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Abstract

Vacuoles are organelles in plant cells that play pivotal roles in growth and developmental regulation. The main
functions of vacuoles include maintaining cell acidity and turgor pressure, regulating the storage and transport of
substances, controlling the transport and localization of key proteins through the endocytic and lysosomal-vacuolar
transport pathways, and responding to biotic and abiotic stresses. Further, proteins localized either in the tonoplast
(vacuolar membrane) or inside the vacuole lumen are critical for fruit quality. In this review, we summarize and
discuss some of the emerging functions and regulatory mechanisms associated with plant vacuoles, including
vacuole biogenesis, vacuole functions in plant growth and development, fruit quality, and plant-microbe
interaction, as well as some innovative research technology that has driven advances in the field. Together, the
functions of plant vacuoles are important for plant growth and fruit quality. The investigation of vacuole functions
in plants is of great scientific significance and has potential applications in agriculture.
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Background
The vacuoles of plant cells are multifunctional organelles
that display strong plasticity during plant growth and de-
velopment. Lytic vacuoles (LVs) function as reservoirs
for ions and metabolites (e.g., pigments, acids, and toxic
substances), and are crucial for general cell homeostasis
(Andreev, 2001; Marty, 1999). Vacuoles also play key
roles in cellular responses to abiotic and biotic stresses
(e.g., microbial invasion) (Miransari, 2014; Nguyen et al.,
2015; Swarbreck et al., 2019). In plant vegetative organs,
vacuoles act in combination with the cell wall to estab-
lish and maintain turgor, the driving force underlying
hydraulic stiffness and cell growth (Marty, 1999; Zhang
et al., 2014). In seeds and specialized storage tissues,
vacuoles serve as storage sites for proteins and soluble
carbohydrates. Vacuoles are also reported to modulate
stomatal activity (Gao et al., 2010), and to control the

localization and transport of key proteins via vacuolar
trafficking (Marty, 1999; Offringa & Huang, 2013;
Reinhardt et al., 2016; Saini et al., 2017). Thus, vacuoles
have several physical and metabolic functions that are
essential for plant life.
Vacuole functions are tightly connected with vacuolar

proteins, many of which are embedded in the lipid
monolayer vacuolar membrane, referred to as the tono-
plast. The tonoplast is an important physical barrier that
separates the acidic vacuolar lumen compartment from
the cytoplasm. Tonoplast-specialized proton pumps,
channel proteins, ion transporters, and enzymes located
in the tonoplast are essential for the normal function of
the vacuole.
The biogenesis and function of plant vacuoles have

been topics of interest for decades. Advances in live im-
aging technology have resulted in constant updates to
the field of vacuole-related research. For example, recent
studies have shed light on the role of the vacuole in
plant embryo development and patterning, through
regulating cell division in the embryo (Jiang et al., 2019;
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Kimata et al., 2019). This review summarizes recent
advances in research on vacuole biogenesis, technical
methods, and the functions of the vacuole in plant
growth and fruit quality.

Popular technology in current vacuole research
Our understanding of the regulatory mechanisms under-
lying vacuole-mediated control of plant growth and
pattern formation remains fragmentary. As the study of
vacuoles usually requires focus on deep subcellular level
processes, most observations of vacuoles have been per-
formed using seedling roots, which have the advantages
of lacking chloroplasts and thick cell walls. Direct obser-
vation of vacuoles in vivo is the best way to disentangle
their functions in different tissues, organs, and develop-
mental stages; however, it remains technically challen-
ging to study vacuoles in particular tissues and/or
organs, such as ovules and embryos, because they are
deeply embedded. One approach to solve this problem is
to overexpress Arabidopsis LEAFY COTYLEDON2
(LEC2), a gene encoding a key factor in embryo develop-
ment and somatic embryogenesis. Overexpression of
LEC2 triggers the development of embryos in plant
leaves, which allows for a relatively clear view of vacuole
morphology (Feeney et al., 2013). Although this system
cannot perfectly mimic embryonic vacuolar functions, it
has greatly facilitated vacuolar marker signal capture.
Technological improvements have also allowed for

more detailed investigations of plant vacuoles. First,
technology used for vacuole extraction has matured.
Vacuoles from different plants can be extracted and
enriched independently, which is convenient for further
experiments such as proteomics analysis (Robert et al.,
2007). Further, the indirect observation of vacuoles and
related proteins in plant cells has improved. Laser confocal
scanning microscopy (LCSM), which was originally devel-
oped to allow live imaging, is often combined with one or
more fluorescent trackable markers, such as VAMP7,
VHA-a3, or 2S1; dyes including the pH-sensitive agents,
BCECF-AM [3′-O-acetyl-2′,7′-bis (carboxyethyl)-4]; neu-
tral red; time-based dyes (FM-64[N-(N-(3-triethylammo-
niumpropyl)-4-(6-(4-(diethylamino) phenyl) hexatrienyl)
pyridinium dibromide)]; or propidium iodide (Tejos et al.,
1789). With continuous improvements in microscope
hardware and image processing software, spatial Z-axis
and three-dimensional (3D) reconstruction on the T-axis
have become rapid and convenient (Cui et al., 2019; Viotti
et al., 2013). In addition, LCSM-based live imaging is a
powerful tool to monitor the effect of acute pharmaco-
logical treatments on signal intensity in living systems.
High background noise or poor definition can occur in
LCSM when the microscope resolution is less than 1 μm,
or when the signal is weak or non-specific. Multiple-layer
scans of non-staining fluorescence in living cells can cause

fluorescence quenching, resulting in unsatisfactory recon-
structed 3D images (Viotti et al., 2013).
Sectioning technique is another important factor for

vacuole observation. Although it is possible to obtain
sections as thin as 50 nm, or even 1 nm, ultrathin sec-
tioning is time consuming, technically difficult, and chal-
lenging to apply to large-scale imaging of living samples,
in which co-localized signals cannot be distinguished.
Currently, 3D tomography, combined with field emission
scanning electron microscopy, is frequently used to build
3D structures, where sections are combined into the
highest accuracy steric model of tissue cells. This ap-
proach can solve the problem of low-resolution LCSM
(Kalinowska et al., 2015; Kolb et al., 2015; Scheuring
et al., 2015).
With the rapid development of fluorescence micros-

copy, technologies involving single-molecule fluores-
cence imaging in living cells have gradually been applied
to research into plant membrane systems and key pro-
teins; relevant approaches include variable-angle total in-
ternal reflection fluorescence microscopy (VA-TIRFM)
and fluorescence correlation spectroscopy technologies,
among others (Lv et al., 2017; Tsuganezawa et al., 2013;
Wang et al., 2015a). VA-TIRFM has high resolution, can
be used to track the movement rate, lateral displace-
ment, and movement trajectory of membrane proteins,
and is most commonly used to study tonoplast proteins
(Lv et al., 2017; Wang et al., 2015a). In summary, con-
tinuous technological developments provide new per-
spectives for vacuole study.

Biogenesis of different vacuole types
Vacuoles can be divided into two types, according to
their main function: LVs and protein storage vacuoles
(PSVs) (Marty, 1999; Jiang et al., 2000). LVs are special-
ized compartments found in almost all vegetative tissues.
They are involved in substance transportation, storage,
and degradation, similar to the roles of lysosomes in ani-
mal cells.
PSVs mainly occur from the late embryonic develop-

mental stage to the seed germination stage, and function
to store proteins and important minerals during seed
filling (Feeney et al., 2018; Zheng & Staehelin, 2011).
The above-mentioned authordemonstrated that LVs and
PSVs can be mutually transformed during different bio-
logical processes (Feeney et al., 2018; Zheng & Staehelin,
2011). The process of vacuole biogenesis has long been
an attractive topic for a broad researcher community.
Vacuole initiation has been one of the most controver-

sial issues in plant biology research over the past half
century. Evolutionary studies suggest that the important
tonoplast proton pump, vacuole H+-ATPase, is derived
from the P-type ATPase (H+-ATPase of the plasma
membrane (PM)) of archaea. In addition, evolutionary
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analyses indicate that the plant tonoplast has a wide
range of origins, and that the proteins positioned on it
show strong homology with those in plant cell membrane
systems (Axelsen & Palmgren, 1998; Vasanthakumar &
Rubinstein, 2020). Studies of vacuole initiation are usually
observational, and mainly conducted using LCSM tech-
nology, sectioning, and other approaches combined with
those technologies.

(1) Lytic vacuole biogenesis

As mentioned above, vacuoles are the largest
membrane-bound organelles and have essential roles in
plant growth and development, yet several important
questions about the biogenesis and dynamics of LVs re-
main unanswered. The LV is the main type of vacuole
and found in most plant organs and plays an important
role in maintaining homeostasis within plant cells. There
are two hypotheses regarding the biogenesis of LVs: one
is that they originate from the endoplasmic reticulum
(ER) (Viotti et al., 2013), and the other that they origin-
ate from the Golgi apparatus; these two pathways have
been well-described by Cui et al. (Cui et al., 2019).
The ER initiation hypothesis is based on observations

from the VHA-a3 (a subunit of the tonoplast proton
pump V-ATPase) marker line. This hypothesis was
tested by specifically blocking various steps of the vacu-
olar transport pathway and tracking the VHA-a3 signal
and vacuole morphology. In that study, the initiation of
LVs, including transportation of the tonoplast proton
pump and important lipids, appeared to be independent
of key proteins in the vacuolar transport system, Rab5
and Rab7. Moreover, the initiation of LVs did not occur
in the region containing the Golgi apparatus. It was
postulated that the precursors of LVs form in an area
enriched with sterols, directly shed from the ER. At the
very beginning, vacuole precursors were empty, subse-
quently gradually expanding to accommodate highly
acidic fluid. This process appears to be related to autop-
hagosomes; however, there is no experimental evidence
for the involvement of a typical autophagy process in the
initiation of LVs (Viotti et al., 2013). Other studies sug-
gested that VHA-a3 transport depends on the trafficking
of the small G protein, Rab5, but is independent of regu-
lation by Rab7, with the VHA-a3 protein finally reaching
the tonoplast via the trans-Golgi/early endocytosis
(TGN/EE) pathway, which is part of the typical vacuolar
transport pathway (Feng et al., 2017; Uemura & Ueda, 2014).
Another hypothesis is that LVs in plant cells are inde-

pendent and separate from each other. Cui et al. (Cui
et al., 2019) found no experimental evidence for a clear
connection between the vacuole and other membrane
systems; using 3D reconstruction techniques, based on
continuous ultra-thin slices, they found that LVs could

be initiated from multivesicular bodies (MVBs). Further,
they observed that internal small vesicles fused together
following induction by the SNARE protein, and the body
of fused vesicles gradually enlarged, eventually forming
an LV (Cui et al., 2019).

(2) Biogenesis of protein storage vacuoles

The PSV is a storage organelle specifically formed
during plant seed development that plays a key role in
storing nutrients from the seed development stage to the
germination stage. The initiation of PSVs varies among
species. LVs have been reported to transform into PSVs
and vice versa; however, the mechanism underlying this
process remains unclear.
Pea (Pisum sativum) PSVs form de novo, while those

of Arabidopsis thaliana form via functional reprogram-
ming of LVs (Feeney et al., 2018; Robinson et al., 1995).
Observations of Arabidopsis embryos from the late tor-
pedo stage showed that the LVs in embryo cells grad-
ually transformed into PSVs. After seed germination,
PSVs rapidly transformed back into LVs (Feeney et al.,
2018). It is unlikely that such transformations are gov-
erned by the same mechanism in all plants. For example,
during the germination of tobacco (Nicotiana tabacum)
seeds, PSVs in root cells were converted into LVs in two
different ways: de novo biogenesis and functional repro-
gramming genesis. Both types of genesis were observed
in epidermal, exodermal, endothelial, and vascular cells
(Feeney et al., 2018).

Vacuole-related trafficking influences the transportation
and localization of key proteins
Plant cells have complex inner membrane systems, in-
cluding ER, Golgi, TGN, EE, vacuoles, and so on. The
trafficking of intracellular proteins begins with cargo
sorting and the formation of transport vesicles. This
process is mediated by SAR/ARF GTPases, coat protein
complexes (COPI and COPII), and clathrin (Zhang
et al., 2014; Uemura & Ueda, 2014; Fan et al., 2015;
Takehiko & Takashi, 2017). After vesicles detach from
the donor membrane, effectors/tethers interacting with
the protein-specific RAB GTPases or GTPases are trans-
ported to the target membrane and fuse with the target
membrane to unload the protein. Most important
physiological activities in plant cells, including the pre-
cise localization of key proteins in the cell, depend on
membrane system transport pathways (Zhang et al.,
2014; Uemura & Ueda, 2014; Fan et al., 2015; Takehiko
& Takashi, 2017). There are three main types of mem-
brane system transport pathway: the secretory pathway,
the endocytic pathway, and the lysosomal-vacuolar
transport pathway (Zhang et al., 2014; Uemura & Ueda,
2014; Fan et al., 2015; Takehiko & Takashi, 2017).
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Vacuoles have key roles in the endocytic and lysosomal-
vacuolar transport pathways, and LV and PSV have
unique regulatory pathways for the transport of different
proteins in these processes (Bottanelli et al., 2011; Ebine
et al., 2014; Kang & Hwang, 2014).
The distribution of most membrane-localized proteins

in the PM in plants does not exhibit polarity, while a
few proteins with polar localization are of great signifi-
cance during plant development. The polar localization
of these proteins in PM depends on various molecular
mechanisms. For example, proteins such as PEN3 and
NIP5;1 rely on the extracapsular subunit, EXO84b, to
orient in the abaxial-lateral direction in the PM (Mao
et al., 2016). Heterogeneous cell growth depends on the
geometric edge-directed transport of proteins within the
cell, which requires activation of the RAB11/RABA
group member, RABA5c/ARA4 (Kirchhelle et al., 2016).
Among proteins with polar localization, the auxin polar
transporter, PIN1, has been well-studied in recent years.
This protein is synthesized in the rough ER, then passes
through the TGN/EE and reaches the PM via the endo-
membrane system. Several studies have shed light on the
dynamics of PIN1, and how it is controlled. Initially,
PIN1 is evenly distributed in the PM with no polarity. It
is then shed from the PM and recovered by the TGN/EE
through clathrin-mediated endocytosis. Some PIN1 re-
localizes to the PM through a recycling process, is dis-
tributed in a polar manner, and functions as a polar
transporter of auxin. Remaining PIN1 is transported to
the TGN/EE via endocytosis and then moved to the
vacuole for degradation. This PIN1 protein vacuolar
transport pathway is regulated by auxin concentration
and ubiquitination level (Gälweiler et al., 1998; Friml,
2003; Kleine-Vehn & Friml, 2008; Steinmann & Grebe,
1999; Wiśniewska et al., 2006). Intracellular auxin levels
that are too high or too low induce PIN proteins to
enter the vacuolar degradation pathway following endo-
cytosis. Mono-ubiquitination induces PIN endocytosis;
however, poly-ubiquitination of a lysine residue of the
hydrophilic ring induces their degradation within the
vacuole after endocytosis and transport (Offringa &
Huang, 2013; Saini et al., 2017; Dhonukshe et al., 2015;
Huang et al., 2010; Kim & Bassham, 2011; Kleine-Vehn
et al., 2009; Leitner et al., 2012). When PINs are
degraded through the vacuolar degradation pathway,
cellular microtubules disaggregate via interactions with
the associated proteins CLIP-ASSOCIATED PROTEIN
(CLASP) and SORTING NEXIN (SNX). This process
triggers movement of PIN from the TGN/EE to the
vacuole, and the endosome sorting transport complex
(ESCRT) then transfers PINs to endosomes for subse-
quent degradation in the vacuole via recognition of
ubiquitination sites (Offringa & Huang, 2013; Saini et al.,
2017; Dhonukshe et al., 2015; Huang et al., 2010; Kim &

Bassham, 2011; Kleine-Vehn et al., 2009; Leitner et al.,
2012). In this way, the vacuolar degradation pathway
plays a key role in maintaining PIN levels and auxin
homeostasis through regulating PIN metabolism.
In mutants lacking vacuolar proton pumps, the level

and distribution of auxin and PIN1 proteins are dramat-
ically affected during embryo and seedling development,
and this is tightly connected with abnormal number,
size, and shape of vacuoles. PIN1 in the mutant back-
ground is insensitive to Brefeldin A treatment, suggest-
ing that PIN1 vesicular trafficking may be defective in
the vap3 background, resulting in abnormal PIN1 polar
localization and auxin distribution (Fig. 1) (Jiang et al.,
2019).

Vacuole functions in plant growth and fruit quality

(1) Basic storage function of vacuoles

As the largest organelle in mature plant cells, the
vacuole exhibits complex and diverse functions. First, as
a closed compartment, vacuoles can store free amino
acids, sugars, and ions. They can also transport key mol-
ecules through specific channel proteins on the tono-
plast. In addition, tonoplast aquaporins participate in
long-distance water transport, and enhance resistance to
abiotic stresses, such as drought and flooding (Srivastava
et al., 2014). Stomata are the ultimate gas exchange gate
in plants, and their morphology changes depending on
vacuole water content (Reinhardt et al., 2016; Chrispeels
& Daniels, 1997; Footitt et al., 2019).
Secondary metabolism and secondary metabolites are

typical characteristics of plants and some microorgan-
isms, and are the result of adaptation to the external en-
vironment during evolution. Most secondary metabolites
are produced in the cytoplasm. Since some metabolites
are toxic to even the plant itself, they are preferentially
stored inside vacuoles, where they are isolated from
other cellular compartments. Vacuolar-related secondary
metabolic processes are widely involved in plant growth
and development. The vacuole undergoes regular
changes in growth and morphology during the produc-
tion and secretion of colored nectar, which contains
secondary metabolites, such as alkaloids, terpenes, and
cyclic olefin ether glycosides (Davies et al., 2005; Fahn,
2010). This process helps to attract pollinators for cross-
pollination of plants (Davies et al., 2005; Leshem et al.,
2007). During the pollination process, correct guidance
of the pollen tube to the micropyle also depends on
growth and movement of the vacuole in the correct
direction (Ju & Kessler, 2020).

(2) Vacuole-related cell growth and pattern
formation
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The effect of the vacuole on cell growth under the
action of auxin is a research hotspot that has been well-
summarized by Kaiser and Scheuring (Kaiser &
cheuring, 2020). The acid-growth theory proposes that
auxin activates the PM H+-ATPase, leading to acidifica-
tion of the apoplast and the cell wall. This activates pH-
responsive non-enzymatic proteins, ultimately resulting
in xyloglucan sliding, which triggers cell wall loosening
(Cosgrove, 2000; McQueen-Mason et al., 1992). Subse-
quently, cell elongation is achieved by vacuole swelling
through water uptake and deposition of new cell wall
material (McQueen-Mason et al., 1992; Barbez et al.,
2017). Hence, the process of cell elongation relies on the
fine tuning of auxin signaling and precise changes in
vacuole morphology (Barbez et al., 2017).
Vacuole distribution has an essential role in embryonic

development and pattern formation. Studies on Arabidopsis

embryo development revealed the dynamics of the large
vacuole in the basal part of the mature egg cell. The volume
of the large vacuole immediately decreases after the fertil-
ized egg shrinks (Jensen, 1968; Mayer et al., 1993; Suzuki
et al., 1992), leading to loss of polarity of the zygote. Subse-
quently, the zygote nucleus moves to one end via the action
of F-actin. The zygote continuously grows and the polar
distribution of the vacuole is re-established in the basal part
of the zygote. After the first unequal division of the zygote,
a small apical cell and a large basal cell form. At this point,
there are several small vacuoles in the dense cytoplasm of
the apical cell and a large vacuole in the basal cell (Kimata
et al., 2019; Kimata et al., 2016). Very recent work has
shown that the morphology and distribution of vacuoles
are critical for cell division and pattern formation of the
embryo in the early stage of development. Mutants lacking
vacuolar proton pumps (namely V-ATPase and V-PPase)

Fig. 1 Relationship between tonoplast proton pumps and vesicular trafficking of PIN1 protein. The polar localization of PIN1 protein depends on
the vacuolar transport system. The basal-side transport of non-phosphorylated PIN1 protein depends on GNOM, and phosphorylated PIN1 protein
moves to the apical region of the membrane. In mutants lacking tonoplast proton pumps, transport of PIN1 to the basal side is inhibited,
demonstrating that the tonoplast proton pump affects the vesicular trafficking of PIN1, thereby influencing the polar transport of auxin
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showed severe disruption of vacuole morphology and distri-
bution in early embryos (Jiang et al., 2019). Compared with
wild-type embryos, mutants formed bigger vacuoles in ap-
ical cells and smaller vacuoles in basal cells, leading to an
aberrant pattern of embryonic cell division (Fig. 2).

(3) Contribution of vacuoles to fruit quality

Vacuoles are closely related to plant gametophyte de-
velopment and fertilization. The position of the vacuole
plays a key role in the development of crop sperm cells.
In rice, OsGCD1 (GAMETE CELLS DEFECTIVE1) dys-
function changes the dynamics of the central vacuole.
This leads to incorrect positioning of the male gameto-
phyte, which ultimately affects pollen development and
disrupts pollen germination (Huang et al., 2018). The
vacuolar invertase, GhVIN1, in cotton (Gossypium hirsu-
tum) plays a key role in the timing of pollen release and
the normal accumulation of nutrients, such as starch, in
the female gametophyte (Wang & Ruan, 2016). GhVIN1
mediates hexose signal transduction and regulates the

early differentiation of cotton fibers from the ovule epi-
dermis and their subsequent elongation (Fig. 3) (Wang
& Ruan, 2016).
Vacuoles play a key role in seed development. The

endosperm and aleurone layer are tissues unique to the
seeds of cereal crops (Fath et al., 2000). The endosperm
is mainly responsible for storing nutrients, such as pro-
teins and lipids. The aleurone layer wraps around the
endosperm tissue of cereal seeds, but is morphologically
and biochemically distinct from it. As the only viable
tissue after seed maturation, the aleurone layer is
responsible for secreting key enzymes. An increase in
vacuolization is followed by programmed cell death
(PCD), which releases nutrients and enzymes to promote
seed germination (Fath et al., 2000; Fath et al., 2010;
Pennell & Lamb, 1997). The vacuole is an extremely im-
portant organelle in this process. During seed germin-
ation, polymers are rapidly hydrolyzed in the PSV lumen
by pre-existing enzymes. Gradual fusion of LVs releases
key minerals and amino acids to fuel seed germination.
This transformation process is promoted by gibberellin

Fig. 2 Influence of vacuoles on cell division and morphology of plant embryos and seedlings. After fertilization, the zygote shrinks and loses
polarity, and then re-establishes polarity under the action of F-actin and vacuoles. The morphology and distribution of vacuoles in embryo cells
and suspensor cells are very important for polarity establishment, embryo patterning, and cotyledon initiation
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and inhibited by abscisic acid (ABA) (Fath et al., 2000;
Pennell & Lamb, 1997). The nutrients released from vac-
uoles are used by the embryo and trigger the PCD
process in rice aleurone layer cells. Tonoplast intrinsic
proteins in barley (Hordeum vulgare) help to prevent the
aggregation of small PSVs in aleurone cells (Lee et al.,
2015). In barley, ABA was found to induce HvTIP3; 1

transcription and prevent PSV fusion (Lee et al., 2015).
There are two main types of vacuole fusion during the
PCD of aleurone cells in rice. The first type is when
membranes of multiple small vacuoles fuse to generate
large vacuoles. The second type is when large vacuoles
engulf small ones, which then rupture inside the large
vacuoles and release their contents (Zheng et al., 2017).

Fig. 3 Diverse roles of vacuoles in influencing crop quality. The vacuole is important in many aspects of crop growth, including seed
germination, vegetative growth, flowering, and fruit development
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In this process, vacuolar processing enzyme (VPE)
promotes tonoplast fusion and accelerates PCD. Rice
OsVPE3 is also involved in the regulation of leaf width
and guard cell length (Fig. 3) (Lu et al., 2016).
The taste and quality of fruits are important issues in

horticulture research. Vacuoles are the main storage
compartments for flavor-related substances, such as
sugars and acids (Shiratake & Martinoia, 2007). Vacuolar
invertase (VIN or VI) in the vacuole can hydrolyze su-
crose into glucose and fructose (Wang et al., 2015b).
Both tonoplastic transporters and some hexose meta-
bolic enzymes in the vacuole lumen, can catalyze the
conversion of certain substances. Sugar transferases at
the tonoplast can be classified as monosaccharide trans-
porters, sucrose transporters SUC/SUT (Sucrose Carrier
/Sucrose Transporter), or SWEET (Sugars Will Eventu-
ally be Exported Transporters) transporters (Fig. 3)
(Feng et al., 2015; Martinoia et al., 2012). The malate
transporter and malate ion channels at the tonoplast
help to move malic acid and citric acid across the tono-
plast. During this process, the tonoplast proton pumps
transport hydrogen ions to generate the primary electro-
motive force; this activity is closely related to fruit flavor.
Inhibition of the V-ATPase A subunit in ‘Micro-Tom’
tomato fruit results in significant accumulation of
sucrose in the fruit (Amemiya et al., 2005), while the
overexpression or heterologous expression of MdVHP1
(encoding V-PPase) can significantly promote the accu-
mulation of malic acid in apple callus and tomato fruit
(Yao et al., 2011). Grapevine (Vitis vinifera L.) is a major
cultivated fruit crop worldwide. The processes involved
in the induction of grape berry ripening have been inten-
sively investigated, with particular focus on the vacuole,
since it occupies more than 99% of the total intracellular
volume in grape berry (Storey, 1987). The hydrolytic ac-
tivities of V-PPase and V-ATPase increase throughout
development, but especially during ripening, and this
process is controlled at both the transcriptional and pro-
tein levels (Terrier et al., 2001). The vacuolar acid invert-
ase, PbrAc-Inv1, which is located in the tonoplast of
“Fengshui” pears, participates in sucrose hydrolysis and
affects the sugar composition and taste of pear fruits.
PbrII5 is located in the vacuole lumen and inhibits the
activity of PbrAc-Inv1 by combining with it to form an
inactive complex and inhibiting the activity of vacuolar
acid invertase, thereby reducing sucrose hydrolysis
(Ma et al., 2020).

Involvement of vacuoles in plant stress responses
Horticultural crops are a major source of food, feed, and
fuel, and their yields and qualities are related to their
ability to cope with fluctuations in the environment.
Stress is a major factor that affects crop productivity.
Higher plants are often exposed to biotic stress

(pathogen invasion) and/or abiotic stress (e.g., salt stress,
temperature stress). In this regard, vacuoles are key or-
ganelles in maintaining ion homeostasis and stabilizing
the intracellular environment. Thus, vacuoles help plants
to cope with environmental fluctuations, particularly
water scarcity (Lobell et al., 2014).

(1) Vacuole functions in response to abiotic stress

Transporters at the tonoplast and proteins in the vacu-
ole lumen are vital for tolerance to abiotic stress. The
two types of tonoplastic proton pumps, V-ATPase and
V-PPase, pump protons from the cytoplasm into the
vacuole and maintain relative pH stability in the vacuole,
cytoplasm, and other organelles (Ferjani, 2011; Kriegel
et al., 2015). V-ATPase and V-PPase have closely related
functions, with respect to stress tolerance. Overexpres-
sion of V-PPase leads to an enhanced electrochemical
gradient across the tonoplast, increased transport and
accumulation of toxic ions in the vacuole, and enhanced
salt stress tolerance in transgenic tobacco (Li et al.,
2017) and creeping bentgrass (Agrostis stolonifera L.) (Li
et al., 2010); enhanced drought and salt stress tolerance
in Arabidopsis (Gamboa et al., 2013); and greater
drought tolerance in maize (Wang et al., 2016). V-
ATPase is important for the development of mung bean
(Vigna radiata) under cold stress (Kuo et al., 1999;
Shahram et al., 2018).
Other membrane transporters, such as the tonoplast

Na+/H+ antiporter, NHX (Na+/H+ exchanger), use the
transmembrane electrochemical potential gradient gen-
erated by V-ATPase and V-PPase to sequester toxic Na+

in the vacuole, thereby reducing its harmful effects on
cells. In addition to tonoplastic transporters, proteins in
the vacuole lumen are critical for plant stress resistance
(Heven & Salil, 2018; Yokoi et al., 2002). For example,
MPK6, a member of the mitogen-activated protein kin-
ase family, up-regulates transcription of VPE (encoding
vacuolar processing enzyme), and plays an important role
in heat shock-induced PCD (Li et al., 2012; Ye et al., 2013).

(2) Vacuole functions in response to biotic stress

Vacuoles are also important in resistance against mi-
crobial infection. Plant-microbe interactions are com-
plex, and include parasitic, antagonistic, and mutually
beneficial symbiotic relationships, which have been de-
scribed in detail previously (Dickman & Fluhr, 2013).
During these processes, the vacuole is an important me-
diator of microbial infection. Bacteria and pathogens
must stay inside the vacuole of eukaryotes to be isolated
from the cytosolic phagocytic system and lysosomes. For
example, the pathogen, Herbaspirillum rubrisubalbicans,
negatively affects rice plant growth by suppressing V-
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ATPase activity and increasing ethylene content (Fig. 4)
(Valdameri et al., 2017). Salmonella establishes a Sal-
monella-containing vacuole (SCV) through membrane
remodeling, actin rearrangement, microtubule move-
ment, and adjustment of the autophagy system (Fig. 4)
(Steele-Mortimer, 2008). In this way, it is protected from
host defenses and can control various processes after en-
tering the cell. Salmonella can invade Arabidopsis using
the same infection strategies with which it infects
humans and its broad host range (Huang et al., 2016;
Schikora et al., 2011). This finding greatly impacted the
study of vacuole function. Although this research is lim-
ited to date, we have included a summary in the model
diagram, denoted by a dotted line (Fig. 4). Rhizobium co-
exist with legume cells in the form of bacteroids and
help plants to fix nitrogen. After bacteroid invasion, the
original central vacuole in the plant cell shrinks to make
space for the resident bacteroid. Transporters in the
tonoplast also provide nutrients for the bacteroid
(Gibson et al., 2008; Jones et al., 2007). For example,
the sugar-phosphate/anion anti-porter, GmG3PT3,
which is located in the tonoplast, participates in inor-
ganic phosphate transport from vacuole to cytoplasm
and affects the distribution of phosphorus in nodules
(Chen et al., 2019; Li et al., 2018).

Plant cells restrict the spread of pathogens via the
hypersensitive response, which involves PCD (Wu &
Jackson, 2018). During this process, enzymes with cas-
pase activity alter vacuole morphology and tonoplast
structure (Hara-Nishimura & Hatsugai, 2011). Destruc-
tive PCD occurs due to tonoplast collapse, which re-
leases vacuolar hydrolases into the cytoplasm, resulting
in rapid and direct cell death. This process of cell de-
struction can effectively eliminate viruses that proliferate
in the cytoplasm. In non-destructive PCD, the fusion of
the vacuole and PM is triggered in a proteasome-
dependent manner. This results in the discharge of vacuolar
defense proteins into the extracellular space where bacteria
are located (Fig. 4) (Hara-Nishimura & Hatsugai, 2011).

Concluding remarks
The vacuole is a specific and extremely important organ-
elle in plant cells. Vacuole initiation is related to the evo-
lutionary history of species. Some fungi, bacteria, and
protists have vacuoles or analogous organelles. Changes
in the morphology, distribution, and function of the
vacuole during cell proliferation and budding can pro-
vide crucial clues about evolution. The vacuole stores
nutrients in cells, and its contents determine the color of
cells and tissues and the turgor pressure of the cell.

Fig. 4 Roles of the vacuole in plant responses to biotic stresses. Plant vacuoles have important roles in resistance to microbial invasion. They mediate
two types of programmed cell death (PCD) to eliminate microorganisms from plant cells. Some microorganisms can avoid these elimination strategies
and change the morphology and function of plant cells. This model includes information about the PCD process and three types of bacteria
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Tonoplast proteins are involved in intracellular ion
transport, pH regulation, and vacuole transport
pathways.
Studies on vacuole initiation have focused on the

dynamics of the vacuole cavity and the transport and re-
localization of vacuole-related proteins. How vacuoles
originate remains a matter of debate, hence there is an
urgent need to obtain experimental evidence supporting
or opposing the various hypotheses that have been pro-
posed. The hypothesis of direct initiation from the ER
proposes that proteins on the tonoplast reach the
vacuole from the ER, without passing through protein
transport pathways (the Golgi apparatus) (Uemura &
Ueda, 2014; Lupanga et al., 2020). Are there other qual-
ity control systems for such proteins? Are they produced
in a functionally mature form? When do the contents of
the vacuole become acidic? These questions warrant fur-
ther exploration. The hypothesis that the vacuole is de-
rived from the Golgi proposes that an acidic state exists
from the beginning, and that the transport pathway of
tonoplast proteins differs from that proposed in the ER
hypothesis. Vacuoles may form in multiple ways. For
example, observations have suggested that vacuoles
originate from MVBs and separate from one another;
however, studies on tubular vacuoles suggest that not all
vacuoles develop from MVBs. Vacuole initiation may
differ depending on plant cell functions. Therefore, there
may be other, as-yet unidentified, pathways involved in
vacuole initiation. The storage function of plant vacuoles
is the basis of plant secondary metabolism, while the dis-
tribution of vacuoles also affects plant growth, develop-
ment, and pattern formation.
Plant products have great impact on human life, and

the fruit quality of edible plants is closely related to nu-
trition intake. Most proteins important for transport and
conversion of sugar and acid in fruits are located in the
tonoplast and vacuole lumen. The function and activity
of these proteins are major determinants of fruit taste
and nutrition; however, there has been limited research
on the function and regulatory mechanisms of those
proteins in different fruits to date. With technological
improvements in vacuole extraction methods and the es-
tablishment of a vacuole multi-omics database, the key
proteins and core regulatory factors underlying the
transportation and conversion of sugars and acids in
fruit vacuoles will be further explored, and are expected
to reveal the regulatory mechanisms underlying the
accumulation of sugar and acid in fruit.
Plants tolerate various stresses (including abiotic and

biotic stress) in different environments by changing their
metabolic processes, which can reduce quality and de-
crease yield. Vacuoles are also crucial in plant resistance
to abiotic stress or bacterial invasion. Although a variety
of bacteria and fungi can infect plants, only a few (partial

rhizobia, nitrogen-fixing bacteria, etc.) can actually enter
plant cells and form symbiotic relationships with plants
(otherwise, they cause disease). During this process, the
central vacuole provides growth space for the microbe,
while transporters in the tonoplast provide the necessary
ions; however, vacuole functions in the interactions be-
tween plants and microorganisms remain unclear. How
plant endophytes survive in different organs and plants
requires further study. Hence, vacuoles play important
roles in multiple physiological processes and the investi-
gation of vacuole functions in plants is of great scientific
significance and has potential applications in agriculture.
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