
Benzylic C–H Esterification with Limiting C–H Substrate Enabled 
by Photochemical Redox Buffering of the Cu Catalyst

Dung L. Goldena,#, Chaofeng Zhanga,b,c,#, Si-Jie Chena,d, Aristidis Vasilopoulosa,e, Ilia A. 
Guzeia, Shannon S. Stahla,*

aDepartment of Chemistry, University of Wisconsin−Madison, 1101 University Avenue, Madison, 
Wisconsin 53706, United States

bState Key Laboratory of Catalysis, Dalian National Laboratory for Clean Energy, Dalian Institute 
of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China

cPresent Address: Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest 
Resources, College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing 
210037, China

dPresent Address: Department of Discovery Chemistry, Merck & Co., Inc., South San Francisco, 
California, United States

ePresent Address: AbbVie, Inc., 1 North Waukegan Road, North Chicago, Illinois 60064, United 
States

Abstract

Copper-catalyzed radical-relay reactions provide a versatile strategy for selective C–H 

functionalization; however, reactions with peroxide-based oxidants often require excess C–H 

substrate. Here, we report a photochemical strategy to overcome this limitation by using a Cu/

2,2’-biquinoline catalyst that supports benzylic C−H esterification with limiting C‒H substrate. 

Mechanistic studies indicate that blue-light irradiation promotes carboxylate-to-copper charge 

transfer, reducing resting-state CuII to CuI, which activates the peroxide to generate an alkoxyl 

radical hydrogen-atom transfer species. This “photochemical redox buffering” introduces a unique 

strategy to sustain the activity of Cu catalysts in radical-relay reactions.
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The Kharasch-Sosnovsky (K-S) reaction, first reported in 1958, uses a copper catalyst and 

peroxyester oxidant to convert alkenes to allylic esters (Figure 1A).1,2 This seminal reaction 

is a prototype for contemporary radical-relay C(sp3)–H functionalization methods.3,4 The 

proposed mechanism for K-S reactions begins with activation of tert-butyl peroxybenzoate 

(TBPB) by CuI to generate a tert-butoxyl radical and CuIIbenzoate (Figure 1B). The 

tert-butoxyl radical promotes hydrogen-atom transfer (HAT) from the allylic C‒H bond, 

generating an allylic radical that reacts with a CuII-benzoate species to form the C‒O bond. 

While reviewing previous fundamental studies,5–7 it became apparent that this simplified 

mechanism cannot account for key experimental observations. The reported activation 

barriers for steps 1–3 (Figure 1B) suggest the reaction should proceed within seconds at 

room temperature; however, K-S reactions and later variations that form C–O, 8 C–N 9 

and C–C 10 bonds often require elevated temperatures (80–120 °C) and/or long (sometimes 

multi-day) reaction times. Here, we offer mechanistic hypotheses explain these observations, 

providing the foundation for development of Cu-catalyzed benzylic esterification reactions 

compatible with use of the C–H substrate as the limiting reagent (Figure 1C).

Studies of other radical-relay C–H oxidation reactions10b,11 help to rationalize the 

unexplained features of K-S reactions. CuI often reacts rapidly with the peroxide in 

a 2:1 stoichiometry, converting all CuI to CuII. Warren and coworkers characterized 

this reactivity between a diketiminate-CuI complex and tBuOOtBu (DTBP),8b and we 

have observed similar behavior in reactions of CuI with N-fluorobenzenesulfonimide 

(NFSI),11 another common oxidant in radical-relay reactions. Since CuII does not react 

with peroxides under these conditions, radical generation relies on thermal O–O bond 

homolysis when CuI is depleted. At high temperatures needed to initiate the reaction, 

however, tert-butoxyl radical decomposes via β-methyl scission, producing methyl radical 

and acetone.12 Use of excess C‒H substrate (3–10 equiv) enables the bimolecular HAT 

step to compete with unimolecular decomposition of tert-butoxyl radical; however, this 

approach reduces the synthetic utility of the reaction. HAT gains a competitive advantage 
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over β-scission at lower temperature.6a,12b We recently used photochemistry to support O–O 

cleavage under ambient conditions, leveraging triplet energy-transfer (EnT) with an Ir-based 

photocatalyst, [Ir{dF(CF3)ppy}2(dtbpy)]PF6 [Ir-F; dF(CF3)ppy = 2-(2,4-difluorophenyl)-(5-

trifluoromethyl)pyridine]. 13 This approach proved more effective than direct photolysis of 

the peroxide14–16 in C–H methylation reactions with DTBP.17 We initiated the present study 

with the goal of developing K-S-type benzylic esterification using a similar photocatalytic 

EnT concept; however, we instead discovered a photoactive Cu/2,2’-biquinoline (biq) 

catalyst system that does not require the Ir photocatalyst. The results outlined below 

demonstrate a new “photochemical redox-buffering” mechanism to enable Cu-catalyzed 

radical-relay C–H functionalization.

Initial efforts probed the reaction of ethylbenzene (1a) with TBPB (2), using 1a as the 

limiting reagent. Thermal K-S conditions with [Cu(MeCN)4]PF6 and a bidentate nitrogen 

ligand as the catalyst, including 1,10-phenanthroline (phen), 2,2’-bipyridine (bpy) and biq, 

led to negligible or low yields of the esterification product 3a at 40 and 80 °C (Table 1, 

entries 1–6). The reactions were reassessed in the presence of the Ir-F photocatalyst while 

irradiating with 450 nm LEDs. A 20% yield of 3a was observed with the biq/CuI catalyst 

(Table 1, entry 9). Control experiments, in which the reaction solution was irradiated in the 

absence of Ir-F, led to an even better yield with biq/CuI (39% 3a). Optimized conditions 

afforded a 74% yield of 3a (Table 1, entry 11) (see Supporting Information for full screening 

data).

The optimized conditions were tested with other substrates. Secondary benzylic C–H bonds 

proved particularly effective (Figure 2). Ethyl- and n-alkylbenzene derivatives, including 

those with electron-rich and -deficient aromatic substituents and 1° alkyl halides, proceeded 

in good yield (59‒79%, 3b‒3n). The reaction was also effective with a substituted 

diarylmethane (3s),18 and benzofuran and thiophene substrates (3p, 3r).19 The pyridine-

containing substrate 2q exhibited high conversion, but did not afford the desired product 

3q (see Figure S7 for additional unsuccessful substrates). More complex substrates also 

proved effective, including celestolide (85%, 3t), ibuprofen methyl ester (58%, 3u); and 

benzbromarone methyl ether (55%, 3v), a derivative of a xanthine oxidase inhibitor.20

No reactivity was observed at the 3° benzylic C–H bond of the ibuprofen derivative (3u); 

however, this site is electronically deactivated by the adjacent carbonyl group.21 Substrates 

with electronically unbiased 3° C–H bonds showed good reactivity (Figure 3A, 3w–3y). In 

substrates with more than one benzylic C–H bond or both benzylic and tertiary aliphatic 

C–H bonds, the reaction favors 2° benzylic reactivity (Figure 3, 3z–3ac). This selectivity 

likely reflects steric effects favoring the less hindered site and electronic effects favoring the 

more substituted sites (i.e., more electron-rich and/or weaker C–H bonds).22 Collectively, 

the reactions in Figures 2 and 3 provide a means to access benzylic alcohols via benzylic C–

H oxygenation, without over-oxidation to the corresponding ketones. This outcome may be 

realized via C–H esterification, followed by hydrolysis, without isolation of the intermediate 

ester (4r–4ae, Figure 3B).

Subsequent efforts probed how the biq/CuI catalyst system differs from more conventional 

Cu catalyst systems, such as those with phen and bpy. The reaction of TBPB with 
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[Cu(MeCN)4]PF6 and 1.5 equiv of phen, bpy, or biq was monitored by UV-visible 

spectroscopy (Figure 4A). The phen- and bpy-ligated CuI complexes react rapidly with 

TBPB, undergoing full oxidation of CuI within seconds after mixing (Figures 4A–1 and 

4A-2). The reaction of biq/CuI with TBPB is more complex, with rapid partial reaction 

of CuI observed immediately after mixing, followed by very slow oxidation of the 

remaining CuI over several days (Figure 4A–3). Biq is known to form tetrahedral [biq2CuI]+ 

complexes,23,24 and this species exhibits the absorption feature centered at 549 nm. Ligand 

titration, however, revealed that [(biq)2CuI]+ does not begin to appear until nearly a full 

equivalent of biq is added (see Figure S4). Therefore, the optimized catalyst system, with a 

1.5:1 biq/Cu ratio, will have both mono- and bis-ligated biq/CuI complexes in the reaction 

mixture. A 1:1 mixture of biq/[Cu(MeCN)4]PF6 reacts very rapidly with TBPB, while a 

2:1 mixture of biq/[Cu(MeCN)4]PF6 shows negligible reactivity (Table S7). TBPB titration 

experiments show that the rapid oxidation of CuI reaches completion with only 0.5 equiv 

of TBPB (Figure 4B). These data show that phen/CuI and bpy/CuI and 1:1 biq/CuI undergo 

very rapid oxidation by TBPB, while the 2:1 biq/CuI species is nearly inert under analogous 

conditions.

We then probed the reactivity of biq/CuI (1.5:1) with TBPB during blue LED irradiation. 

Analysis of this reaction by UV-vis spectroscopy showed partial disappearance of the 

[(biq)2CuI]+ species over the first 5–6 min, consistent with oxidation of CuI by TBPB; 

however, [(biq)2CuI]+ reappeared over the next 6 min (Figure 4C). The initial phase of this 

reactivity suggests that irradiation enhances the rate of [(biq)2CuI]+ oxidation by TBPB, 

albeit more slowly than reaction of TBPB with the 1:1 biq/CuI species. Reappearance of 

[(biq)2CuI]+ during irradiation is notable and implicates light-promoted reduction of a biq/

CuII species.

Reaction of 0.5 equiv of TBPB with biq/CuI (cf. Figure 4B) is expected to form CuII–

OBz and CuII–OtBu species.8b While the latter species are thermally unstable,9b, 25 X-ray 

quality crystals of [(biq)CuII(OBz)]PF6 (CuII-OBz) were obtained from the reaction (Figure 

4D, left). A catalytically relevant mixture of 1.5:1 biq/CuI was then fully oxidized by 

TBPB. Irradiation of this mixture with blue LEDs led to photoinduced reduction of CuII 

and appearance of [(biq)2CuI]+ (Figure 4D, right). When biq was replaced by phen or 

bpy in this sequence, no photoreduction of CuII was observed (Figure S6). To probe 

photoreduction of biq/CuII further, CuII-OBz in CH2Cl2 was irradiated in the absence 

of substrate. Analysis of the organic products by 1H NMR spectroscopy revealed the 

presence of PhCO2H and 1,1,2,2-tetrachloroethane in 80% and 10% yields with respect 

to the initial CuII-OBz (Figure 4E). These products are consistent with photoinduced 

ligand-to-metal charge transfer (LMCT) in CuII-OBz and release of benzoyloxyl radical, 

resembling reactivity reported in other recent reports.26 Benzoyloxyl radical-promoted HAT 

from CH2Cl2 solvent accounts for tetrachloroethane formation (Figure 4E). 27 A separate 

control experiment confirmed that CuII-OBz is a competent catalyst precursor (Figure 4F), 

indicating that this species can undergo in situ activation by blue LED irradiation without 

requiring addition of a CuI source.

The above insights are rationalized by the following mechanistic proposal. The [(biq)CuI]+ 

species reacts rapidly with TBPB to generate [(biq)CuII(OBz)]+ and a tert-butoxyl radical. 

Golden et al. Page 4

J Am Chem Soc. Author manuscript; available in PMC 2023 September 20.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Ideally, the tert-butoxyl radical promotes HAT from the C–H substrate (Figure 5, blue 

arrow), but it can be quenched by a second equivalent of CuI when relatively high 

concentrations of [(biq)CuI]+ are present (Figure 5, red arrow). 28 The accumulation of 

CuII species generated by this reaction accounts for the negligible product formation in 

the absence of blue LED irradiation (cf. Table 1, entries 3 and 6) because CuII does not 

activate TBPB under these mild conditions. Blue LED irradiation regenerates CuI, which can 

promote reductive activation of TBPB to generate a tert-butoxyl radical. The mild reaction 

temperature and negligible CuI present during the steady-state reaction conditions means 

that tert-butoxyl radical can promote HAT from the C–H substrate with minimal competition 

from β-methyl scission and/or quenching by CuI.

These results introduce “photochemical redox-buffering” as a new strategy to support 

Cu-catalyzed radical-relay C–H oxidation reactions (Figure 5A). This process, in which 

irradiation of the reaction mixture generates CuI from restingstate CuII species, resembles 

the chemical redox buffering pathways first established in Cu-catalyzed C–H oxidation 

with NFSI as the oxidant,11a which also proceed under mild conditions and using limiting 

C–H substrate. Studies of the latter reactions showed that CuI reacts rapidly with NFSI to 

generate CuII species that cannot support catalysis unless a sacrificial reductant is present to 

regenerate CuI.11a This reductant could be the coupling partner (Figure 5B; e.g., TMSCN 

and ArB(OH)2 reduce CuII via homocoupling to cyanogen or biaryl),29,30 or a separate 

reagent when the coupling partner is not an effective reductant for CuII (Figure 5C).11,31‒33

The observations outlined herein provide an important starting point for further development 

of Kharasch-Sosnovsky and other Cu-catalyzed radical-relay reactions. Reactions of this 

type require both CuI and CuII to support formation and functionalization of the organic 

radical, respectively; however, oxidants such as peroxides and NFSI rapidly convert all of 

the CuI to CuII, deactivating the catalyst and quenching the HAT species. The present study 

shows that visible light irradiation may be used as an alternative to chemical reagents to 

buffer the redox state of the Cu catalyst and support catalytic turnover under mild reaction 

conditions and with the C–H substrate as the limiting reagent. Efforts have been initiated 

to elaborate on these concepts in an effort to explore new substrate classes and catalyst 

systems, including variations with chiral ligands, that will expand the synthetic utility of this 

reactivity.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
(A) Kharasch-Sosnovsky (K-S) allylic C–H esterification. (B) Proposed catalytic mechanism 

for the K-S reaction and estimated activation barriers for individual steps. (C) Focus of this 

study is to develop a K-S-type benzylic esterification, capable of using the C–H substrate as 

a limiting reagent.
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Figure 2. 
Reactions of diverse 2° benzylic C‒H substrates. aConducted with 10 equiv TBPB. 
bConducted with 2 equiv dibenzoyl peroxide.
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Figure 3. 
(A) Reactivity of 3° benzylic substates and assessment of benzylic site-selectivity under 

the conditions defined in Figure 2, and (B) sequential esterification/deprotection of benzylic 

C‒H substrates.
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Figure 4. 
(A) UV-visible absorption spectra for oxidation of CuI complexes with phen (r.t.), bpy 

(r.t.), and biq (40 ⁰C) ligands without irradiation. (B) TBPB titration experiment with 2:1 

biq/CuI and 1:1 biq/CuI with 30s mixing after every addition. (C) UV-visible absorption 

spectrum for oxidation of biq/CuI under irradiation. (D) UV-visible absorption spectrum 

of photochemical reduction of biq/CuII. Reaction of 1:1 biq/CuI with TBPB to afford 

[(biq)CuII(OBz)]PF6. For clarity, hydrogen atoms are not shown in the X-ray structure. (E) 

Photochemical reactivity of CuII-OBz in absence of a C–H substrate. (F) Catalytic reactivity 

of CuII-OBz under standard reaction condition.
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Figure 5. 
Redox buffering pathway for Cu-catalyzed C–H functionalization reactions. CuII reduction 

can be promoted by light (A), coupling partners (B), or sacrificial reagents (C).

Golden et al. Page 13

J Am Chem Soc. Author manuscript; available in PMC 2023 September 20.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Golden et al. Page 14

Table 1.

Reaction optimization for photo-promoted benzylic esterification.

a
Ir-F = [Ir{dF(CF3)ppy}2(dtbpy)]PF6.

b1H NMR spectroscopy; yield determined using mesitylene as ext. std.

c
1,2-dichloroethane used as the solvent.

d
Reaction run for 8 h with 5 equiv of TBPB (2).
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