yield. In this case, only two regioisomers (C4+C5) were detected and 

isolated since no functionalization occurred at the electronically less activated C3-position. 

Notably, other strong HAT species like TBADT provided a mixture of all three regioisomers 

(C3, C4 and C5) for valeronitrile, resulting in overall lower site-selectivity than under our 

conditions.13c

Aliphatic carboxylic acids are typically unsuitable substrates for photoredox catalyzed 

C–H functionalization reactions with basic HAT catalysts due to their propensity toward 

decarboxylation upon deprotonation and SET.24 Since pyridine N-oxides are slightly basic 
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(pKa(HAT A in MeCN) = 10),25 mixtures of C–H alkylated and decarboxylated products 

were generally obtained using both Methods. However, the decarboxylation pathway was 

completely prevented by switching the solvent to CH2Cl2 for the reaction with n-butanoic 

acid. Hence, product 25 was isolated in high yield and with a regioselectivity of C3:C4 

= 1.5:1. The comparatively higher amount of primary C4–H functionalization in this case 

implies that the solvent also plays a crucial role and MeCN or MeCN/HFIP (7:3) overall 

enables better regioselectivities.

Cyclohexanone furnished 26 in excellent yield and with high C3-selectivity.26 Other groups 

have reported a similar trend regarding the regioselectivity of related transformations with 

this C–H substrate.9a

The efficiency of pyridine N-oxides as strong HAT catalysts was eventually evaluated by 

subjecting two substrates with only primary C–H bonds to the reaction conditions of Method 
B for prolonged reaction times (Chart 1e). Both tert-butyl benzene and pivalic acid provided 

27 and 28, respectively, in acceptable yields. The latter one was isolated without any 

decarboxylated byproduct, again highlighting the high chemoselectivity of this reaction in 

CH2Cl2.

Despite the major focus of this study toward electron-deficient olefins as radical acceptors, 

we were able to further extend the substrate scope by employing heteroarenes instead which 

required the use of a terminal oxidant (Chart 2). Based on reports by Molander and co-

workers,27 a quick optimization study proved to be fruitful (see Tables S4 and S5 in the SI). 

In the presence of K2S2O8 as the terminal oxidant and trifluoroacetic acid (TFA) to activate 

the heteroarenes by protonation, isoquinoline was alkylated with cyclohexane, toluene, and 

N-methylacetamide to generate 29–31 in good yields. Benzaldehyde provided alcohol 32 in 

the absence of K2S2O8 according to a spin-center shift mechanism.28 Additionally, several 

heteroarenes including quinoline, pyridines, and benzothiazole afforded products 33–36 in 

acceptable to high yields. Control experiments (see Table S5 in the SI) revealed that sulfate 

radical anions (SO4
•–) generated from K2S2O8 upon homolysis under visible light29 or 

thermal conditions30 do not act as the HAT species in this approach, at least for cyclohexane 

as the C–H substrate. However, other possible pathways to generate pyridine N-oxy radicals 

either by oxidation with SO4
•–,31 or by formation of an electron donor–acceptor (EDA) 

complex between pyridine N-oxide and the protonated heteroarene32 might take place as a 

background reaction but furnished significantly diminished yields without the photocatalyst 

under our optimized conditions.

In accordance to previous reports8f,17 and kinetic studies (see SI), the proposed mechanism 

of the C–H alkylation reaction is displayed in Scheme 1.

After generating highly oxidizing Mes-Acr+* by photoexcitation, pyridine N-oxide 

undergoes SET to become an N-oxy radical. This electrophilic species (BDE = 99 kcal/

mol) can abstract a hydrogen atom from a C–H substrate to afford an alkyl radical, which 

then reacts with an electron-deficient olefin. In the presence of slightly acidic HFIP, less 

reactive radical acceptors were preactivated by hydrogen-bonding of the protic cosolvent. 

The resulting electrophilic radical alpha to the EWG was reduced by the acridine radical 
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Mes-Acr followed by protonation from the N-hydroxy pyridinium to deliver the C–H 

alkylated product along with the photoredox catalyst Mes-Acr+ and pyridine N-oxide, 

closing both the photo- and HAT catalytic cycle. These final steps were presumably also 

enhanced by hydrogen-bonding of HFIP to the EWG which increases the reduction potential 

of the radical alpha to EWG to oxidize Mes-Acr back to its ground state. A proposed 

mechanism for the C–H heteroarylation is provided in the SI.

In summary, we have accomplished a highly efficient protocol for C–H alkylation reactions 

using a synergistic combination of an acridinium photoredox catalyst and readily available 

pyridine N-oxides as HAT precursors. This purely organic approach allows the abstraction of 

tertiary, secondary, and even strong primary C–H bonds in the presence of electron-donating 

and -withdrawing moieties. A broad range of functional groups were tolerated, including 

aliphatic carboxylic acids that are otherwise prone to readily undergo decarboxylation, 

and the substrate scope regarding the olefinic radical acceptors was significantly extended 

compared with previously reported methods. Additionally, the same catalytic system was 

also applied to Minisci-type reactions demonstrating the high versatility of the established 

chemistry. The straightforward structural modification of pyridine N-oxides allows the 

fine-tuning of their electronic and steric properties, including a broad accessible range of 

BDEs (ca. 90–110 kcal/mol) and, thus, provides the opportunity for highly regioselective 

transformations which is currently ongoing in our laboratory.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Chart 1. 
Substrate Scope of the C–H Alkylationa

a Scales: 0.100 or 0.200 mmol of radical acceptor. Average isolated yields are reported (n 
= 2). Regio- and diastereoselectivities were determined by 1H NMR of the crude mixtures. 

Only diastereomeric ratios other than d.r. ~1:1 are shown. bYields determined by 1H NMR 

with HMDSO as internal standard. cWas isolated in its cyclized form 12′ (not shown, 

indicated by dashed arrow, see SI). dIn CH2Cl2 instead of MeCN/HFIP (7:3), isolated as 

the methyl ester upon treatment with trimethylsilyldiazomethane (10 equiv). ePartly contains 
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cyclized product 26′ as a single diastereoisomer (not shown, indicated by dashed arrow, see 

SI). f42 h. g66 h.
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Chart 2. 
Substrate Scope of the C–H Heteroarylationa

a Scale: 0.200 mmol of heteroarene. Average isolated yields are reported (n = 2). bTFA (1.5 

equiv), 18 h. cWithout K2S2O8. Benzaldehyde used as C–H substrate.
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Scheme 1. 
Proposed Mechanism of the C–H Alkylation
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Figure 1. 
Oxygen-centered radicals in C–H functionalization reactions.
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Table 1.

Optimization Reactions with Cyclohexanea

entry conditions conversionb [%] yield 1b [%]

1 HAT A >99 89

2 HAT B 31 18

3 HAT C 12 9

4 HAT D 64 40

5 HAT E >99 95

6 HAT F >99 84

7 HAT G >99 97 (92)c

8 HAT H 21 16

9 HAT G (10 mol %) >99 91

10 HAT G (5 mol %) >99 91

11 HAT G, DCMd >99 83

12 HAT G, PhCFs
d 66 48

13 HAT G, no light 0 0

14 no HAT 5 traces

15 HAT G, no Mes-AcrBF4 0 0

a
Scale: 0.100 mmol of benzylidene malononitrile.

b
Determined by 1H NMR of the crude mixture with HMDSO as internal standard.

c
Average isolated yield in parentheses (n = 2).

d
Instead of MeCN as solvent.
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