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Abstract

Obesity and type 2 diabetes(T2D) lead to defects in intestinal hormones secre-

tion, abnormalities in the composition of bile acids (BAs), increased systemic

and adipose tissue inflammation, defects of branched-chain amino acids

(BCAAs) catabolism, and dysbiosis of gut microbiota. Bariatric surgery

(BS) has been shown to be highly effective in the treatment of obesity and

T2D, which allows us to view BS not simply as weight-loss surgery but as a

means of alleviating obesity and its comorbidities, especially T2D. In recent

years, accumulating studies have focused on the mechanisms of BS to find out

which metabolic parameters are affected by BS through which pathways, such

as which hormones and inflammatory processes are altered. The literatures

are saturated with the role of intestinal hormones and the gut-brain axis

formed by their interaction with neural networks in the remission of obesity

and T2D following BS. In addition, BAs, gut microbiota and other factors are

also involved in these benefits after BS. The interaction of these factors makes

the mechanisms of metabolic improvement induced by BS more complicated.

To date, we do not fully understand the exact mechanisms of the metabolic

alterations induced by BS and its impact on the disease process of T2D itself.

This review summarizes the changes of intestinal hormones, BAs, BCAAs, gut

microbiota, signaling proteins, growth differentiation factor 15, exosomes, adi-

pose tissue, brain function, and food preferences after BS, so as to fully under-

stand the actual working mechanisms of BS and provide nonsurgical

therapeutic strategies for obesity and T2D.
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Highlights

• Controversial changes in intestinal hormones after bariatric surgery (BS)

were summarized.
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• The changes of signaling proteins involved in insulin resistance and the

newly proposed changes in growth differentiation factor 15, exosomes, and

extracellular vesicles after BS were elucidated.

• The interactions between bile acids and gut microbiota and the gut–brain
axis play an indispensable role in BS.

1 | INTRODUCTION

The Global Burden of Diseases, Injuries, and Risk Factors
Study (GBD) 2019 revealed that the prevalence of all met-
abolic diseases increased from 2000 to 2019.1 The latest
national prevalence estimates for 2015–2019 were 34.3%
for overweight and 16.4% for obesity in adults (≥18 years)
according to Chinese criteria.2 According to GBD data,
the absolute burden of obesity is highest and the number
of deaths is highest, with a total of 5.0 million deaths in
2019, in addition to an estimated 43.8 million type 2 dia-
betes (T2D) patients worldwide in 2019, with 1.4 million
deaths among these patients.1 Moreover, the mortality
rates of obesity and T2D did not decrease over time.1

Obesity is a complex disease with multiple etiologies,
with its own disabling capabilities and comorbidities.3,4

Studies have shown that obesity is the strongest risk fac-
tor for the development of diabetes5 and is also associated
with an increased risk of cardiovascular diseases, liver
diseases, and some kinds of cancers.6,7 Statistically, the
largest proportion of metabolic disease-related mortality
was contributed by obesity.1 Basic treatments for obesity
include low-calorie low-fat diets, increased physical activ-
ity, and strategies that contribute to the modifications in
lifestyle. Antiobesity drugs contribute to weight loss and
further improve the health risks.7 However, existing anti-
obesity drugs, including sympathomimetics, GABAA

receptor activators, pancreatic lipase inhibitors, a seroto-
nin 2C receptor agonist, dopamine–norepinephrine reup-
take inhibitor, opioid antagonist, and glucagon-like
peptide-1 (GLP-1) receptor agonists, are not as effective
as desired, and they have side effects.8 For example,
topiramate may cause increased pulse and blood pressure
in certain patients and increase the risk of oral clefts in
infants when taken by pregnant women; liraglutide has
obvious gastrointestinal side effects, such as nausea,
vomiting, diarrhea, and an increased risk of pancreatitis.8

Moreover, short-term weight control is easily achieved by
the means described, but it is prone to weight regain.9,10

There are certain advantages in maintaining long-term
weight loss for bariatric surgery (BS) in severely obese
patients.7,11 BS, also known as metabolic surgery, has
been around since the 1950s. Over the years, there have
been significant changes in access and types of BS, most

notably the almost exclusive adoption of laparoscopic
techniques in the specialty. Other significant changes
were related to the techniques: the use of vertical banded
gastroplasty (VBG) declined in the late 1990s, laparo-
scopic adjustable gastric banding (AGB) emerged around
2012, and thereafter the utilization of biliopancreatic
diversion (BPD) remained at its lowest level, maintaining
a relatively large proportion of Roux-en-Y gastric bypass
(RYGB) for a long time; as well as the utilization of lapa-
roscopic sleeve gastrectomy (SG) has increased rapidly in
recent years.12 For decades, BS has proven successful in
achieving meaningful and sustainable weight loss in a
large number of patients undergoing surgery.13 In addi-
tion, BS significantly improves comorbidities as well as
reduces overall mortality by 25%–50% during long-term
follow-up.7 Although the benefits of BS are clear, the
means by which it is achieved remain to be elucidated.
Different surgical methods result in different changes in
the structure of gastrointestinal tract, based on the simi-
larities and differences in weight loss and metabolic
improvement in these procedures. Clinical and animal
studies have focused on the changes of intestinal hor-
mones, gut microbiota, bile acids (BAs), and circulating
immune and cytokine production following BS. At pre-
sent, there are a number of controversial opinions about
how these various mechanisms work and how they inter-
sect and overlap. This review is intended to elucidate the
mechanisms of benefit of BS for weight loss and diabetes
remission form various aspects and thus to provide ideas
for unlocking other noninvasive treatment strategies
against obesity and related comorbidities that were previ-
ously unknown.

2 | MECHANISMS OF BARIATRIC
SURGERY

2.1 | Weight loss

Metabolic changes were frequently observed soon after
BS and BS is more effective than dietary control in
improving diabetes, even with equivalent weight loss. For
example, with the same weight loss, postprandial glucose
levels decreased more and the GLP-1 levels increased
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more at 1 month after gastric bypass surgery (GBP) com-
pared with a low-caloric diet,14 indicating that mecha-
nisms may be partially independent of weight loss.15,16

2.2 | Dietary restriction

Dietary restriction after BS appears to play a major role
in weight loss. In addition to a smaller gastric pouch,
reduced appetite such as the decrease in orexigenic hor-
mones after BS and the increase in anorexic hormones
contributes to a further decrease in energy intake.
These hormonal changes echo the changes in brain
function projected by functional magnetic resonance
imaging (fMRI) described below. Specifically, patients
undergoing RYGB have increased postprandial plasma
GLP-1,17 peptide YY (PYY),18,19 and oxyntomodulin
(OXM),20 which are beneficial to enhancing satiety and
thus lead to a reduction in energy intake.21 Ghrelin is a
peptide of 28 amino acids originally discovered in
1999.22 It acts as an orexigenic hormone and is mainly
secreted by the stomach.22,23 Ghrelin has diverse bio-
logical functions in regulating energy homeostasis,
including the abilities to communicate with the hypo-
thalamus about current peripheral nutritional status
and to compensate for energy.24 It is also associated
with increased plasma levels of insulin, glucagon, and
leptin.25 Studies have shown that ghrelin impairs car-
bohydrate and lipid metabolism in obese patients and
BS such as SG,18 AGB,26 and GBP27,28 are associated
with significantly suppressed ghrelin levels. However,
there have been some controversial findings regarding
ghrelin level after BS, such as studies showing that
ghrelin concentrations increased to 40% above baseline
levels in patients receiving BPD-RYGB who completed
1 year of follow-up19 and plasma ghrelin increased at
1 year in patients undergoing AGB.29 Another study
reported that there was no significant change in fasting
ghrelin levels from baseline at 1 year after RYGB, nor
was there a significant reduction in ghrelin levels after
the test meal.18 The discrepancies in ghrelin levels after
BS can be attributed to differences in surgical tech-
niques among centers, including the remaining size of
the gastric pouch, the handling of the vagus nerve, the
length of Roux-limp, and the timing of samplings.
However, orexigenic hormones were significantly
attenuate after RYGB but not after weight loss with the
equivalent caloric restriction30 and RYGB results in
improved metabolic flexibility, such as more complete
β-oxidation of fatty acids and greater handling of glu-
cose and amino acids, compared with the equivalent
dietary restriction,31 indicated that mechanisms other
than energy restriction cannot be excluded.

2.3 | The hindgut hypothesis and the
foregut hypothesis

Two major hypotheses have been proposed to explain the
effects of BS on T2D: the hindgut hypothesis32,33 and
the foregut hypothesis.33–35 The former points out that
remission of T2D results from faster delivery of nutrients
to the distal small intestine,36 where L-cells are more
densely distributed37 and thus enhances the release of
GLP-1.38–40 GLP-1 stimulates not only insulin secretion
but also proinsulin gene transcription and insulin biosyn-
thesis and inhibit glucagon secretion,41–43 a physiological
marker of improved glucose metabolism. Some studies
have shown that GLP-1 is dispensable for the metabolic
effects after BS; for example, Albaugh et al found that the
glucose-regulating effect of bile diversion to the ileum
was abolished in whole-body GLP-1 receptor (GLP-1R)
deficient mice.44 The effect of GLP-1R agonists such as
semaglutide and liraglutide on weight loss is comparable
to that of BS, which seems to confirm the important role
of GLP-1. However, infusion of exendin-(9–39), a GLP-1R
antagonist,45 resulted in a slight deterioration of post-
prandial plasma glucose in RYGB subjects, suggesting
that the resolution of T2D after RYGB may be explained
by mechanisms other than enhanced GLP-1 action.46

Similarly, GLP-1 played a limited role in short-term gly-
cemic improvement after RYGB compared with intensive
lifestyle management.47 The metabolic benefits induced
by SG48 and RYGB49 could overcome the defects in glu-
cose regulation due to the lack of GLP-1 signaling in
β-cells in obese mice, further demonstrating that the
hindgut hypothesis may not fully explain the benefits of
BS. The foregut hypothesis, on the other hand, suggests
that exclusion of the proximal small intestine from nutri-
ent transit would reduce or suppress the secretion of anti-
incretin hormones that promote insulin resistance,
thereby improving glycemic control.50 Glucose-
dependent insulinotropic polypeptide (GIP) is an intesti-
nal hormone that is secreted by K cells distributed in the
proximal small intestine37 and promotes the storage of
both glucose and fat.51 GIP exhibits incretin activity and
increases insulin secretion in hyperglycemia. Increased
GIP signaling plays an important role in adipose tissue
inflammation and insulin resistance in obese mice.52

Studies using GIP receptor knockout mice suggest that
GIP action is important in fat deposition and that inhibi-
tion of GIP signaling may be a target for obesity.51,53,54

The metabolic benefits of bypass surgery are mediated in
part by surgical removal of GIP-secreting K cells in the
proximal small intestine55,56 and emerging evidences
have also shown that a rapid reduction in GIP levels fol-
lowing RYGB57 and BPD.58,59 Treatment of obese mice
with GIP receptor (GIPR) antagonist leads to rapid
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improvement in β-cell function and glucose tolerance
through alleviation of insulin resistance,60 but it remains
to be investigated whether the effects of blocking GIP in
humans are similar to those observed in mice. Some stud-
ies showed that bypassing of the jejunum or a short seg-
ment of the proximal gut is beneficial with respect to
insulin-mediated glucose disposal in obese patients, inde-
pendent of effects on body weight, food intake, or hind-
gut nutrient delivery.34,35,61 Interestingly, the longer the
portion of the jejunal bypass during metabolic surgery
was associated with greater improvement in insulin sen-
sitivity.61 Similarly, remission rates of T2D were higher
after BPD than after RYGB in clinical trials because in
RYGB, only the duodenum is bypassed, whereas in BPD,
the duodenum and part of jejunum are excluded from
food transport.33,62,63 It was also found that anatomical
alterations in the proximal small intestine may reduce
factors associated with negative effects on insulin sensi-
tivity, contributing to the control of diabetes after GBP in
rats.64 Interestingly, the superior efficacy of GIPR-
GLP-1R coagonist tirzepatide65 in T2D has drawn atten-
tion to the role of GIP in metabolism in recent years. It is
possible that both the increase and decrease of GIPR sig-
naling reduce body weight, and further studies are
needed to investigate the role of GIP in humans. How-
ever, no significant differences were found between
RYGB and SG in improving glucose homeostasis; increas-
ing insulin, GLP-1, and PYY levels66; and promoting
weight loss at long-term follow-up,67–70 which do not
support the foregut hypothesis. Moreover, neither the
changes in GLP-1 plasma levels nor the changes in GIP
explained the normalization of insulin sensitivity, this
fact may indicate the presence of other intestinal factors.

2.4 | Changes in other intestinal
hormones

Some studies showed that insulin sensitivity increased
more with oral glucose than with intravenous glucose
after BS, suggesting the importance of intestinal hor-
mones. The roles of ghrelin, GLP-1, and GIP have been
described earlier, and the roles of other hormonal
changes in BS should be further explored. In the mid- to
late 1980s, it was recognized that glucagon-like peptide-2
(GLP-2) is specifically processed from preproglucagon in
the gut71,72 and is cosecreted with GLP-1.73 Similar to
GLP-1, GLP-2 is also increased after RYGB to promote
the proliferation of mucosal crypt cells74 through insulin-
like growth factor-1 receptor in intestinal epithelium,75

which may be beneficial for the restoration of intestinal
absorptive surface area, thereby limiting malabsorption
and promoting long-term weight loss in rodents and

humans.76 GLP-2 was significantly elevated after RYGB
and correlated with satiety in clinical trials,77 as was
GLP-2 observed after SG.78 However, the loss of GLP-2
receptor (GLP-2R) did not attenuate the extent of weight
loss and improved glycemic control after SG in mice,
demonstrating that GLP-2R signaling is dispensable for
the metabolic benefits generated after SG.79

PYY3-36 reduces food intake in normal-weight sub-
jects by modulating hypothalamic appetizing circuits;
however, obese subjects have been found to have lower
endogenous PYY levels and are not resistant to the ano-
rectic effects of PYY.80 Meanwhile, attenuated postpran-
dial PYY secretion was observed in the early stages of
T2D development.81 Many studies have found that PYY
levels increase after BS such as RYGB18,82–84 or SG.18,66

Ramracheya et al demonstrated that diabetic rats under-
going RYGB rely on PYY to restore impaired glucose-
mediated insulin and glucagon secretion.85 Tests of
human islet function before and after BS, in the presence
or absence of PYY, demonstrated that PYY plays a key
role in the resolution of T2D in BS.86 However, a prospec-
tive study of severely obese individuals (25 nondiabetic
and 10 diabetic) who underwent RYGB found that
increased PYY levels were associated with sustained
weight loss after surgery. However, there was no signifi-
cant correlation between PYY and glucose tolerance in
either group.82 Regardless, the beneficial metabolic
effects of BS are mediated through changes in PYY levels
remain to be proven.

Gastrin and cholecystokinin (CCK) are known
homologous hormone systems, which not only regulate
gastric acid secretion and the growth of gastric and pan-
creatic cells but also participate in the development and
secretion of islet cells.87 It has been shown that re-
section of distal gastric mucosa significantly reduced
body weight and improved glycemic control in rats, infer-
ring that the decrease in gastrin level caused by gastric
mucosa exclusion in RYGB may be the key for weight
loss and T2D remission.88 Due to structural changes in
the stomach caused by surgery, gastrin level decreased
after RYGB,89 whereas others have shown that gastrin
level was unchanged after AGB90 and increased signifi-
cantly after SG in rodents.91 As for the CCK, Rhee et al
found that the distribution of enteroendocrine cells
underwent a lot of alterations after RYGB in obese
patients with T2D, including an increased density of
CCK-positive cells.92 It has been found that infusion
of nutrients into the bypassed jejunum after the jejunal
bypass stimulated CCK secretion and pancreatic growth
in rats.93 However, other studies have shown that CCK
response to meals is not changed after RYGB57 and VBG
compared with presurgery, suggesting that CCK does
not mediate the endocrine satiety effect of BS.94
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These controversial changes in gastrin and CCK after dif-
ferent bariatric surgeries indicate the need for further
studies exploring their association with BS.

OXM, a postprandial peptide hormone released from
the gut, activates both GLP-1R and glucagon receptor
(GCGR) to induce weight loss,95 inhibit food intake96 and
regulate energy expenditure.97 Some studies have shown
that its analogue eliminated obesity and diabetes in
mice.98 Combined injection of OXM, GLP-1, and PYY
improved body weight and hyperglycemia compared with
placebo in humans.99,100 Perakakis et al found that post-
prandial OXM levels increased most strongly at 3 months
after SG and were associated with the degree of weight
loss, which serve as predictors of weight loss, presumably
by regulating satiety.101 Similarly, OXM levels were sig-
nificantly increased 1 month after RYGB compared with
the diet-induced equivalent weight loss and were signifi-
cantly correlated with GLP-1 and PYY.20 OXM is derived
from the proglucagon gene and has structural similarity
to glucagon. Glucagon is known to be released in the fast-
ing state and increases blood glucose levels by promoting
glycogenolysis and gluconeogenesis. There are few stud-
ies on glucagon in BS, and the present studies have
shown that glucagon levels were decreased after SG102

and RYGB.103

Fibroblast growth factors 19 (FGF19) and 21 (FGF21)
are secreted by the intestine and liver and have emerged
as key regulators of energy metabolism. The biological
effects of FGF21 include weight loss by reducing food
intake and increasing energy expenditure, as well as low-
ering plasma glucose by increasing insulin sensitivity.
However, FGF21 levels are elevated in obese patients and
are further increased in obese patients with T2D, so obe-
sity is proposed to be a FGF21-resistant state.104 Instead,
circulating serum FGF19 concentrations are significantly
decreased in obese and T2D patients. Many studies have
yielded controversial results regarding the changes in
FGF19 and FGF21 after BS. It has been shown that
FGF21 levels decreased after SG105 and GBP106 induced
weight loss, whereas they remained unchanged after
RYGB.105 Moreover, other studies have shown that
FGF21 concentrations elevated after RYGB in 16 obese
patients.107 The reason why FGF21 levels are unchanged
or even increased after RYGB may be related to the
changes in intestinal structure that cause the rapid deliv-
ery of nutrients to the small intestine and glucose
delivery to the liver or reverse FGF21-resistance state.
FGF19 inhibits gluconeogenesis and stimulates glycogen
synthesis but does not increase lipogenesis. FGF19 con-
centrations increased after weight loss induced by SG,
RYGB, and AGB108 in obese patients, as well as after
GBP106 in obese patients with T2D. The role of FGF19 in
BS is elaborated in a later section.

It has been proposed that circulating follistatin and
its homologous protein, follistatin-like 3 play an impor-
tant role in glucose homeostasis and they were decreased
after RYGB and SG, and were correlated with the
changes of blood glucose, insulin, and glycosylated hemo-
globin.109 Circulating succinate was significantly reduced
after BS and had predictive value for T2D remission pro-
posed by Victoria et al, obese patients with T2D who with
different baseline succinate levels had different responses
to the type of surgery and different T2D remission
rates.110

There are also many hormones such as insulin, secre-
tin, pancreatic polypeptide, obestatin, and so on that play
certain roles in weight loss and metabolic improvement
after BS, which are not discussed in this review.

2.5 | Changes in signaling proteins
(adipokines, myokines, hepatokines),
GDF15, exosomes, and adipose tissue

Altered adipokines levels may contribute to metabolic
dysfunction in obesity. The extent of adipokines changes
after BS and their impact on metabolic improvements
have been explored in several studies. Adiponectin levels
increase111–113 and leptin levels decrease after BS, and
surgery shifts the adipokines profiles of obese patients
toward lean controls.114 Specifically, in a prospective con-
trolled Swedish Obese Subjects Study, adiponectin levels
were compared between 1570 subjects undergoing BS
and 1729 controls receiving usual care. The results sug-
gest that the magnitude of weight loss after BS paralleled
a significant increase in circulating high molecular
weight adiponectin.115,116 Patients with T2D remission
after BS have higher levels of adiponectin and lower
high-sensitivity C-reactive protein than those without
remission, and elevated adiponectin is associated with
enhanced β-cells function, greater fat loss, and lower tri-
glyceride levels,117 which indicates that inflammation
and insulin resistance may be reduced. Leptin is an
anorexigenic hormone that is secreted by white adipose
tissue, and despite the anorectic effect of plasma leptin, it
is correlated with body fat content, suggesting that obe-
sity is associated with a state of leptin resistance.118,119

Moreover, leptin resistance may account for the
decreased GLP-1 levels in obese individuals.120 It is
reported that leptin levels decreased at 1 year after RYGB
and AGB.29,121

The activity of brown adipose tissue (BAT) protects
against obesity and T2D.122 Thermogenesis in BAT (both
brown and beige adipocytes) plays an important role in
combating the development of metabolic disorders.123–125

Recently, Qian Wang et al found that interleukin-27
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(IL-27) directly acted on BAT, stimulating uncoupling
protein 1 (UCP-1) production to increase thermogenesis,
protect against obesity and ameliorate insulin resis-
tance.126 The serum IL-27 levels were significantly
reduced in obese individuals with T2D and were restored
after RYGB,127 indicating that BS may improves the
regulation of BAT metabolism by restoring the levels of
certain factors. Obesity and T2D are associated with low-
grade chronic inflammation of white adipose tissue
(WAT), increased proinflammatory cytokines and local
infiltration of immune cells lead to insulin resistance in
obese patients.122 Genes encoding inflammation-related
proteins in WAT continued to decline 2 and 5 years
after RYGB in 38 obese patients, indicated that the meta-
bolic effects of BS may be related in part to altered gene
expression in WAT.128 However, another study showed
that elevated leukocyte infiltration and unchanged proin-
flammatory cytokine mRNA expression in adipose tissue
at 1 month or 6 to 12 months after BS in 17 obese
patients, reflect that neither short-term nor long-term
metabolic improvement after BS significantly reduces
inflammatory markers of adipose tissue. This result
reveals that reduction in adipose tissue inflammation did
not contribute to the metabolic benefits of BS.129 The dif-
ferent results may be due to different populations, surgi-
cal centers, and follow-up time. In addition, both
myokines and hepatokines are associated with insulin
resistance in obesity. Metabolic changes induced by BS
appear to be related to reduction in myokines.130 There is
limited research on the role of hepatokines, including
insulin-like growth factor binding protein 2 (IGFBP2),
adropin, and sex hormone binding globulin, after
BS. Among them, IGFBP2 is significantly increased
after RYGB in humans, rats, and mice, and deletion of
IGFBP2 impairs weight loss and early improvement in
insulin sensitivity induced by surgery, suggesting a poten-
tial role of circulating IGFBP2 in BS.131 The remaining
factors require further research. Growth differentiation
factor 15 (GDF15), a cytokine that reduces food intake by
exerting central anorexigenic effects, has anti-
inflammatory effects and increases insulin sensitivity,
which may improve clinical outcomes in patients with
obesity and T2D.132 Studies have shown that the levels of
GDF15 increased after SG in mice133 and humans,134 as
well as after RYGB,133,135 but lack of GDF15 signaling
did not alter food intake or body weight after SG, indicat-
ing that GDF15 may not be essential for the potent effects
of SG,136 further studies are needed to explore the role of
GDF15 in BS. Recent studies have highlighted the role of
exosomes in mediating the crosstalk between liver, skele-
tal muscle and adipose tissue during the development of
insulin resistance.137 Exosomal microRNAs (miRNAs)
have emerged as potential biomarkers of obesity.

Exosomes derived from obese adipose contain dysregu-
lated miRNAs associated with insulin signaling com-
pared to lean controls, but circulating exosomes are
modified following BS and associated with improved
insulin resistance.138,139 Extracellular vesicles (EVs) are
crucial modes of intercellular communication, modulat-
ing multiple biological processes by carrying hormones,
nucleic acids, and signaling molecules.140 Obesity inter-
feres with the function of human adipose mesenchymal
stem/stromal cells (ASCs), thereby altering the size and
miRNAs cargo of ASCs-derived EVs and reducing their
ability to repair damaged cells.141 In mice experiments,
the composition of intestinal EVs altered substantially
after VSG and may regulate various signaling path-
ways.140 Extracellular miRNAs regulate cellular metabo-
lism by mediating intercellular communication.142 These
miRNAs are partially found in small vesicles/exosomes,
and circulating miRNAs have been linked to metabolic
disorders. A longitudinal study in humans revealed that
42 circulating miRNAs were differentially expressed
between 6 and 12 months after RYGB. Among these, cir-
culating miR-15a, miR-22, and miR-192 were increased
in nine obese individuals with T2D and positively corre-
lated with disease severity, whereas they decreased after
RYGB.143 Circulating levels of miR-92a were positively
associated with body mass index (BMI) and impaired glu-
cose metabolism, but decreased at 6 months following
BS.144 Thus, alterations in circulating miRNAs may partly
explain the improved metabolic function after
BS. However, how BS leads to changes in circulating
miRNAs and how these miRNAs participate in regulating
systemic metabolism require further investigation.

2.6 | Changes in the concentrations and
compositions of bile acids

Increasing evidence suggests that the balance of BAs syn-
thesis pathways (between the classical pathway and the
alternative pathway) may be a therapeutic target for met-
abolic disorders. BAs are important metabolic regulator
acting through the Takeda G-protein receptor 5 (TGR5)
and the Farnesoid X receptor (FXR). BS may improve
metabolism by affecting the concentrations and composi-
tions of BAs. For example, SG improved glucose homeo-
stasis by increasing the levels of circulating BAs and the
signals of BAs via TGR5. Experiments in mice have
shown that relative to TGR5 +/+ mice, the weight-
independent improvements in fasting plasma glucose,
glucose tolerance, and hepatic insulin signaling following
SG were attenuated in TGR5 �/� mice.145,146 Similarly,
notoginsenoside Ft1 was identified as a TGR5 agonist
in vitro, which promoted fat browning in adipose tissue,
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increased lipolysis, and induced GLP-1 secretion in obese
mice, and these effects were not observed in TGR5 �/�

mice.147 The signals of BAs also act through another
receptor: FXR. Ryan et al found that in the absence of
FXR, the ability of SG to reduce body weight and improve
glucose tolerance was greatly reduced.148 Lili Ding et al
also demonstrated that FXR knockout mice fed a high-fat
diet were resistant to the beneficial metabolic effects of
SG.149 These findings suggest that changes in the circulat-
ing BAs pool after BS play an important role in metabolic
improvement through TGR5 and FXR. Treatment with
the TGR5/FXR coagonist INT-767 resulted in weight loss
and improved glucose tolerance in obese mice.150 How-
ever, the role of FXR in obesity and T2D remains contro-
versial, with conflicting results reported in different
studies. For instance, gut-restricted FXR agonist fexara-
mine (Fex) was shown to enhance thermogenesis and
browning of WAT, reducing obesity and insulin resis-
tance in mice.151 In contrast, tempol reduced obesity in
mice by increasing intestinal tauro-β-muricholic acid, a
FXR nuclear receptor antagonist.152 This discrepancy led
researchers to focus on FGF19, a downstream target gene
of FXR. In ileal cells, BAs activate FXR and its down-
stream target, FGF19. FGF19 enters the liver through the
portal venous circulation to bind to its receptor and
represses BAs synthesis by inhibiting CYP7A1 (choles-
terol 7a-hydroxylase, a rate-limiting enzyme for BAs syn-
thesis).153 In a study of 115 patients with T2D who
underwent RYGB, those who experienced complete
remission of T2D after surgery were found to have higher
levels of FGF19, this suggested an important role for the
FGF19-CYP7A1-BAs pathway in the etiology and remis-
sion of T2D after RYGB.154 FGF19 variant M70
(NGM282) has been shown to reduce liver fat content in
humans. As mentioned previously, FGF19 levels are
increased after BS, suggesting that it may be a potential
target for mediating the beneficial effects of BS, but the
specific pathways by which it is mediated remain
unclear. Studies have shown that the changes in compo-
sitions of BAs after BS such as the increase of lithocholic
acid in the portal vein of mice following SG induced the
production of cholic acid-7-sulfate (CA7S) by activating
the vitamin D receptor, which acted on the TGR5 to
induce GLP-1 secretion,155 thereby improving metabo-
lism.156 It has been hypothesized that the increased deliv-
ery of BAs to distal L-cells may contribute to the increase
of gut peptide secretion after BS, but research157 showed
that GLP-1 and PYY increased rapidly after surgery,
whereas BAs significantly increased at 1 year after BS,
indicating that BAs do not seem to be the key regulator
of the early postoperative increase of gut peptide. In addi-
tion, the changes of intestinal BAs after BS are controver-
sial for the improvement of metabolism. For example,

restoration of small intestinal BAs levels partially blocked
the beneficial effects of SG in mice,149 whereas some
studies have found that in obese rats, the alterations in
the gut microbiome caused by RYGB result in an increase
in luminal and systemic pools of taurine-conjugated bile
acids, which induce signaling through FXR and TGR5 to
improve metabolism.158 The difference may be related
to the different surgical procedures and species of BAs.

2.7 | Changes of branched-chain
amino acids

The levels of circulating BCAAs (leucine, isoleucine and
valine) were significantly elevated in individuals with
T2D or obesity with insulin resistance.159–161 BAT utilizes
BCAAs in mitochondria for thermogenesis and controls
BCAAs clearance through solute carrier family 25 mem-
ber 44, thereby improving metabolism and in turn,
defects of BCAAs catabolism in BAT were associated
with obesity in mice.159,162 BCAAs decreased significantly
after RYGB, BPD, and SG163,164 and this change lasted up
to 12 months after RYGB and SG.165 In addition, some
studies have shown that although both BS (such as GBP
and RYGB) and calorie restriction resulted in significant
weight loss, the former induced a reduction in BCAAs
levels but the latter did not, suggesting a BS-dependent
mechanism for BCAAs reduction.166,167 The effects of
sodium phenylbutyrate (NaPB) on metabolic health in
16 patients with T2D were evaluated in a randomized,
placebo-controlled trial. The results showed that NaPB
resulted in an 8% reduction in BCAAs levels at 2 weeks, a
27% improvement in peripheral glucose disposal, and an
increase in muscle mitochondrial oxidative capacity.
These findings suggest that NaPB, a promoter of BCAAs
catabolism, may be a promising treatment approach for
T2D.168 However, Kramer et al indicated that increased
circulating BCAAs did not attenuate the benefits of SG in
mice, suggesting that reductions in BCAAs were not
essential for sustained weight loss and improved glucose
tolerance following SG.169 Whether the reductions of
BCAAs after BS play an independent role remains to be
demonstrated.

2.8 | Metabolic alterations in the gut
microbiota

Emerging evidence has shown that obese individuals
have abnormal gut microbiota170–173 and human micro-
biome influences insulin sensitivity.160 Over the years, it
identified the alterations of major gut microbiota in
severe obesity, which include reduced microbial gene
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richness (MGR) and associated functional pathways
related with metabolic deterioration. AGB and RYGB
increased MGR at 1 year after surgery, improved metabo-
lism and inflammation in 61 severe obese subjects, and
was associated with changes in gut microbiota.174 Specifi-
cally, SG resulted in an increase in the abundance of
Bacteroides thetaiotaomicron in mice156 and a decrease in
serum glutamate concentration, which partially reversed
obesity-related microbial and metabolic alterations.175 In
addition, obese mice gavaged with Bacteroidetes spp.
exhibited attenuated body-weight gain175 and improved
BCAAs catabolism in BAT.162 These results identify the
links between obesity, intestinal microbiota, and circulat-
ing amino acids, suggesting that it is possible to intervene
in obese individuals by targeting the Bacteroides probio-
tics. Cecal Prevotella copri was significantly enriched in
Goto-Kakizaki rats with spontaneous T2D after SG, and
glucose homeostasis was improved through enhanced
bile acid metabolism and FXR signaling.176 However,
Bacteroides vulgatus and Prevotella copri are mainly
involved in the biosynthesis of BCAAs, thereby increas-
ing the levels of BCAAs and inducing insulin resistance
in mice.160 A similar paradox is that BCAAs supplemen-
tation is beneficial for energy expenditure, but increased
circulating levels of BCAAs are detrimental to metabo-
lism, so the mechanisms of these paradoxes need to be
further explored.159 In recent years, Chaudhari et al have
found that the altered gut microbiota (decreased
Clostridia) following SG produced a microbial
metabolism-CA7S that increased plasma GLP-1 level,
thereby remodeling the gut-liver axis to improve metabo-
lism.156 They also showed that transferring of post-SG
microbiota to germ-free mice recreated the CA7S path-
way.156 In other words, changes in gut microbiota, Bas,
and intestinal hormones resulting from alterations in gut
anatomy and physiology connect the gut-liver axis. Fecal
microbiota transplantation (FMT) is generally performed
in mice, and it has also been conducted in humans.
Vrieze et al177 showed that insulin sensitivity increased
6 weeks after infusion of lean donor gut microbiota in
male recipients with metabolic syndrome. Allegretti
et al178 conducted a randomized trial to investigate the
effects of FMT (derived from lean donors) in obese, meta-
bolically uncompromised patients and showed that FMT
did not reduce BMI in recipients but resulted in sustained
changes in the gut microbiome and bile acid profile
similar to lean donors. Recognized microbial changes
following SG and RYGB include an increase in the
relative abundance of Proteobacteria and a decrease in
Firmicutes.179 An increase in Proteobacteria has also
been reported after improvement in glucose homeostasis
induced by metformin treatment, suggesting that Proteo-
bacteria may be involved in metabolic improvement.180

Proteobacteria was increased in the fecal contents of mice
in the SG group compared with the sham-operated
group.156 Firmicutes (dominant in obese individuals) and
Romboutsia were significantly decreased in individuals
after BS (such as GBP, RYGB, and SG), which is associ-
ated with significant weight loss, improved insulin resis-
tance, and decreased systemic inflammation.181–183 In
obese and T2D mice, the abundance of Akkermansia
muciniphila in the gut is decreased, and its elevation after
BS44 has been reported to reduce fat mass, improve
metabolism in mice184,185 and humans,186 increase ther-
mogenesis by inducing UCP-1 in BAT, and induce sys-
temic GLP-1 secretion in mice.187 Recently, Munzker
et al have shown that depletion of the gut microbiota
largely reversed the beneficial effects of GBP and intesti-
nal microbiota after surgery regulated metabolism by
reactivating thermogenesis in BAT through the FXR-
TGR5 crosstalk.158 Tremaroli et al found similar and
durable gut microbiome changes in patients undergoing
RYGB or VBG that were independent of body weight.
Moreover, the surgically altered microbiome was demon-
strated by FMT to promote the reduction in fat deposi-
tion, which further suggests that the gut microbiota may
play a direct role in weight loss after BS.188 A recent study
revealed that absolute deficiency of bacterial biotin pro-
ducers and transporters was correlated with inflamma-
tory phenotype and metabolic disorders in obese
individuals. BS increased bacterial biotin producers to
improve host systemic biotin in humans and mice,
thereby improving metabolism and inflammation.189 A
Chinese study found that probiotics + berberine
(a natural bacteriostatic alkaloid derived from Berberis
aristata and Huanglian) had better effects on lowering
glycated hemoglobin in 409 participants with T2D. The
result showed that berberine exerted glucose-lowering
effects through potential microbial mechanisms, further
illustrating the critical role of gut microbiome in regulat-
ing host metabolism.190 In the future, combined manage-
ment using gut-centered therapies and B vitamins,
including biotin, appears to be of interest in preventing
the transition of obesity and T2D to a more severe meta-
bolic state. Samczuk et al191 indicated that the recovery
rate of T2D after SG may be related to the changes in gut
microbiota composition and its effect on mitochondrial
metabolism, and more investigations are still needed to
explore these findings.

2.9 | Changes of different brain function
and food preferences

Obesity negatively affects brain function. Now, increasing
studies have used fMRI to observe changes in brain
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activity in response to food cues in an effort to gain a dee-
per understanding about the mechanisms of BS. RYGB
resulted in different brain responses compared with a
very-low-calorie diets in clinical trials: RYGB resulted in
a more active homeostatic appetite system, as well as
reduced neural activation in response to food cues in cog-
nitive control regions and responsiveness to food cues in
the reward center of the brain,192 resulting in favorable
changes in food rewards and preferences.10,193 Another
study, by utilizing functional brain imaging, reported that
brain responses to high-fat milkshake cues normalized at

1 year following RYGB in obese participants.194 In the
fMRI study designed by De Silva et al, combined adminis-
tration of PYY (3–36) and GLP-1 (7–36 amide) to 15 fasted
human subjects resulted in reduction in energy intake and
brain activity.195 A study designed by Farr et al revealed
that elevated GIP levels were associated with deactivation
of insula related to attention and reward and decreased lep-
tin levels were associated with activation or deactivation of
different brain regions.196 GLP-1R has also been demon-
strated to be expressed in the hypothalamus, medulla
oblongata, parietal cortex and so on.197 The effects of these

FIGURE 1 Main mechanisms associated with weight loss and remission of type 2 diabetes after bariatric surgery. The changes in

gastrointestinal structure and function after bariatric surgery alter circulating hormones, gut microbiota, bile acids, thereby improving

metabolism by ameliorating insulin resistance, reducing hepatic glucose output, and decreasing inflammation. In addition, the changes in

adipose tissue and related factors after bariatric surgery also improve insulin resistance and reduce inflammation. At the same time,

alterations in intestinal factors (through the gut-brain axis), the central effects of certain factors such as GDF15, and the bariatric surgery

itself directly or indirectly affect brain functions, thereby altering food selection, regulating appetite, and reducing energy intake. Together,

these factors contribute to the remission of obesity and type 2 diabetes. AGRP, agouti-related protein; BAT, brown adipose tissue; BCAAs,

branched-chain amino acids; CA7S, cholic acid-7-sulfate; CCK, cholecystokinin; CYP7A1, cholesterol 7a-hydroxylase; EVs, extracellular

vesicles; FGF-19, fibroblast growth factor-19; FGF-21, fibroblast growth factor-21; FXR, farnesoid X receptor; GDF15, growth differentiation

factor 15; GIP, glucose-dependent insulinotropic polypeptide; GLP-1, glucagon-like peptide-1; GLP-2, glucagon-like peptide-2; IL-27,

interleukin-27; OXM, oxyntomodulin; POMC, pro-opio-melanocortin; PYY, peptide YY; SLC25A44, solute carrier family 25 member 44;

TGR5, takeda G-protein receptor 5; UCP-1, uncoupling protein 1; WAT, white adipose tissue.
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gut hormones on the brain highlight the importance of the
gut-brain axis in controlling reward-based eating behavior.
The pro-opio-melanocortin (POMC) neurons and agouti-
related protein (AGRP) neurons located in the arcuate
nucleus of the hypothalamus are the cores of gut-brain
axis, regulating blood glucose and metabolism through
changes in their excitability. For instance, GLP-2 increases
the excitability of POMC neurons by activating GLP-2R-
PI3K signaling, thereby reducing hepatic glucose produc-
tion.198 However, existing studies are inconsistent with the
changes of activity of POMC and AGRP neurons following
BS by measuring the mRNA expression. In addition, the
decrease in adipokines and inflammatory factors after BS
may also be related to favorable changes in brain volume
and cerebral blood flow.199,200

Gustatory and olfactory function assessments in 68 par-
ticipants undergoing RYGB or SG showed that BS may
have positive effects on gustatory and olfactory function
and eating behavior, with decreased hunger after surgery.201

However, the results from sensory studies are variable and
limited and it has been showed that gustatory changes are
not associated with the surgery-mediated alterations in
major intestinal appetite-regulating hormones.202 Changes
in food preferences and choices may contribute to the long-
term benefits of BS. Specifically, many studies have reported
changes of food preferences following BS, including reduc-
tions in total fat and calorie intake and an increase in pro-
tein intake, and these changes were more common among
participants who undergoing RYGB.203–207 Elevated intesti-
nal hormones such as GLP-1, PYY, and OXM have been
suggested as possible mediators of the beneficial effects of
RYGB on appetite and food preferences. In addition to the
changes in intestinal hormones, changes in food prefer-
ences may also be related to postoperative changes in taste
sensitivity, and conditioned avoidance and related changes
in feeding motivation learning after RYGB may be candi-
date mediators.208 In addition, Smith et al found that the
taste-induced activation in the ventral tegmental area chan-
ged greatly after RYGB, suggesting that RYGB may more
effectively reset the neural processing of reward stimulation
in obese patients, thereby rescuing the blunted activation of
the mesolimbic pathways,209 but found that this effect
seemed to be temporary at 1 year of follow-up.210 However,
there are also studies reporting that RYGB and SG did not
affect food preferences, much research remains to be
explored in the future.211,212

3 | LIMITATIONS OF THE
CURRENT STUDIES

As an invasive surgery, BS, coupled with potential side
effects such as postoperative infection, anastomotic fistula,

and malnutrition, cannot be widely applied to the popula-
tion with surgical indications, and people are more inclined
to choose pharmaceutical treatment. Therefore, most exist-
ing study populations on BS are limited, and future valida-
tion in larger populations is needed.

Most invasive research, such as studying changes in
the composition of BAs in the portal vein after BS, has
been conducted in animal models such as mice. We
should be skeptical that whether the changes observed in
animal studies are similar in humans. Although animal
studies may provide ideas, the results should not be
blindly extrapolated to humans without caution.

The study design, especially the control of confound-
ing factors, should be determined before establishing the
animal model of BS, so as to obtain convincing results. In
addition, the involvement of other mechanisms should
be considered comprehensively when studying one
mechanism. For example, the secretion of intestinal hor-
mones after BS is not only influenced by structural
changes of the gastrointestinal tract but also by the brain.
Therefore, future research should consider the compre-
hensive interaction among these mechanisms.

4 | CONCLUSIONS

In this review, we comprehensively explore the multifac-
torial mechanisms underlying the beneficial effects of BS
on weight loss and metabolism improvement (Figure 1).
BS leads to weight loss, thereby reducing the fat content,
changing the intestinal hormones, BAs, BCAAs, gut
microbiota, signaling proteins (adipokines, myokines,
hepatokines), GDF15, exosomes, brain function, and food
preferences. However, as described in this review, none
of these mechanisms appears to fully explain the benefi-
cial effects of BS and different perspectives on the under-
lying mechanisms of BS remain to be elucidated. Further
studies are needed to uncover the mechanisms behind
BS, so as to provide new ideas for the treatment of obesity
and metabolic disorders.
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