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A B S T R A C T

Objectives: Gingivitis is one of the most prevalent plaque-initiated dental diseases globally.

It is challenging to maintain satisfactory plaque control without continuous professional

advice. Artificial intelligence may be used to provide automated visual plaque control

advice based on intraoral photographs.

Methods: Frontal view intraoral photographs fulfilling selection criteria were collected. Along

the gingival margin, the gingival conditions of individual sites were labelled as healthy, diseased,

or questionable. Photographs were randomly assigned as training or validation datasets. Train-

ing datasets were input into a novel artificial intelligence system and its accuracy in detection

of gingivitis including sensitivity, specificity, and mean intersection-over-union were analysed

using validation dataset. The accuracy was reported according to STARD-2015 statement.

Results: A total of 567 intraoral photographs were collected and labelled, of which 80% were

used for training and 20% for validation. Regarding training datasets, there were total

113,745,208 pixels with 9,270,413; 5,711,027; and 4,596,612 pixels were labelled as healthy,

diseased, and questionable respectively. Regarding validation datasets, there were 28,319,607

pixels with 1,732,031; 1,866,104; and 1,116,493 pixels were labelled as healthy, diseased, and

questionable, respectively. AI correctly predicted 1,114,623 healthy and 1,183,718 diseased pix-

els with sensitivity of 0.92 and specificity of 0.94. The mean intersection-over-union of the

systemwas 0.60 and above the commonly accepted threshold of 0.50.

Conclusions: Artificial intelligence could identify specific sites with and without gingival inflam-

mation, with high sensitivity and high specificity that are on par with visual examination by

human dentist. This systemmay be used formonitoring of the effectiveness of patients’ plaque

control.

� 2023 The Authors. Published by Elsevier Inc. on behalf of FDIWorld Dental Federation. This is

an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/)
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Introduction

Periodontal disease is a chronic inflammatory disease that

affects the periodontium and is categorised into gingivitis

and periodontitis with reversible and irreversible tissue

damages, respectively.1,2 It is one of the most prominent

oral diseases, accounting for a significant amount of global

public health burden every year, as well as 21% of global

productivity loss, equivalent to USD 38.85 billion.3−5 The

prevalence of periodontal disease is estimated to be more
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than 50% worldwide, and nearly one-third of them are

severe cases, that is, clinical attachment loss of more than

5 mm and bone loss of more than 30%, according to the

World Health Organization.3,6−8

Periodontal disease is caused by accumulation of plaque

biofilm along the gingival margin, resulting in localised gingi-

val inflammation and host responses.9−13 An early stage of

periodontal disease, gingivitis, may be reversed by removal of

plaque, and the progress to later stages of periodontitis may

be halted.14

Furthermore, the development of periodontal disease is not

consistent amongst all teeth and sites, and site predilections, i.

e., site-specific, have been observed.15,16 For proper self-care or

professional care, understanding and evaluations of clinical

signs of individual sites are crucial.17 The clinical signs of gingi-

vitis are inflammation-related and are a result of host response

to dental plaque. As inflammation occurs at the gingival mar-

gin, redness (ie, change in colour); swelling (ie, change in vol-

ume); and loss of stippling appearance as loss of gingival fiber

attachment (ie, change in surface characteristics) are observed,

due to increase in blood flow (redness) and leakage of tissue

fluid from blood vessels into the tissues (swelling).18,19 These

changes are generally assessed visually by dentists, and

patients may not be aware of the disease progression due to its

chronic nature and lack of acute symptoms.16,20,21

Effective self-care plaque control measures such as tooth

brushing and interdental cleaning are keys to periodontal dis-

ease prevention and control.22 Studies have revealed that fre-

quent dental appointments are expensive yet ineffective in

achieving sustained satisfactory plaque control at specific

sites despite significant resources being committed to moti-

vate and reinforce patients’ oral hygiene and plaque control

measures.3,23,24

Artificial intelligence (AI) may provide a solution to this

persistent clinical problem. The application of AI in various

areas of dentistry has been gaining traction amongst the den-

tal communities in recent years under name of automated

digital dentistry and Dentistry 4.0.25 There are many clinical

applications of AI in dentistry, from analysis of 2D radiogra-

phy to 3D crown reconstruction, and AI has been utilised in

detection of gingivitis from intraoral photographs.26−37 How-

ever, according to a recent literature review, there seems to

be a lack of agreement in assessing the accuracy of prediction
Fig. 1 – Illustration of architecture of Deep
of gingivitis by AI systems, though 0.90 or above is regarded

as excellent diagnostic accuracy for a general test.30,38,39 For

an AI system to be used clinically for predicting gingivitis, it

should have high sensitivity, that is, report diseased for any

site where there is gingivitis, and high specificity, that is,

report healthy for any site where there is no gingivitis. These

parameters are one of the commonly used medical and den-

tal diagnostic performance metrics40 and are proposed to

measure the accuracy of AI prediction in this study.41

There are several network architectures that are currently

used to detect gingivitis from intraoral photographs with

accuracy ranging from 0.47 to 0.83, with 1.00 as the highest

accuracy.30,35−37,34,42,43 The accuracy of any diagnostic system

for clinical use should be as high as possible, and accuracy of

0.90 or above should be targeted for clinical use.38,39,44,45

In this study, DeepLabv3+ built on Keras (v2.12, Google

LLC) with TensorFlow 2 (v2.9, Google LLC) was adopted. This

neural network was highly transferable and offered multiple

pretrained checkpoints to facilitate learning of the datasets

(Figure 1).46−49 Xception (v1.0, Google LLC) and MobileNetV2

(v1.0, Google LLC) were adopted as the backbone. Xception

models used depth-wise separable convolutions with fewer

connections and lighter model (ie, faster), and MobileNet

models utilised the same convolutions with smaller model

size and complexity, making it easier to construct.50,51

The objective of this study was to develop and to validate a

novel AI system that can be used to diagnose gingivitis on

intraoral photographs with accuracy at or above 0.90. The

hypothesis of this study was that a novel AI system built with

DeepLabv3+, after training with adequate number of intraoral

photographs, would be able to predict the gingival health sta-

tus with accuracy, in terms of sensitivity and specificity, at or

above 0.90. This study was reported in format according to

the Standards for Reporting Diagnostic Accuracy (STARD)

2015 statement (Figure 2).52
Methods

This study was approved by the Institutional Review Board of

the University of Hong Kong/Hospital Authority Hong Kong

West Cluster (HKU/HA HKW IRB), Hong Kong Special Admin-

istrative Region, China (reference numbers: UW 20-230 and
Labv3+ neural networks in this study.



Fig. 2 –STARD-2015 flow diagram of this study.
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UW 21-447), and the Research, Ethics/Safety Sub-Committee

(RESS) of Hong Kong Chu Hai College, Hong Kong Special

Administrative Region, China (reference number: RESS/2022/

06/006). This study was a prospective study, and data collec-

tion was planned before the execution of this study.

Data collection

Consecutive participants were recruited amongst patients

attending the Comprehensive Dental Clinic of the University

Dental Hospital from 2020 to 2022 according to the selection

criteria (Table 1). Informed consent was obtained from all

participants. Frontal-view intraoral photographs were taken

using a digital single lens reflex (SLR) camera (EOS 700D,
Canon) with a macro lens (EF 100mm f/2.8, Canon) and a ring

flash (Marco Ring Lite MR-14EX, Canon). The sample size used

for training the AI system was based on a recent study on

using AI to detect periodontitis, which featured around 450

training datasets.53

Data preparation

The gingival conditions of the collected intraoral photographs

were labelled by a calibrated assessor, who was a dentist and

based on visual assessment on a computer monitor (P2419H

23.8” W-LED monitor, Dell). The areas of interest within each

frontal photograph were the gingival margin and around

3 mm gingival tissues apical to the margin. These areas were



Table 1 – Inclusion and exclusion criteria of study partici-
pants.

Inclusion criteria Participants who are Chinese and aged 18 or

older

Participants who are able to give consent

Participants who have 5 or more anterior teeth

Participants who have adequate mouth opening

for visualisation of at least 3 mm gingival tissue

frommaxillary and mandibular gingival

margins

Participants who are able to attend dental

appointment and hold still during taking

intraoral photograph

Exclusion criteria Participants who have non-plaque-related oral

mucosal diseases that preclude the use of

mirror retractors

Fig. 3 –Selected detection results of the validation set using

the adopted segmentation model. A, Input intraoral photo-

graph. B, Ground truth (health status) labelled by calibrated

dentist. C, Detection results: green = healthy, red = diseased,

yellow = questionable.
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classified into 1 of 3 categories: healthy, diseased, or question-

able, based on a screening instrument, Oral Health Assess-

ment Tools (OHATs),54−56 where the definitions were as

follows:

- Healthy: pink, smooth, no bleeding

- Questionable: red, rough, swollen

- Diseased: white/red patches, generalised redness, ulcers,

swollen, bleeding

Unlabelled areas were classified in the system as back-

ground, making a total of 4 classifications. One week later,

10% of all photographs were labelled again by same assessor

to measure the intra-assessor reliability in diagnosis of gingi-

val conditions healthy, diseased, or questionable.57,58 The kappa

value of the assessor was measured.

Around 450 photographs were randomly designated as

training datasets by randomisation table, and the rest of the

photographs were designated as validation datasets.

Photographs of the training datasets were augmented by

cropping, rotating, or flipping randomly to enhance the train-

ing quality.59

Training and validation

Photographs from the training datasets were input into the AI

system for training. After training, the AI system was then

instructed to diagnose the gingival status of intraoral photo-

graphs of the validation datasets. Both the training and vali-

dation processes were performed on a Linux system powered

by a graphic card of NVIDIA GeForce RTX 3090. The batch

number was set as 4, which is the number of classifications,

and the number of training iterations was set to be 30,000,

a common iteration number to train 2-dimension AI

systems.60,61

Measurements

The performance of the AI systemwasmeasured by true-pos-

itive rate, true-negative rate, false-positive rate, and false-

negative rate. True-positive rate was the outcome where the

AI correctly detected the diseased status, and true-negative

rate was the outcome where the AI correctly detected the
healthy status. False-positive rate and false-negative rate

were the outcomes where AI treated healthy sites as diseased

and diseased sites as healthy, respectively. Sensitivity and

specificity were calculated based on the following formula:

Sensitivity ¼ True Positive= True Positiveþ False Negativeð Þ
Specificity ¼ True Negative= True Negative þ False Positiveð Þ

Mean intersection-over-union, a ratio of true predictions

(positive and negative) against the ground truth (actual health

status), was a wide-adapted performance metric for segmen-

tation models in field of artificial intelligence and was calcu-

lated by dividing the sum of 4 intersection-over-unions of

healthy, diseased, questionable, and background by 4.62 Intersec-

tion-over-union of each category was calculated by the fol-

lowing formula:

Intersection�Over�Union ¼ a\bð Þ= a[bð Þ

where a was the dataset of diagnosis by dentist and bwas the

dataset of prediction by the AI system. In mathematics, the

symbol [ represents the union of 2 sets, whilst \ represents

the intersection of the sets.

Accuracy ranged from 0.00 to 1.00, and 1.00 was consid-

ered to be the maximum accuracy.63 The common threshold

for acceptable prediction was 0.50.64
Results

In all, 572 potential participants were screened according to

the study criteria. Four were rejected due to insufficient num-

ber of anterior teeth, and one was rejected due to age younger

than 18 years. The number of recruited study participants

was 567.

A total of 567 frontal-view intraoral photographs were

taken from the study participants. Amongst the collected

photographs, around 80% of the total (n = 453) were desig-

nated as training datasets, and the rest (n = 114) were desig-

nated as validation datasets.



Table 2 – Predictions of the AI system compared to the diagnosis of a calibrated dentist.

Predictions of the AI system (pixels)

Predicted as
healthy

Predicted as
diseased

Predicted as
questionable

Predicted as
background

Diagnosis of dentist (pixels) Diagnosed healthy 1,114,623 72,048 140,694 252,549

Diagnosed diseased 93,017 1,183,718 76,597 251,211

Diagnosed questionable 248,694 258,035 755,760 215,378

Background 275,697 352,303 143,442 22,885,841

728 chau e t a l .
The training datasets consisted of 113,745,208 pixels in

total, with 9,270,413; 5,711,027; and 4,596,612 pixels labelled

as healthy, diseased, and questionable, respectively. The valida-

tion datasets consisted of 28,319,607 pixels in total, with

1,579,914; 1,604,543; and 1,477,867 pixels labelled as healthy,

diseased, and questionable, respectively. The assessor had a

kappa value 0.92 over 2 attempts of labelling, which indicated

high reliability.

The AI system was then validated using intraoral photo-

graphs from the validation datasets, and results are pre-

sented in Figure 3. AI correctly predicted 1,114,623 healthy and

1,183,718 diseased pixels (Table 2), with a sensitivity of 0.92

and a specificity of 0.94. The mean intersection-over-union

was 0.60.
Discussion

The results of this study supported the hypothesis that a novel

AI system built with DeepLabv3+, after training with adequate

number of intraoral photographs, would be able to predict the

gingival health status with accuracy, in terms of sensitivity

and specificity, at or above 0.90. The novel AI system was able

to identify specific sites with and without gingival inflamma-

tion with sensitivity and specificity that were almost on par

with human dentists, which is one of the current methods

used to detect gingival inflammation clinically.39,40,64 The result

was encouraging and supported the use of AI in detection of

gingivitis on intraoral photographs.

The AI system still had limitations and needed further

development. Because the training was based on Chinese par-

ticipants, the resulting system may work better on Chinese

individuals compared with other ethnicities including White,

Latino, and Black, though determining whether such a differ-

ence exists still needs further examination. Also, there was

no evidence yet to suggest it would retain the same perfor-

mance when it was applied to patients with various local and

systemic modifying factors.14 Further studies into applications

of this novel AI system in gingival inflammation detection

would also be needed to further improve the accuracy of the

system, with a goal of achieving superior performance as a

periodontist. Moreover, clinical examination of the gingival

conditions by probing might reduce the area with a question-

able diagnosis and provide more robust gingival conditions

for AI to learn. In addition, the performance of this system in

clinical settings should be investigated with a longitudinal

clinical trial design. Apart from the diagnosis of gingival con-

ditions, the consistency of the outline of labeled areas should

be addressed in the reliability test of the assessor.
When a population has a high prevalence of a particular

disease such as gingivitis, it is expected that its diagnostic

tests usually have high sensitivity, that is, a positive result

when there is a disease, and low specificity, that is, a negative

result when there is no disease. This is because it is easier for

a diagnostic test to detect a disease when it has high preva-

lence and vice versa. However, gingivitis is a site-specific dis-

ease, and healthy sites may be found in patients with

gingivitis. Therefore, similar numbers of healthy and dis-

eased pixels as well as similar levels of sensitivity and speci-

ficity are found in this study.

With training datasets in larger quantities as well as in

decreased diversity, the training outcomes may be further

improved. However, room for improvement may be limited

because the accuracy of this system was already above 0.90.

Future studies would likely pave the way for applications of

such AI systems in periodontology and, in a greater aspect,

prevention and control of periodontal disease in communities.
Conclusions

AI is able to identify specific sites with and without gingival

inflammation with high sensitivity and high specificity. Fur-

ther investigation and training are required for possible

improvements and clinical applications.
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