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Abstract 

Objective  To construct and validate a prediction model based on dual-layer detector spectral CT (DLCT) and clinico-
radiologic features to predict the microsatellite instability (MSI) status of gastric cancer (GC) and to explore the rela-
tionship between the prediction results and patient prognosis.

Methods  A total of 264 GC patients who underwent preoperative DLCT examination were randomly allocated 
into the training set (n = 187) and validation set (n = 80). Clinico-radiologic features and DLCT parameters were used 
to build the clinical and DLCT model through multivariate logistic regression analysis. A combined DLCT parameter 
(CDLCT) was constructed to predict MSI. A combined prediction model was constructed using multivariate logistic 
regression analysis by integrating the significant clinico-radiologic features and CDLCT. The Kaplan–Meier survival 
analysis was used to explore the prognostic significant of the prediction results of the combined model.

Results  In this study, there were 70 (26.52%) MSI-high (MSI-H) GC patients. Tumor location and CT_N staging were 
independent risk factors for MSI-H. In the validation set, the area under the curve (AUC) of the clinical model and DLCT 
model for predicting MSI status was 0.721 and 0.837, respectively. The combined model achieved a high prediction effi-
cacy in the validation set, with AUC, sensitivity, and specificity of 0.879, 78.95%, and 75.4%, respectively. Survival analysis 
demonstrated that the combined model could stratify GC patients according to recurrence-free survival (p = 0.010).

Conclusion  The combined model provides an efficient tool for predicting the MSI status of GC noninvasively 
and tumor recurrence risk stratification after surgery.

Critical relevance statement  MSI is an important molecular subtype in gastric cancer (GC). But MSI can only be 
evaluated using biopsy or postoperative tumor tissues. Our study developed a combined model based on DLCT 
which could effectively predict MSI preoperatively. Our result also showed that the combined model could stratify 
patients according to recurrence-free survival. It may be valuable for clinicians in choosing appropriate treatment 
strategies to avoid tumor recurrence and predicting clinical prognosis in GC.

Key points   
• Tumor location and CT_N staging were independent predictors for MSI-H in GC.

• Quantitative DLCT parameters showed potential in predicting MSI status in GC.

• The combined model integrating clinico-radiologic features and CDLCT could improve the predictive performance.

• The prediction results could stratify the risk of tumor recurrence after surgery.
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Graphical Abstract

Introduction
Gastric cancer (GC) is one of the most common malig-
nant tumors in the world. Its incidence and mortality 
rank fifth and fourth among malignant tumors globally 
in 2020 [1], respectively. Approximately 40% of newly 
diagnosed gastric cancer cases occurred in China, but 
the overall 5-year survival rate was only about 35% [2, 3]. 
Microsatellite instability (MSI) phenotype GC is a special 
molecular subtype based on molecular markers and next-
generation sequencing [4, 5].

MSI is essentially caused by deficient DNA mismatch 
repair machinery, resulting in a high mutation pheno-
type, CpG island methylation, and MLH1 gene silence 
[6]. According to MSI status, GC can be classified into 
MSI-high (MSI-H), MSI-low (MSI-L), or microsatel-
lite stable (MSS) [7]. The prevalence of MSI-H GC is 
reported to be about 5.6 to 33.3% [8]. MSI-H is one of the 
favorable prognostic factors for stages I to III GC [6–8]. 
Some randomized clinical trials have confirmed that 
MSI-H GC patients could benefit from immunotherapy 

[6, 9, 10], but were resistant to traditional chemotherapy 
[11]. Besides, MSI status evaluation is also one of the 
screening methods for Lynch syndrome [6, 7]. As a result, 
an accurate assessment of the MSI status of GC has sub-
stantial therapeutic and prognostic significance. The 
NCCN and ESMO guidelines for gastric cancer both rec-
ommend routine MSI testing for all GC patients [12, 13].

Currently, MSI testing relies on pathological exami-
nation [6, 14]. However, the detection techniques are 
complicated and expensive. Tissue specimens cannot be 
obtained for testing from patients who are unsuitable 
for endoscopic examination or surgery. In addition, due 
to the intratumoral and temporal heterogeneity of GC, 
biopsy specimens often fail to reflect the features of the 
entire tumor accurately [15, 16]. As a result, there is an 
urgent need to explore non-invasive, simple, and prac-
tical methods for determining the MSI status of GC 
preoperatively.

CT imaging examination is one of the important 
methods for preoperative evaluation of GC [12, 13]. 
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Dual-layer spectral detector CT (DLCT) is the latest 
generation of energy CT technology, which could obtain 
many quantitative spectral CT parameters [17]. Since 
the separation of spectral data occurs at the detector 
level and spectral data are available during every scan, 
DLCT requires no preplanning and preselection of dual-
energy scanning mode, in contrast to dual-source and 
rapid voltage-switching systems [17, 18]. Another advan-
tage of DLCT is that it does not increase the radiation 
doses of patients compared with source-based imaging 
technologies [18]. Previous studies have demonstrated 
that spectral CT could be utilized to improve the image 
quality and analyze the pathological features of various 
tumors quantitatively [19–22].

However, no studies using DLCT to evaluate the MSI 
status of GC have been reported. Therefore, the purpose 
of this study was to investigate the predictive value of 
DLCT parameters for MSI status in GC and construct 
and validate a combined prediction model based on 
DLCT quantitative parameters and clinico-radiologic 
features. The stratification ability of the combined 
model for the prognosis of GC patients will also be 
explored to provide a basis for clinically individualized 
and accurate treatment.

Materials and methods
Patients
This retrospective study was approved by the Institu-
tional Ethics Committee of the Cancer Hospital, Chi-
nese Academy of Medical Sciences (No. 20/412–2608), 
and waived the requirement of informed consent from 
patients.

The consecutive patients with pathologically confirmed 
gastric adenocarcinoma in our institution between Janu-
ary 2019 and December 2020 were initially collected. 
The inclusion criteria were as follows: (1) underwent 
dual-phase contrast-enhanced abdominal DLCT exami-
nation, (2) clinical TNM staging was cT2-4aN0-3M0, 
(3) received D2 radical gastrectomy within 30 days after 
DLCT examination, and (4) regular follow-up after sur-
gery. The exclusion criteria were as follows: (1) received 
local or systematic treatment before examination, (2) 
coexistence with other malignant tumors, (3) severe 
respiratory or gastrointestinal movement artifacts, (4) 
maximum tumor diameter < 2.0  cm, and (5) follow-up 
time less than 3  months after surgery. Finally, a total of 
264 patients were enrolled in this study, including 187 
men and 77 women with a median age of 60 years (range, 
30–75). The patients were randomly divided into a train-
ing set (n = 184) and a validation set (n = 80) at a ratio of 
7:3 using the random seed method. The flow chart of the 
study population is displayed in Fig. 1.

DLCT examination
The examination was performed using a DLCT scanner 
(IQon Spectral CT, Philips Healthcare, Best, The Neth-
erlands). The scanning protocol includes nonenhanced, 
arterial phase (AP), and venous phase (VP) scans, which 
cover the whole abdomen and pelvis. Conventional CT 
images and spectral base images were generated for sub-
sequent analysis. Detailed information on CT scanning 
protocol and imaging reconstruction are listed in Addi-
tional file 1: Text S1.

Image analysis
Image analysis was performed by two radiologists (Y.J.Z. 
and Y.L., with 10 and 20 years of experience in gastroin-
testinal imaging, respectively).

For the DLCT quantitative parameter, the spectral 
data of AP and VP were transferred to the worksta-
tion (IntelliSpace Portal version 9.0, Philips Healthcare) 
to obtain virtual monoenergetic images (VMI), iodine 
density (ID) maps, and effective atomic number (Zeff) 
maps. The tumor region of interest (ROI) was manually 
traced along the tumor contour at the slice of the larg-
est tumor diameter in conventional CT images. Another 
circular ROI was placed on the descending aorta. The 
ROI was automatically copied to the VMI at 40 keV and 
100  keV, ID map, and Zeff map to obtain quantitative 
parameters. The following quantitative parameters in AP 
and PP were measured and calculated: (1) CT values of 
40  keV and 100  keV (CT40keV and CT100keV); (2) ID val-
ues of tumors and aorta (IDtumor and IDaorta); (3) Zeff 
value; (4) the normalized iodine density (NID) values: 
NID = IDtumor/IDaorta; (5) the slope of the spectral curve 
(λHU), λHU = (CT40keV-CT100keV)/60.

The following imaging features were measured and 
evaluated in conventional CT images: (1) maximum 
diameter (MD) was measured as the longest tumor diam-
eter; (2) maximum thickness (MT) was measured as the 
short axis perpendicular to the MD; (3) tumor location; 
(4) CT evaluated T stage (CT_T stage), N stage (CT_N 
stage), and clinical tumor stage (cTNM stage) which 
was classified according to AJCC8th staging system [23], 
with reference to the CT imaging classification described 
in the Chinese clinical guidelines for the diagnosis and 
treatment of gastric cancer [24]. A final consensus was 
reached by discussing with a third professor (L.M.J., with 
over 35 years of experience) in case of disagreement dur-
ing assessment.

Pathological evaluation
MSI testing was performed according to the recommen-
dations for mismatch repair (MMR) and MSI Testing 
from the College of American Pathologist [14]. In this 
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study, immunohistochemical staining analysis was used 
to detect the expression levels of four MMR proteins: 
MLH1, MSH2, MSH6, and PMS2. MSI status was clas-
sified as MSI-L/MSS if all four markers were positive, or 
MSI-H if complete loss of expression was observed in any 
one of the MMR proteins.

Clinical treatment and postoperative follow‑up
All patients underwent D2 radical gastrectomy. Adju-
vant chemotherapy was administered according to the 
pathological staging and risk factors. Patients were fol-
lowed up regularly at the outpatient clinic after surgery. 
The recurrence-free survival (RFS) time was defined as 
the time interval from surgery to the first date of tumor 

recurrence during follow-up or the last date of follow-
up period without tumor recurrence. Tumor recurrence 
referred to local recurrence, distant metastasis, or death 
caused by gastric cancer as detected by imaging or patho-
logical examination.

Statistical analysis and model construction
Variables were compared using independent sample 
t test, Mann–Whitney U test, χ2, or Fisher exact test 
as appropriate. Interobserver variability of quantita-
tive parameters was assessed with intraclass correlation 
coefficient (ICC). Interobserver agreement of subjective 
imaging findings was evaluated by Cohen’s kappa coeffi-
cients (κ-values). The interpretation of ICC and κ-values 

Fig. 1  Flowchart of the recruitment of the study population. DLCT dual-layer spectral detector CT; MSI-H microsatellite instability high; MSI-L/MSS 
microsatellite instability low or microsatellite stable
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was defined as follows [25]: excellent (> 0.81), good 
(0.61–0.80), moderate (0.41–0.60), fair (0.21–0.40), and 
poor (< 0.20).

Multivariate logistic regression was used to iden-
tify independent predictors and construct clinical and 
DLCT prediction models. A combined DLCT param-
eter (CDLCT) was generated based on the linear predic-
tors of the regression equation. A combined prediction 
model and a visualized nomogram were established 
by multivariate logistic regression using independ-
ent clinico-radiologic features and CDLCT. Finally, the 
validation set was used to assess the model generali-
zation. The receiving operating curve (ROC) was used 
to evaluate the predictive performance. The Hosmer–
Lemeshow goodness-of-fit test and calibration curve 
were used to evaluate the model’s calibration. Decision 
curve analysis (DCA) was used to evaluate the clinical 
value of the combined model. The value of the com-
bined model in RFS risk stratification was evaluated 
using Kaplan–Meier survival curves and tested by log-
rank test.

A two-tailed p < 0.05 was considered statistically sig-
nificant. All statical analysis was performed using R soft-
ware (version 4.2.2; R Foundation, Vienna, Austria).

Results
Clinico‑radiologic characteristics
The clinico-radiologic characteristics of the 264 GC 
patients are described in Table 1. Of the 264 GC patients 
enrolled in this study, 26.52% (70/264) were categorized 
into the MSI-H group. The clinico-radiologic character-
istics between the training set and validation set showed 
no significant difference (all p > 0.05) (Table 1).

Age, tumor location, CT_T stage, CT_N stage, cTNM 
stage, and Lauren classification exhibited significant dif-
ferences between the MSI-H group and the MSI-L/MSS 
group both in the training and validation sets (all p < 0.05) 
(Table 1).

Interobserver agreement
The ICCs measured by two radiologists for MD, MT, and 
DLCT quantitative parameters were 0.867–0.946 (Addi-
tional file  1: Table  S1), showing excellent interobserver 
agreements. The consistency of subjective imaging find-
ings between observers was good to excellent with kappa 
values of 0.787–0.970 (Additional file 1: Table S2).

Comparison of DLCT quantitative parameters 
between MSI‑H and MSI‑L/MSS GC
In both training set and validation set, the DLCT parameters 
in VP CT40keV_VP, CT70keV_VP, IDVP, NIDVP, ZeffVP, and 

λHUVP of the MSI-H group were significantly lower than 
those of the MSI-L/MSS group (all p < 0.05). No signifi-
cant differences were observed in the DLCT parameters 
of AP between the two groups (all p > 0.05) (Table 2).

Predictive performance of DLCT quantitative parameters 
for MSI status
The predictive performance of significant DLCT quanti-
tative parameters for MSI status of GC in the training set 
is described in Table  3 and Fig.  2a. Among these single 
parameters, NIDVP showed the best predictive perfor-
mance for discriminating MSI status, with an AUC of 
0.795 (95% CI 0.709–0.882), accuracy of 82.61%, sensitivity 
of 78.43%, and specificity of 84.21%.

Construction and validation of models for predicting MSI 
status in GC
Significant features were used to build the clinical and 
DLCT models through multivariate logistic regression, 
respectively. The results showed that tumor location 
(OR 4.343, 95% CI 2.120–8.894, p < 0.001) and CT_N 
stage (OR 5.768, 95%CI 2.200–15.121, p < 0.001) were 
independent risk factors for MSI-H (Table 4). The com-
bined spectral CT parameters were constructed as  
follows: CDLCT =​ 15.922 ​− 12.899​ × NIDVP​ − 1.4​0​5 ×​ Z​e​ffVP ​
− 0.943 × λHU​VP​. T​h e​ pr​edi​ctive performance of clinical 
and ​DLC​T m​odels is de​scr​ibe​d in Table​ 5​.

Tumor location, CT_N stage, and CDLCT were input into 
the multivariate logistic regression to construct a combined 
prediction model (Table 4). A risk score (RS) for MSI-H using 
the linear predictor based on the regression coefficients 
could be calculated as follows: RS =  − 0.740 + 0.937 × CDLCT 
+ 1.194 × tumor location (antrum/pylorus) + 1.280 × CT_N 
stage (N0). Then, the probability of MSI-H could be calcu-
lated as follows: Probability = 1/[1 + exp(-RS)].

The visualized nomogram for predicting MSI of GC 
is displayed in Fig. 2b. The AUC of the combined model 
for predicting MSI-H were 0.880 in the training set and 
0.879 in the validation set, respectively (Table 5).

The ROC curves of the three models in the training 
and validation sets are shown in Fig. 2c and d. The cali-
bration curve and Hosmer–Lemeshow test (all p > 0.05) 
showed that all prediction models had good agreement 
of the model fit. The DCA curve demonstrated that the 
combined prediction model had better clinical net ben-
efit (Additional file 1: Fig. S1).

The application of the combined model and nomo-
gram is shown in Figs.  3 and 4. Patients were catego-
rized into predicted MSI-H (pred-MSI-H, RS >  − 0.81) 
or MSI-L/MSS (pred- MSI-L/MSS, RS ≤  − 0.81) groups 
based on the RS threshold from ROC analysis (Fig. 5).
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Table 1  Clinicopathological data of gastric cancer patients in training set and validation set

Variables Training set (n = 184) Validation set (n = 80) p value†

MSI-H (n = 51) MSI-L/MSS (n = 133) p value* MSI-H (n = 19) MSI-L/MSS (n = 61) p value*

Age, years 63.24 ± 8.95 58.73 ± 11.20 0.011 63.37 ± 5.57 57.15 ± 10.70 0.018 0.340

Gender 0.367 0.366 0.492

  Male 38 90 12 47

  Female 13 43 7 14

CEA 0.639 1.000 0.188

  Normal 44 1 15 47

  Elevated 7 22 4 14

CA19-9 0.870 0.797 0.169

  Normal 46 121 17 51

  Elevated 5 12 2 10

MD, cm 4.43 ± 1.79 4.62 ± 1.63 0.498 4.07 ± 1.17 4.68 ± 1.72 0.154 0.860

MT, cm 2.04 ± 0.45 2.03 ± 0.45 0.931 2.23 ± 0.59 2.08 ± 0.42 0.223 0.182

Tumor location  < 0.001 0.026 0.367

  Cardia/fundus 9 45 4 19

  Corpus 12 55 2 21

  Antrum/pylorus 30 33 13 21

CT_T staging 0.046 0.017 0.443

  T2 15 26 7 7

  T3 22 44 7 19

  T4a 14 63 5 35

CT_N staging  < 0.001 0.003 0.976

  N0 15 9 6 6

  N1 22 36 9 15

  N2 13 58 4 27

  N3 1 30 0 13

cTNM staging (AJCC 8th) 0.002 0.019 0.525

  I 8 6 5 4

  II 15 22 6 12

  III 28 105 8 45

Histopathological type 0.187 0.105 0.972

  Adenocarcinoma 36 77 12 36

  Poorly cohesive 7 38 2 18

  Mucinous 5 12 2 5

  Mixed 3 6 3 2

Histological grade 0.468 0.149 0.716

  Well 5 9 4 4

  Moderate 8 30 2 12

  Poor 38 94 13 45

Lauren type 0.014 0.021 0.790

  Intestinal type 32 52 13 20

  Mixed type 12 46 4 24

  Diffuse type 7 35 2 17

Lymphovascular invasion 0.272 0.771 0.322

  Positive 23 72 8 28

  Negative 28 61 11 33

Perineural invasion 0.589 0.462 0.581

  Positive 20 58 6 25

  Negative 31 75 13 36

Data are expressed as mean ± SD or number with percentage in parentheses. Statistically significant results are marked in bold

CA19-9 Carbohydrate antigen 19–9, CEA Carcinoembryonic antigen, DLCT Dual-layer spectral detector CT, MD Maximum diameter, MSI-H Microsatellite instability high, MSI-L/MSS 
Microsatellite instability low or microsatellite stable, MT Maximum thickness
* Comparison between MSI -H group and MSI-L/MSS group
† Comparison between training set and validation set
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Prognostic significant of the combined model
The median follow-up time for the 264 patients in this 
study was 20.0  months (range 4.0–42.0  months), with 
73/264 (27.7%) cases experiencing tumor recurrence. 
Kaplan–Meier survival analysis showed that the median 
RFS for the entire group was 35 months and the 2-year 
RFS rate was 65.6%. In the training set, the median RFS 
for pred-MSI-H was over 42  months and the 2-year 
RFS rate was 80.3%; the median RFS for pred-MSI-L/
MSS was 28 months and the 2-year RFS rate was 57.6%, 
with a significant difference between the two groups 
(log-rank, p = 0.003). In the validation set, the median 
RFS for pred-MSI-H was over 38 months and the 2-year 
RFS rate was 90.6%; the median RFS for pred-MSI-L/
MSS was 24 months and the 2-year RFS rate was 49.1%, 

with a significant difference between the two groups 
(log-rank, p = 0.010) (Fig. 6).

Discussion
The results of this study showed that a combined model 
based on DLCT quantitative parameters and clinico-radi-
ologic features could predict the MSI status of GC pre-
operatively with satisfactory predictive performance. The 
AUC value, sensitivity, specificity, and accuracy in the 
validation set were 0.879, 78.95%, 75.40%, and 76.25%, 
respectively. In addition, the risk stratification based on 
the combined model showed a potential prognostic sig-
nificance after gastrectomy.

In this study, tumor location and CT_N staging were 
identified as independent predictors of MSI status in GC. 

Table 2  Comparison of DLCT quantitative parameters between different MSI status in training set and validation set

Data are given as median (inter-quartile ranges)

AP Arterial phase, DLCT Dual-layer spectral detector CT, ID Iodine density, λHU The slope of the spectral curve, MSI Microsatellite instability, MSI-H Microsatellite 
instability high, MSI-L/MSS Microsatellite instability low or microsatellite stable, NID Normalized iodine density, VP Venous phase, Zeff Effective atomic number
* p value represents comparison between MSI-H group and MSI-L/MSS group

Parameters Training set (n = 184) Validation set (n = 80)

MSI-H (n = 51) MSI-L/MSS (n = 133) p value* MSI-H (n = 51) MSI-L/MSS (n = 133) p value*

Arterial phase

  CT40keV_AP, HU 120.07 (95.50, 150.99) 126.87 (109.36, 150.24) 0.290 115.49 (87.77, 152.19) 120.01 (86.74, 150.50) 0.950

  CT70keV_AP, HU 65.98 (55.98, 76.40) 66.19 (59.07, 78.82) 0.698 63.43 (55.15, 74.65) 64.24 (51.33, 76.52) 0.968

  IDAP, mg/ml 0.96 (0.70, 1.32) 0.99 (0.79, 1.42) 0.287 0.87 (0.74, 1.17) 0.91 (0.64, 1.27) 0.928

  NIDAP 0.10 (0.08, 0.14) 0.11 (0.08, 0.16) 0.517 0.09 (0.06, 0.11) 0.10 (0.08, 0.13) 0.173

  ZeffAP 7.81 (7.67, 7.90) 7.83 (7.69, 8.03) 0.394 7.80 (7.65, 7.95) 7.80 (7.65, 8.03) 0.991

  λHUVP 1.37 (1.02, 1.55) 1.39 (1.06, 2.02) 0.340 1.21 (0.68, 1.42) 1.25 (0.85, 1.82) 0.494

Venous phase

  CT40keV_VP, HU 145.38 (124.25, 193.55) 167.37 (145.80, 198.73) 0.012 144.96 (130.04, 173.92) 177.77 (150.14, 197.73) 0.006

  CT70keV_VP, HU 79.20 (69.59, 90.48) 85.70 (73.49, 97.48) 0.035 73.82 (66.78, 85.00) 84.60 (74.21, 98.86) 0.026

  ID VP, mg/ml 1.11 (0.98, 1.42) 1.52 (1.34, 1.87)  < 0.001 1.21 (0.98, 1.38) 1.56 (1.39, 1.99)  < 0.001

  NIDVP 0.26 (0.20, 0.29) 0.34 (0.28, 0.41)  < 0.001 0.23 (0.18, 0.29) 0.34 (0.28, 0.40)  < 0.001

  ZeffVP 7.87 (7.81, 7.99) 8.13 (8.05, 8.27)  < 0.001 7.83 (7.75, 7.95) 8.15 (8.07, 8.35)  < 0.001

  λHUVP 1.31 (0.90, 1.81) 2.19 (1.78, 2.92)  < 0.001 1.50 (1.18, 2.98) 2.30 (1.82, 2.97) 0.002

Table 3  Predictive efficacy of DLCT quantitative parameters for MSI status of GC in the training set

Except for AUC, values are percentage with number of examinations in parentheses

AUC​ Area under the curve, CI Confidence interval, DLCT Dual-layer spectral detector CT, GC Gastric cancer, ID Iodine density, λHU The slope of the spectral curve, MSI 
Microsatellite instability, NID Normalized iodine density, VP Venous phase, Zeff Effective atomic number

Parameters Threshold AUC (95% CI) Sensitivity (%) Specificity (%) Accuracy (%)

CT40keV_VP, HU 154.30 0.620 (0.525, 0.715) 62.75 (32/51) 66.92 (89/133) 65.76 (121/184)

CT70keV_VP, HU 84.82 0.601 (0.510, 0.691) 66.67 (34/51) 54.89 (73/133) 58.15 (107/184)

IDVP, mg/ml 1.32 0.773 (0.690, 0.855) 74.51 (38/51) 78.20 (104/133) 77.17 (142/184)

NIDVP 0.29 0.802 (0.734, 0.870) 78.43 (40/51) 71.43 (95/133) 73.37 (135/184)

ZeffVP 8.00 0.795 (0.709, 0.882) 78.43 (40/51) 84.21 (112/133) 82.61 (152/184)

λHUVP 1.66 0.797 (0.714, 0.880) 72.55 (37/51) 81.20 (108/133) 78.80 (145/184)
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MSI-H GC was more frequently found in the antrum 
and pylorus, consistent with previous research findings 
[16]. This implies that the mechanism of tumorigenesis 
in different regions might be distinct, resulting in differ-
ent gene mutations and biological phenotypes [26]. The 
MSI-H group exhibited earlier staging than the MSI-L/
MSS group. However, multivariate logistic regression 

showed that only CT_N staging was an independent pre-
dictor, indicating that there might be a higher association 
between MSI status and lymph node metastases. In addi-
tion, we found that the age of MSI-H GC was higher than 
that of MSI-L/MSS GC, possibly because of the accumu-
lation of hMLH1 gene promoter methylation with age [7]. 
The proportion of Lauren intestinal type GC was higher 

Fig. 2  ROC curves of the DLCT parameters and prediction models, and the combined prediction nomogram. a Predictive performance 
of DLCT parameters in predicting MSI status of GC in the training set. b The combined nomogram for discriminating MSI status of gastric cancer 
in the training set. The prediction nomogram was built based on the multivariate logistic model integrated with the variables of clinical features 
and CDLCT. c ROC curves of the clinical, DLCT, and combined models for the prediction of microsatellite instability status in the training set. d ROC 
curves of the clinical, DLCT, and combined models for the prediction of microsatellite instability status in the training set. Both in the training set 
and the validation set, the combined model showed the best prediction performance. CDLCT combined dual-layer spectral detector CT parameters; 
DLCT dual-layer spectral detector CT; GC, gastric cancer; ID iodine density; λHU the slope of the spectral curve; MSI microsatellite instability; MSI-H 
microsatellite instability high; NID normalized iodine density; VP venous phase; Zeff effective atomic number
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in the MSI-H group than in the MSI-L/MSS group, which 
was consistent with previous literature reports and might 
be one reason for the good prognosis in MSI-H GC [27].

We found that all the DLCT parameters in VP but not 
AP showed significant differences. This might be related 
to the enhancement pattern of gastric cancer [28]. 
Previous studies reported that most GC showed peak 
enhancement in the venous phase or delayed phase 
[28–31], affecting the iodine uptake. Tsurumaru et  al. 
speculated that intratumoral fibrosis, tumor cell infiltra-
tion patterns, and lack of neovascularity might contrib-
ute to the marked contrast enhancement in VP [30, 31], 
which might result in an obvious difference in CT atten-
uation and DLCT parameters in VP between different 
types of GC. DLCT has been successfully used to detect 
iodine concentration in vitro [32] and reflect quantified 

tissue blood flow in  vivo [33]. NIC may reduce varia-
tions caused by individual differences in hemodynamics 
between individuals, thereby more accurately reflect-
ing tissue blood supply in the tumor [20]. According 
to pathological studies [34–36], MSI-H GC could be 
distinguished from MSI-L/MSS GC by having a lower 
microvessel count, less angiogenesis-related gene 
expression, more tumor necrosis, and a greater mucin 
content. This might cause the lower IDVP and NIDVP 
values due to poor blood supply of MSI-H GC. Zeff 
represents the average atomic number of the constitu-
ent elements in the tissue, which is related to tissue den-
sity and iodine concentration. λHU reflects the degree 
of X-ray attenuation at different energy levels, which is 
another important parameter reflecting tissue charac-
teristics [17, 18]. We found that Zeff and λHU values 

Table​ 4​ ​ Construction of clinical, DLCT, and combined models through multivariate logistic analysis

A stepwise forward method was used to assess the best independent predictor of microsatellite instability status

β Coefficient, CDLCT Combined DLCT parameters, CI Confidence interval, DLCT Dual-layer spectral detector CT, λHU The slope of the spectral curve, NID Normalized 
iodine density, OR Odds ratio, S.E. Standard error, VP Venous phase, Wald Wald chi-square, Zeff Effective atomic number

​
Models β S.E Wald p value OR 95% CI for OR

Lower Upper

Clinical

  Tumor location (antrum/pylorus) 1.468 0.366 16.117  < 0.001 4.343 2.120 8.894

  CT_N Staging (N0) 1.752 0.492 12.697  < 0.001 5.768 2.200 15.121

  Constant  − 1.841 0.269 46.814  < 0.001 0.159

DLCT

  NIDVP  − 12.899 2.925 19.448  < 0.001 2.500E − 6 8.097E − 9 0.001

  ZeffVP  − 1.405 0.506 7.715 0.005 0.245 0.091 0.661

  λHUVP  − 0.943 0.310 9.222 0.002 0.390 0.212 0.716

  Constant 15.922 4.414 13.013  < 0.001 8.216E + 06

Combined

  Tumor location (antrum/pylorus) 1.194 0.441 7.333 0.007 3.301 1.391 7.837

  CT_N Staging (N0) 1.280 0.561 5.201 0.023 3.597 1.197 10.808

  CDLCT 0.937 0.171 30.074  < 0.001 2.552 1.826 3.567

  Constant  − 0.740 0.318 5.404 0.020 0.477

Table 5  Predictive efficacy of clinical, DLCT, and combined model for MSI status of gastric cancer

AUC​ Area under the curve, CI Confidence interval, DLCT Dual-layer spectral detector CT, MSI Microsatellite instability

Models AUC (95% CI) Sensitivity (%) Specificity (%) Accuracy (%)

Training set

  Clinical 0.737 (0.660~0.813) 72.55 (37/51) 70.68 (94/133) 71.20 (131/184)

  DLCT 0.856 (0.792~0.920) 72.55 (37/51) 86.47 (115/133) 82.61 (152/184)

  Combined 0.880 (0.820~0.939) 80.39 (41/51) 81.20 (108/133) 80.98 (149/184)

Validation set

  Clinical 0.721 (0.596~0.846) 78.95 (15/19) 59.02 (36/61) 63.75 (51/80)

  DLCT 0.837 (0.725~0.949) 73.68 (14/19) 88.52 (54/61) 85.00 (68/80)

  Combined 0.879 (0.791~0.968) 78.95 (15/19) 75.40 (46/61) 76.25 (61/80)
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differed significantly between different MSI-H GC and 
MSI-L/MSS GC, suggesting that the two groups might 
differ in tissue density, cell type, and material compo-
sition. Previous studies had revealed that MSI-H GC 
had a larger tumor mutation burden, increased tumor 

necrosis, a mucous component, and lymphocyte infil-
tration [36, 37], which might explain the differences in 
material composition between the two groups of GS.

In this study, we constructed a combined model to pre-
dict the MSI status of gastric cancer using the combined 

Fig. 3  Dual-layer spectral-detector CT images of a 59-year-old male with MSI-H gastric cancer. A 64-year-old male with poorly differentiated 
adenocarcinoma. a–c The conventional CT images (a), ID map (b), and Zeff map (c) in arterial phase, respectively. d–f The conventional CT images 
(d), ID map (e), and Zeff map (f) in venous phase, respectively. Irregular thickening of the gastric wall in the antrum and local masses with soft 
tissue density can be seen, exhibiting progressive enhancement. The red dashed line shows the freehand mode ROIs of the tumor. ID values, NID 
values, and Zeff values are indicated in the figures, respectively. g The coronal image of venous phase. The red arrow shows the thickened wall 
of the gastric lower body and antrum, without suspicion of enlarged lymph nodes. h The utilization of the nomogram to predict the risk of MSI-H. 
Corresponding score of each feature is seen on points scale. When point scores for all variables were added, total scores and corresponding 
probability of MSI-H were presented on total points and probability scales, respectively. Moreover, observation values are superimposed on plot 
and are shown as red circles or diamonds and solid or dashed droplines. CDLCT value of this patient was 1.21. After points for each predictor were 
added, total number of points was 102. Corresponding risk of MSI-H was 0.923. Histologic examination verified MSI-H status. AP arterial phase;  
ID iodine density; λHU the slope of the spectral curve; MSI-H microsatellite instability high; NID normalized iodine density; VP venous phase;  
Zeff effective atomic number
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DLCT parameter CDLCT and clinico-radiologic features 
and visualized it in a nomogram to facilitate clinical 
application. An independent validation set was employed 
to validate the model. The combined nomogram showed 
satisfactory predictive performance with an AUC of 

0.879. To investigate the clinical application value of the 
combined prediction model, we also explored the rela-
tionship between predicted MSI status and the prog-
nosis of patients after surgery. Kaplan–Meier survival 
analysis showed that the prediction result could stratify 

Fig. 4  Dual-layer spectral-detector CT images of a 48-year-old male with MSI-L/MSS gastric cancer. A 48-year-old male with poorly differentiated 
adenocarcinoma. a–c The conventional CT images (a), ID map (b), and Zeff map (c) in arterial phase, respectively. d–f The conventional CT images 
(d), ID map (e), and Zeff map (f) in venous phase, respectively. Gastric wall of cardia and upper corpus was irregularly thickened. The red dashed 
line shows the freehand mode ROIs of the tumor. ID values, NID values, and Zeff values are indicated in the figures, respectively. g The coronal 
image of venous phase. The red arrow shows the thickened wall of the gastric cardia and upper corpus, with suspicion metastatic lymph node. h 
The utilization of the nomogram to predict the status of MSI. Corresponding score of each feature is seen on points scale. When point scores for all 
variables were added, total scores and corresponding probability of MSI-H were presented on total points and probability scales, respectively. 
Moreover, observation values are superimposed on plot and are shown as red circles or diamonds and solid or dashed droplines. CDLCT value of this 
patient was − 1.27. After points for each predictor were added, total number of points was 63. Corresponding risk of MSI-H was 0.126. Histologic 
examination verified MSI-H status. AP arterial phase; ID iodine density; λHU the slope of the spectral curve; MSI-H microsatellite instability high;  
NID normalized iodine density; VP venous phase; Zeff effective atomic number
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the prognosis in terms of RFS. MSI-H GC might have 
more immune cell infiltration, induce a stronger anti-
tumor immune response, thus prevent tumor invasion, 
and induce tumor cell apoptosis, finally resulting in a bet-
ter prognosis [6, 7, 38]. The combined model could serve 
as an important indicator for recurrence risk stratifica-
tion of GC and provide a basis for choosing personalized 

treatment strategy. MSI-H high-risk patients might ben-
efit from immunotherapy, while MSI-L/MSS high-risk 
patients might have a poor prognosis, require intensive 
treatment to prevent tumor recurrence, and benefit from 
surgery combined with adjuvant chemotherapy [6].

In addition, ID, NID, Zeff, and λHU could also be 
obtained using other dual-energy CT imaging technologies, 

Fig. 5  Bar chart of discrimination performance for microsatellite instability status of the combined model. The bar chart demonstrated the result 
of combined model for differentiating microsatellite instability status of gastric cancer in the training set (a) and the validation set (b). The blue 
box showed the predicted microsatellite instability high (pred-MSI-H), and the yellow box showed the predicted microsatellite instability low 
or microsatellite stable (pred-MSI-L/MSS)

Fig. 6  Kaplan–Meier survival curve of progression-free survival (RFS) stratified by the combined model. Survival risk stratification of the combined 
model was measured by Kaplan–Meier analysis and the p value was calculated using log-rank test according to risk scores grouped by the optimal 
cutoff. The result showed the nomogram had significant capability to risk stratification (p < 0.05), both in the training set (a) and the validation set 
(b). The red line was the patients with predicted microsatellite instability high (pred-MSI-H), and the blue line showed the patients with predicted 
microsatellite instability low or microsatellite stable (pred-MSI-L/MSS)
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such as dual-source and rapid voltage-switching sys-
tems. However, further research is required to investigate 
whether the findings of this study can be applied to other 
dual-energy CT scanners since different technologies have 
different strategies of high- and low-energy separation.

There are also some limitations in the present study. 
First, this was a single-center study, so multi-center val-
idation was needed for widely application of the predic-
tion model. Second, the patients enrolled in this study 
were locally advanced GC and did not include early 
gastric cancer, which might introduce certain selection 
bias. This is because the lesion of early gastric cancer 
might be too small to be detected on CT images. Third, 
the manual ROI drawing might introduce some sub-
jectivity in terms of the delineation of tumor bounda-
ries. Fourth, a delayed phase scan was not routinely 
performed for suspected gastric cancer in our institu-
tion, although several studies showed some types of GC 
exhibited gradual and delayed enhancement [30, 31]. 
Fifth, since the follow-up time is short with a median 
follow-up time of 35.0  months, no analysis of over-
all survival has been performed. Further research is 
needed to solve the above limitations.

In conclusion, the present study demonstrated 
that the combined prediction model based on DLCT 
parameters, tumor location, and CT_N staging pro-
vides a noninvasive and practical tool for preoperative 
evaluation of the MSI status of GC. The predicted MSI 
status can stratify the risk of recurrence after radical 
gastrectomy. This may assist clinicians in determin-
ing individualized treatment plan, assessing the risk 
of recurrence after surgery in clinical practice, and 
improving patient prognosis.
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