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Key Points

• GLUT1 is essential for
energy metabolism of
murine MLL::AF9
LSCs in the bone
marrow
microenvironment.

• GLUT1 and OXPHOS
inhibition eliminates
human AML cells.
Acute myeloid leukemia (AML) is initiated and propagated by leukemia stem cells (LSCs), a

self-renewing population of leukemia cells responsible for therapy resistance. Hence, there

is an urgent need to identify new therapeutic opportunities targeting LSCs. Here, we

performed an in vivo CRISPR knockout screen to identify potential therapeutic targets by

interrogating cell surface dependencies of LSCs. The facilitated glucose transporter type 1

(GLUT1) emerged as a critical in vivo metabolic dependency for LSCs in a murine

MLL::AF9–driven model of AML. GLUT1 disruption by genetic ablation or pharmacological

inhibition led to suppression of leukemia progression and improved survival of mice that

received transplantation with LSCs. Metabolic profiling revealed that Glut1 inhibition

suppressed glycolysis, decreased levels of tricarboxylic acid cycle intermediates and

increased the levels of amino acids. This metabolic reprogramming was accompanied by an

increase in autophagic activity and apoptosis. Moreover, Glut1 disruption caused

transcriptional, morphological, and immunophenotypic changes, consistent with

differentiation of AML cells. Notably, dual inhibition of GLUT1 and oxidative

phosphorylation (OXPHOS) exhibited synergistic antileukemic effects in the majority of

tested primary AML patient samples through restraining of their metabolic plasticity. In

particular, RUNX1-mutated primary leukemia cells displayed striking sensitivity to the

combination treatment compared with normal CD34+ bone marrow and cord blood cells.

Collectively, our study reveals a GLUT1 dependency of murine LSCs in the bone marrow

microenvironment and demonstrates that dual inhibition of GLUT1 and OXPHOS is a

promising therapeutic approach for AML.
Introduction

Acute myeloid leukemia (AML) is a heterogeneous hematological malignancy with a 5-year survival rate
of <30%.1 This dismal outcome has been attributed to an inability of conventional chemotherapy to
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eradicate leukemia stem cells (LSCs), a distinct subpopulation that
drives disease initiation, perpetuation, and relapse.2,3

Based on the potential therapeutic value of targeting LSCs, mul-
tiple strategies have focused on exploiting LSC-specific vulnera-
bilities to improve outcomes of patients with AML. The distinct
metabolic properties of LSCs compared with normal hematopoi-
etic cells have recently prompted interest in targeting energy
metabolism as an antileukemic therapy.4,5 However, antileukemic
effects are often hampered by metabolic adaptation and patient
heterogeneity.6 Understanding the mechanisms underlying meta-
bolic dependencies of LSCs and exploiting them therapeutically
may provide new treatment strategies.

To identify physiologically relevant dependencies, we, and others,
have performed in vivo CRISPR-Cas9 screens to uncover LSC
vulnerabilities within the bone marrow niche.7-9 Although many
screens reveal critical dependencies for leukemia maintenance and
progression, these candidates are often not suitable as therapeutic
targets. Cell surface proteins, however, have extracellular acces-
sibility for pharmacological intervention and, thus, provide a basis
for many types of targeted therapies.10 In particular, identification of
cell surface antigens required for survival of LSCs may be thera-
peutically relevant because they are less likely to be downregulated
as a resistance mechanism.

Here, we performed an in vivo CRISPR-Cas9 dropout screen in a
murine MLL::AF9 (KMT2A::MLLT3)-driven AML model and iden-
tified the facilitated glucose transporter type 1 (GLUT1) as the top-
scoring dependency of LSCs. Genetic and pharmacological inhi-
bition of GLUT1 compromised LSC activity by disrupting energy
metabolism, accompanied by enhanced apoptosis, differentiation,
and autophagic activity. In human AML cell lines and in the majority
of tested samples from patients with AML, inhibition of GLUT1 and
oxidative phosphorylation (OXPHOS) synergistically impaired leu-
kemia cell survival while having milder effects on normal cells. Our
study provides a deeper understanding of how GLUT1 regulates
metabolic processes of leukemia cells, findings that may translate
into improved therapies in AML.
Methods

Murine MLL::AF9 leukemia model

The murine MLL::AF9 AML model expressing Cas9 was previously
generated.11 Leukemia cells were serially propagated in sublethally
irradiated C57BL/6 recipient mice, as previously described.11

MLL::AF9 leukemia cells were harvested from the bone marrow
and enriched for LSCs by isolating the receptor tyrosine kinase+ (c-
Kit+) cell population, and cultured in Stemspan (StemCell Tech-
nologies) containing 1% penicillin/streptomycin (Cytvia), supple-
mented with murine interleukin-3, murine stem cell factor, and
human interleukin-6 (Peprotech).7

CRISPR library construction and screen

A lentiviral library containing 5798 single-guide RNAs (sgRNAs)
targeting 961 genes encoding cell surface proteins was generated,
as previously described.12 The genes targeted were selected from
the Cell Surface Protein Atlas database followed by manual cura-
tion.10 In vivo pooled CRISPR dropout screening was performed
using c-Kit+ MLL::AF9 leukemia cells, as previously described.7
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RNA sequencing

Global gene expression profiling was performed on sorted green
fluorescent protein–positive (GFP+) MLL::AF9 leukemia cells
3 days after transduction with Glut1 sgRNAs or a nontargeting
control. Data have been deposited under the accession number
GSE209636.

Mass spectrometry–based metabolomics

Absolute quantification of the tricarboxylic acid (TCA) cycle inter-
mediates and amino acids was performed by gas chromatography
coupled with triple quadrupole mass spectrometry. Sugar-
phosphate metabolites were quantified by liquid chromatography
coupled with triple quadrupole mass spectrometry.

Statistical analysis

Statistical analyses between Glut1 sgRNA and nontargeting con-
trol groups were performed using 1-way analysis of variance
(ANOVA) with Dunnett’s correction, and differences between drug
and dimethyl sulfoxide (DMSO)-treated groups using unpaired 2-
tailed Student t test, unless otherwise indicated. Data are pre-
sented as the mean ± standard deviation, with at least 3 biological
replicates, unless otherwise stated. *P < .05, **P < .01, ***P <
.001, and ****P < .0001.

Refer to supplemental Table 1 for a list of antibodies used, sup-
plemental Table 2 for sgRNA sequences, and supplemental
Information for further methodology details.

Results

In vivo CRISPR-Cas9 screening identifies GLUT1 as a

novel regulator of MLL::AF9–driven leukemia

To identify cell surface molecules that are critical for the growth
and survival of LSCs in AML, we generated a CRISPR library tar-
geting 961 genes encoding cell surface proteins. The screen was
performed using an MLL::AF9–driven AML mouse model enriched
for stem cell activity and with a rapid disease progression.7,13,14

The pooled sgRNA library was lentivirally transduced into serially
propagated Cas9+ c-Kit+ dsRed+ MLL::AF9 leukemia cells and
transplanted into sublethally irradiated mice (Figure 1A).7,11 Glut1,
which encodes GLUT1, was identified as the top-scoring hit, with 6
of 6 sgRNAs depleted >10-fold (Figure 1B-C; supplemental
Figure 1A-D; supplemental Tables 2 and 3). Furthermore, among
the 20 genes with the strongest depletion scores were known AML
stem cell dependencies, including Cxcr4, Cd47, and Hoxa9, the
latter included as a positive control, confirming the robustness of
the screen.7,15-17 Other genes associated with survival of leukemia
cells such as Gnb211 and Tmem30a also scored as strong in vivo
dependencies (Figure 1B; supplemental Table 3).18,19

GLUT1 is required for MLL::AF9–driven AML cell

growth and survival

Growing evidence suggests that AML cells rely on unique and
exploitable metabolic properties for survival, thus making glucose
transporters promising therapeutic targets.4 To examine the rele-
vance of GLUT1 in AML, we investigated the expression of GLUT1
(also known as SLC2A1) in a cohort of CD34+ hematopoietic
stem and myeloid progenitor cells from the bone marrow of healthy
donors (n = 22),20,21 and in 5 cohorts of patients with AML (n =
GLUT1 INHIBITION SELECTIVELY TARGETS AML 5383
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Figure 1. In vivo CRISPR-Cas9 screening identifies an essential role for Glut1 in MLL::AF9–driven AML. (A) Schematic representation of the experimental design for

the pooled in vivo CRISPR screen in MLL::AF9 c-Kit+ leukemia cells (n = 9 mice). (B) Bar plot of normalized median fold change of sgRNAs for the 20 genes with the strongest

depletion scores in the screen. Fold change in sgRNA representation in leukemic cells harvested from the bone marrow was calculated as the number of reads after 12 days

in vivo (final time point [Tf]) relative to input representation (initial time point [T0]). (C) Waterfall plot showing the normalized fold change of individual sgRNAs for the top regulator

Glut1 and 3 known regulators of MLL::AF9 AML (Hoxa9, Cxcr4, and Cd47). A fold change of 10 was used to define depleted sgRNAs, denoted with a dotted line. Illustration in

panel A created using BioRender. See also supplemental Figure 1 and supplemental Table 3.
1706) using the BloodSpot tool.22-27 GLUT1 was expressed
across all AML subtypes, suggesting that the GLUT1 dependency
is not confined to a specific AML subtype (supplemental
Figure 2A). A pediatric cohort of patients with MLL-rearranged
AML (n = 9) or acute lymphoblastic leukemia (n = 53) also showed
clear GLUT1 expression (supplemental Figure 2B).28 Similarly, in
murine MLL::AF9 leukemia cells, GLUT1 levels were markedly
upregulated in primary LSC-enriched c-Kit+ and leukemic
granulocyte-monocyte progenitor populations compared with their
normal bone marrow counterparts (Figure 2A; supplemental
Figure 2C-D). Compared with the other class I facilitative
glucose transporters (Glut2, Glut3, and Glut4), Glut1 expression
was >20-fold higher (supplemental Figure 2E).

To study the mechanistic basis for the GLUT1 dependency of AML
cells, Glut1 was knocked down in murine MLL::AF9 cells using the
5384 RODRIGUEZ-ZABALA et al
3 highest scoring sgRNAs targeting Glut1 in the screen (sgRNA1-
3) (supplemental Table 2). High CRISPR-mediated editing effi-
ciency was confirmed by deep sequencing, which translated into
significant knockdown at the protein level (Figure 2B-C;
supplemental Figure 2F-G). Consistent with the screening results,
sgRNA-mediated ablation of Glut1 in c-Kit+ MLL::AF9 leukemia
cells transplanted into mice led to a robust depletion of GFP+

(sgRNA-expressing) cells in the bone marrow (Figure 2D) and
spleen (supplemental Figure 2H). Similarly, a rapid depletion of
Glut1 sgRNA-expressing leukemia cells was also observed over
time in a competition assay ex vivo (Figure 2E). These findings
indicate that GLUT1 regulates critical intracellular mechanisms
driving myeloid leukemia progression.

To assess whether Glut1 is essential for LSCs, recipient mice
received transplantation with sorted GFP+ c-Kit+ MLL::AF9 cells
26 SEPTEMBER 2023 • VOLUME 7, NUMBER 18
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Figure 2. GLUT1 is required for AML cell growth and survival. (A) Flow cytometric analysis of GLUT1 expression in MLL::AF9 LSC-enriched (c-Kit+) cells and their normal
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expressing lentiviral vectors. (B) Genetic editing in the Glut1 locus was quantified by deep sequencing within sorted GFP+ cells, 3 days after transduction. (C) Representative

histogram of GLUT1 expression measured by flow cytometry within GFP+ leukemia cells, 4 days after transduction. (D) Quantification of GFP+ MLL::AF9 leukemia cells in the

bone marrow of mice 12 days after transplantation with c-Kit+ leukemia cells transduced with Glut1 sgRNAs or nontargeting control. The percentage of GFP+ cells at day 12 was

normalized to the input percentage of GFP+ cells before transplantation, 2 days after transduction (T0). (E) Ex vivo competition proliferation assay as measured by the percentage
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transduced with Glut1 sgRNA or a nontargeting control. Mice that
received transplantation with Glut1-disrupted leukemia cells had a
significantly prolonged survival, albeit with differences between the
2 Glut1 sgRNAs (Figure 2F; supplemental Figure 2I-J). Although
only 1 of 5 mice that received transplantation with leukemia cells
expressing Glut1 sgRNA1 survived, the recipients that received
transplantation with Glut1 sgRNA2-expressing cells displayed no
signs of disease (Figure 2F; supplemental Figure 2I -J). Notably,
examination of the leukemic blasts harvested from recipients that
received transplantation with Glut1 sgRNA1-expressing cells that
succumbed to disease revealed a restored GLUT1 expression
(supplemental Figure 2K-L). This observation suggests that rare
AML cells either with nondeleterious editing or that had escaped
Glut1 knockdown had expanded. Overexpression of a sgRNA2-
resistant Glut1 complementary DNA rescued the effects induced
26 SEPTEMBER 2023 • VOLUME 7, NUMBER 18
by Glut1 sgRNA2, suggesting that the strong antileukemic effects
of sgRNA2 were not caused by off-target effects (supplemental
Figure 2M-N). Taken together, these data indicate that GLUT1 is
essential for LSCs in the MLL::AF9–driven leukemia mouse model.

Glut1 disruption induces apoptosis and

differentiation of MLL::AF9 leukemia cells

Next, we sought to investigate the cellular mechanisms by which
Glut1 regulates leukemia progression. Whereas Glut1 disruption
did not have an effect on cell cycle status (supplemental
Figure 3A), it induced poly-adenosine diphosphate (ADP) ribose
polymerase (PARP) and caspase-3 activation, accompanied by
late-stage apoptosis in c-Kit+ MLL::AF9 leukemia cells
(Figure 3A-C). Alterations consistent with apoptosis were also
GLUT1 INHIBITION SELECTIVELY TARGETS AML 5385
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observed morphologically, as evidenced by an overall cell
shrinkage and chromatin condensation in the nuclei (Figure 3D).
Moreover, we observed a reduced nucleus-to-cytoplasm ratio and
increased expression of the differentiation marker GR-1 consis-
tent with myeloid differentiation (Figure 3D-E).
5386 RODRIGUEZ-ZABALA et al
To gain insights into the molecular effectors regulated by GLUT1 in
AML, we performed RNA sequencing of c-Kit+ MLL::AF9 leukemia
cells after Glut1 disruption. Glut1 knockdown induced a distinct
gene expression signature, herein referred to as theGlut1 inhibition
signature, with 1688 genes identified as differentially expressed
26 SEPTEMBER 2023 • VOLUME 7, NUMBER 18



(false discovery rate [FDR] < 0.01) (supplemental Figure 3B).
Gene set enrichment analysis (GSEA) revealed that genes asso-
ciated with myeloid differentiation were enriched in the Glut1
inhibition signature (supplemental Figure 3C).29 Among the
significantly upregulated genes were Cebpb and Mpo, myeloid
lineage commitment markers important for late stages of myeloid
differentiation (Figure 3F-G).30,31 Furthermore, a large subset of
Hoxa genes including Hoxa3, Hoxa7, Hoxa9, and Hoxa10, known
to be critical for the self-renewal of LSCs, were significantly
downregulated in Glut1-disrupted cells (Figure 3H; supplemental
Figure 3D-F).32 Similarly, a downregulation of Meis1, which
cooperates with Hoxa9 in the development of MLL-rearranged
leukemia, was also observed (Figure 3I).33 Taken together,
molecular, morphological, and transcriptomic analyses indicate that
Glut1 ablation inhibits AML progression by inducing late-stage
apoptosis and myeloid differentiation.

Glut1 inhibition suppresses glycolysis and reduces

levels of TCA intermediates in leukemia cells

GSEA also revealed that the Glut1 knockdown signature was
negatively enriched for OXPHOS (FDR < 0.001) as well as for the
TCA cycle (FDR = 0.061), suggesting that disruption of Glut1–
mediated glucose uptake downregulates genes in these processes
(Figure 4A-B). Given that GLUT1 is a key rate-limiting factor for
glucose uptake and that knockdown leads to transcriptional
changes in the genes involved in OXPHOS, we interrogated
metabolic pathways directly regulated by this major glucose
transporter in LSCs.

To characterize global metabolomic differences induced by Glut1
knockdown in AML, we performed metabolomic profiling on c-Kit+

MLL::AF9 leukemia cells transduced with nontargeting control or
Glut1 sgRNAs (Figure 4C-G; supplemental Table 5). After confir-
mation of robust group clustering using principal component
analysis (supplemental Figure 4A), we assessed alterations in
glycolysis, the pentose phosphate pathway (PPP), and TCA. Glut1
disruption led to an overall suppression of glycolysis, as evidenced
by a significant reduction of key glycolytic metabolites such as
lactate and glucose-6-phosphate (Figure 4C-D; supplemental
Table 5). We also observed downregulation of a large number of
intermediates belonging to the PPP, a metabolic pathway that
branches from glycolysis (Figure 4C,E; supplemental Table 5).
Consistent with the GSEA data, Glut1-deficient leukemia cells also
exhibited an overall decrease in the levels of TCA cycle interme-
diates (Figure 4C,F; supplemental Table 5).

As an adaptation to compromised glucose uptake, Glut1 disruption
shifted the intracellular metabolic profile of AML cells by upregu-
lating amino acid levels (Figure 4C,G; supplemental Table 5).34

This was accompanied by a marked increase in the transcript
levels of various amino acid transporters, including those for
glutamine, glutamate, aspartate, and cysteine (supplemental
Figure 4B).35 Thus, our data suggest that when glucose import
via GLUT1 is compromised, AML cells use compensatory mecha-
nisms to augment the import and/or synthesis of amino acids,
which can be used as an alternative noncarbohydrate source of
fuel. Another compensatory mechanism observed was a sixfold
increase in Glut3 expression, although this was not sufficient to
rescue the antileukemic effect induced by Glut1 knockdown
(supplemental Figure 4C).
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To functionally assess how GLUT1 regulates the bioenergetic
profile of MLL::AF9 leukemia cells, we analyzed the extracellular
acidification rate (ECAR) as a measure of glycolysis via step-wise
addition of glucose, oligomycin, and 2-deoxyglucose. Consistent
with the metabolomic profiling, Glut1 ablation resulted in a signifi-
cant reduction in the basal ECAR in the presence of glucose
(Figure 4H) and after the addition of the indicated compounds
(Figure 4I). Hexokinase activity and extracellular lactate production
were also compromised, indicating that GLUT1 is required for
glycolysis in MLL::AF9 leukemia cells (Figure 4J-K). In contrast,
Glut1-disrupted leukemia cells did not exhibit significant effects on
the oxygen consumption rate (OCR), indicating that mitochondrial
respiration efficiency was not severely altered despite the reduced
availability of TCA intermediates (Figure 4F; supplemental
Figure 4D). Collectively, these data suggest that inhibiting Glut1
suppresses the bioenergetics of MLL::AF9 leukemia cells, and
adaptation mechanisms for compensatory energy acquisition were
insufficient to bypass the effects of Glut1 inhibition.

Autophagy is induced as a metabolic adaptation in

AML cells after Glut1 disruption

As a result of nutrient starvation, cellular proteins and organelles can
be degraded through autophagy, a catabolic process acting to
sustain core metabolic functions and energy demands in cells. To
determine the potential implication of autophagy after Glut1
disruption, we analyzed the presence of autophagosomes and
autolysosomes in c-Kit+ MLL::AF9 leukemia cells. Disruption of
glucose uptake via Glut1 knockdown in LSCs increased the amount
of autophagic vacuoles and led to an accumulation of total LC3B, a
canonical marker of the autophagosomal pathway (Figure 5A-B).36

Further examination by immunoblotting revealed that Glut1 abla-
tion increased the levels of LC3B-I and LC3B-II in AML cells,
reflecting an accumulation of both autophagophores and fully
assembled autophagosomes, respectively (Figure 5C and D).
Consistent with these findings, the autophagy-related 7 (Atg7) gene,
critical in the autophagosome completion step, was upregulated in
c-Kit+ MLL::AF9 cells after Glut1 disruption (Figure 5E).36

In line with the hypothesis that GLUT1 inhibition induces autophagy
as a metabolic adaptation to support leukemia cell survival, com-
bined Glut1 disruption and treatment with the autophagy inhibitor
chloroquine synergistically inhibited the viability of MLL::AF9 leu-
kemia cells (Figure 5F).

Pharmacological inhibition of GLUT1 selectively

targets MLL::AF9 leukemia cells

To assess the feasibility of targeting GLUT1 in a therapeutic
context, we performed pharmacological inhibition of GLUT1 using
the highly potent and selective small molecule inhibitor BAY-876.37

Compared with normal c-Kit+ bone marrow cells, BAY-876
exhibited a selective inhibitory effect on c-Kit+ MLL::AF9 leuke-
mia cells, with an almost sixfold lower half-maximal inhibitory con-
centration (Figure 6A; supplemental Figure 5A-B). Next, we
performed a competitive ex vivo assay in which c-Kit+ leukemia
cells and normal c-Kit+ cells were cocultured and treated with
increasing concentrations of BAY-876. At concentrations >10 nM,
leukemia cells were selectively eliminated (Figure 6B), verifying the
higher sensitivity of leukemia cells to GLUT1 inhibition. To validate
the mode of action of BAY-876 in leukemia cells, we confirmed that
GLUT1 INHIBITION SELECTIVELY TARGETS AML 5387
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glucose uptake was impaired in a dose-dependent manner
(Figure 6C). Consistent with the effects seen upon sgRNA-
mediated Glut1 knockdown, treatment of MLL::AF9 leukemia
cells with BAY-876 displayed a significantly larger amount of
autophagic vacuoles (Figure 6D), and higher basal autophagy, as
evidenced by an increased expression of the autophagy marker
LC3B (supplemental Figure 5C). Notably, toward the higher con-
centrations, there were no indications of autophagy, correlating
with an increased percentage of cells entering late-stage apoptosis
(Figure 6E). Similar to what was observed for Glut1 knockdown,
BAY-876 treatment sensitized leukemia cells to chloroquine
treatment, supporting that catabolic processes are induced as a
prosurvival mechanism (Figure 6F).
26 SEPTEMBER 2023 • VOLUME 7, NUMBER 18
Next, we examined the metabolic profile of MLL::AF9 leukemia
cells treated with the lower half-maximal inhibitory concentration
(70 nM) of BAY-876 for 24 hours (Figure 6A; supplemental
Figure 5D-I). Similar to genetically disrupting Glut1, the majority
of glycolytic products, PPP metabolites, and TCA cycle interme-
diates were reduced in cells treated with BAY-876, suggesting a
suppression of these pathways (supplemental Figure 5E-I;
supplemental Table 5). In contrast to the sgRNA-mediated ablation
of Glut1, BAY-876 treatment resulted in an overall reduction in
amino acid levels (supplemental Figure 5E,I; supplemental Table 5).
This discrepancy could potentially be because an earlier time point
was measured for the pharmacological treatment, corroborating
that metabolic patterns gradually shift over time.34
GLUT1 INHIBITION SELECTIVELY TARGETS AML 5389
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To evaluate the antileukemic effects of BAY-876 in vivo, we treated
recipient mice that received transplantation with c-Kit+ MLL::AF9
leukemia cells with either BAY-876 or vehicle control via oral gavage
(Figure 6G). The selected dose was well tolerated, resulting in
minimal weight loss (Figure 6H). Mice treated with BAY-876 dis-
played reduced leukemic burden as evaluated by spleen weight
(Figure 6I; supplemental Figure 5J), and presence of AML cells in the
5390 RODRIGUEZ-ZABALA et al
bone marrow, spleen, and peripheral blood (Figure 6J; supplemental
Figure 5K). Notably, the antileukemic effects of BAY-876 also
translated into prolonged survival from 18 to 24 days (P = .0014,
Figure 6K). In agreement with the effects observed after genetic
Glut1 disruption, these findings provide further proof of concept that
pharmacological targeting of GLUT1 in vivo has therapeutic efficacy
in the MLL::AF9 leukemia mouse model.
26 SEPTEMBER 2023 • VOLUME 7, NUMBER 18
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Statistical testing was performed by unpaired 2-tailed Student t test; *P < .05. Refer to supplemental Figures 6-9 and supplemental Table 4.
Dual GLUT1 and OXPHOS inhibition eliminates

human AML cells by restraining metabolic

reprogramming

Given the robust antileukemic effect of GLUT1 inhibition in murine
LSCs, we evaluated whether human leukemia cells are dependent
on GLUT1. A panel of AML cell lines with varying levels of GLUT1
was exposed to a range of BAY-876 concentrations, resulting in no
obvious effect on growth inhibition (supplemental Figure 6A-B). In
contrast to murine AML cells in which Glut1 levels are predominant
(supplemental Figure 2E), human AML cell lines (DepMap, Broad
Institute) and samples from patients with AML from The Cancer
Genome Atlas (TCGA) database had comparably high levels of
GLUT3 (supplemental Figure 6C-D).38 Although the effect was
variable, treatment with Glutor, an inhibitor targeting GLUT1,
GLUT2, and GLUT3, only marginally affected cell viability of the
tested AML cell lines (supplemental Figure 6E).39 These findings
argue against a redundancy between GLUT1 and GLUT3, and
suggest that inhibition of the glucose transporters alone may not be
sufficient to robustly suppress the growth of human AML cell lines.

One way in which cancer cells can metabolically adapt to limited
glucose conditions is by rewiring to OXPHOS, allowing for the use
26 SEPTEMBER 2023 • VOLUME 7, NUMBER 18
of alternative nonglucose fuel sources to sustain their high meta-
bolic needs.40 To assess whether restraining their metabolic
plasticity would enhance the antileukemic efficacy, we performed
cotreatments with BAY-876 and the OXPHOS inhibitor IACS-
010759, a mitochondrial electron transport chain inhibitor that
has recently been evaluated in a phase 1 clinical trial in relapsed/
refractory AML.41,42 Human AML cell lines of varying subtypes
(THP-1, KG-1, Mono Mac 6, and OCI-AML3) were treated with
IACS-010759, BAY-876, or the combination. In contrast to BAY-
876 treatment alone, cotreatment with IACS-010759 led to a
strong synergistic dose-dependent reduced viability in all tested
cell lines (supplemental Figure 6F; Figure 7A-B; supplemental
Figure 7A-D). Replacing BAY-876 with Glutor in combination
with IACS-010759 resulted in similar effects with only marginal
improvement in the AML cell lines (supplemental Figure 7E-H).
These findings demonstrate that OXPHOS inhibition sensitizes
human AML cells to GLUT1 inhibition in a synergistic manner by
restricting their metabolic plasticity.

To further explore the combination treatment, bulk primary AML
cells isolated from the bone marrow of pediatric and adult patients
with AML were used (n = 12; supplemental Table 4). Consistent
with our observations in AML cell lines, BAY-876 and IACS-
GLUT1 INHIBITION SELECTIVELY TARGETS AML 5391



010759 treatment had synergistic antileukemic effects in the
majority of the primary AML samples, hereafter referred to as
responders (Figure 7C-D; supplemental 8A-B). In the responders,
which constituted 7 of 12 samples tested, the cotreatment had
stronger antileukemic effects compared with those observed using
CD34+ normal bone marrow (Figure 7E; supplemental Figure 8C)
and cord blood cells (supplemental Figure 8D-E), supportive of a
therapeutic window.

Genomic examination revealed that all 4 samples from patients with
RUNX1-mutated AML displayed strong sensitivity to the combina-
tion treatment (Figure 7F). Metabolic profiling of 3 RUNX1-mutated
primary cells confirmed suppression of glycolysis and OXPHOS by
BAY-876 and IACS-010759 treatment, respectively (supplemental
Figure 8F-K). Of note, 1 patient sample exhibited increased
glycolysis after IACS-010759 treatment alone, which was sup-
pressed by the addition of BAY-876 (supplemental Figure 8F).

Next, by interrogation of the TCGA AML data set,38 we sought to
identify differential transcriptomic signatures between patients with
RUNX1-mutated AML and those with non–RUNX1-mutated AML
that could predict responsiveness to the combination treatment.
GLUT1 expression was comparable in wild type and RUNX1-
mutated samples, in line with reports stating that GLUT1 expres-
sion levels do not predict sensitivity to GLUT1 inhibition
(supplemental Figure 9A).43 GSEA analysis revealed a negative
enrichment of OXPHOS-related pathways in the RUNX1-mutated
signature (supplemental Figure 9B).44 This reduced OXPHOS
state correlated with increased expression of pyruvate dehydro-
genase kinase 1 (PDK1) and retinoblastoma tumor suppressor
(RB1), reported to mediate a metabolic switch from OXPHOS to
glycolysis (supplemental Figure 9C-D).45-47

Collectively, our findings suggest that combination of GLUT1 and
OXPHOS inhibition is an effective antileukemic strategy for a large
subset of patients with AML, in particular those belonging to the
RUNX1-mutated AML subtype.

Discussion

Targeting metabolic dependencies in AML has therapeutic
potential but effects are hampered by metabolic plasticity, the
inherent or adaptive ability of cells to rewire their metabolic path-
ways.6 In this study, GLUT1 was identified as an essential regulator
of MLL::AF9 LSCs in the bone marrow microenvironment by
controlling energy metabolism. Inhibition of GLUT1 in LSCs
induced autophagy and resulted in increased apoptosis and dif-
ferentiation. Combined GLUT1 and OXPHOS inhibition eliminated
human AML cells by reducing their metabolic plasticity.

Our findings show that GLUT1 inhibition suppresses glycolysis in
murine LSCs, observations in agreement with recent reports in
ovarian and breast cancer cell models.45,48 As a metabolic adap-
tation to sustain energy demands when cellular bioenergetics were
suppressed, we observed an increase in amino acid levels
consistent with amino acids being a critical fuel source for LSCs.49

Our findings suggest that in response to a disruption in GLUT1–
mediated glucose uptake, AML cells induce autophagy as a
mechanism to promote intracellular catabolism and nutrient recy-
cling, thereby enabling the replenishment of amino acids.34 Within
the context of leukemia, autophagy has been reported to be critical
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to the survival of leukemia cells by acting as a positive regulator of
OXPHOS when glycolysis is suppressed.34,50

Although these metabolic adaptations could partially compensate
for the reduction in glucose uptake, it was insufficient to rescue the
effect of Glut1 disruption in MLL::AF9 LSCs, which had lost their
leukemia-initiating capacity when transplanted into mice. Both at a
cellular and molecular level, we detected increased differentiation
upon Glut1 suppression, which could partially be related to
downregulation of both Hoxa9 and Meis1, key factors in regulating
the self-renewal and differentiation of LSCs in MLL-rearranged
AML.17,33

Our finding that inhibition of GLUT1 by BAY-876 led to a sup-
pression of leukemic burden and prolonged survival of mice is in
agreement with the anticancer effects reported for BAY-876 in
ovarian and breast cancer models.45,48 Interestingly, LSCs residing
in the hypoglycemic bone marrow niche upregulate AMP–activated
protein kinase (AMPK), which in turn induces GLUT1 expression,
highlighting GLUT1 as a therapeutic target in vivo.51 This pro-
survival adaptation lends further support to the therapeutic value of
inhibiting GLUT1, because this would prevent the adaption of
LSCs to the metabolic stress in the hypoglycemic niche.

Unlike in murine MLL::AF9 LSCs, BAY-876 treatment or simulta-
neous inhibition of GLUT1-3 with Glutor did not exert potent
cytotoxic effects on human AML cells. This lack of response to
blocked glucose import is consistent with observations that human
AML cells, LSCs in particular, depend on other sources of fuel
such as amino acids and fatty acids that are metabolized through
OXPHOS.49,52-54 Furthermore, to adapt to glycolysis suppression
caused by limiting glucose conditions, several cancer types upre-
gulate mitochondrial functions and increase reliance on OXPHOS
to meet adenosine triphosphate (ATP) demands.34 Notably, we
found that OXPHOS inhibition sensitized both AML cell lines and
samples from patients with AML to GLUT1 inhibition, suggesting
that suppressing OXPHOS increases the dependency on alter-
native energy sources such as glycolysis that can be therapeuti-
cally exploited. Furthermore, the lactate-suppressive ability of BAY-
876 that we, and others, have reported may help mitigate the
neurotoxic effects associated with elevated lactate levels recently
reported for IACS-010759 treatment in patients with AML.42,45,48

These findings highlight the value of simultaneously targeting
multiple metabolic pathways to synergistically suppress AML cell
growth and overcome therapy resistance caused by metabolic
reprogramming, but future validations of these findings using
human LSCs are needed.

We observed synergistic antileukemic efficacy with the combina-
tion treatment in a broad range of AML subtypes, particularly in
RUNX1-mutated primary AML samples. Notably, RUNX1-mutated
AML exhibited markedly higher expression of RB1 and PDK1,
which are biomarkers of a glycolysis-biased metabolism and may
highlight a subgroup that would benefit from GLUT1-directed
therapies.44,46,47

In conclusion, we demonstrate that inhibition of GLUT1 eliminates
murine MLL::AF9 LSCs by reducing intracellular bioenergetics and
inducing myeloid differentiation and apoptosis. As a result of
limiting glucose import, amino acids are supplied through auto-
phagy as a metabolic adaptation. Dual inhibition of GLUT1 and
26 SEPTEMBER 2023 • VOLUME 7, NUMBER 18



OXPHOS acts synergistically to counteract metabolic reprogram-
ming in human AML. These findings strengthen our understanding
of the metabolic dependencies of AML cells, thus offering a
rationale for new combinatorial metabolism-directed therapeutic
strategies in AML.
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