Skip to main content
. 2023 Sep 11;19:1372–1378. doi: 10.3762/bjoc.19.98

Table 1.

Optimization of the reaction conditions.a

graphic file with name Beilstein_J_Org_Chem-19-1372-i001.jpg

entry Ni salt (ligand) activator solvent yield (%)b

1 NiBr2(dtbbpy) A1 DMAc 50
2 NiBr2(dtbbpy) A2 DMAc 0
3 NiBr2(dtbbpy) A3 DMAc 56
4 NiBr2(dtbbpy) A4 DMAc 0
5 NiBr2(dtbbpy) A5 DMAc 0
6c NiBr2(dtbbpy) A3 DMAc 74
7d NiBr2(dtbbpy) A3 DMAc 68
8c NiCl2(dtbbpy) A3 DMAc 37
9c NiBr2(bpy) A3 DMAc 67
10c NiBr2(phen) A3 DMAc 8
11c NiBr2diglyme/4,4-dCO2Me-bpy A3 DMAc 61
12c NiBr2diglyme/4,4-dMeO-bpy A3 DMAc 65
13c NiBr2(dtbbpy) A3 NMP 53
14c NiBr2(dtbbpy) A3 DMF trace

aReaction conditions: 1a (0.1 mmol), 2 (0.15 mmol), Ni catalyst (0.01 mmol), Hantzsch ester (0.15 mmol), solvent (1.0 mL), activator (0.15 mmol), purple LEDs, 7 h. bYields determined by 19F NMR spectroscopy using trifluoromethoxybenzene as an internal standard. cAdding 3.0 equiv H2O. dAdding 10.0 equiv H2O.