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Abstract

Objective. Development of brain—computer interface (BCI) technology is key for enabling
communication in individuals who have lost the faculty of speech due to severe motor paralysis. A
BCI control strategy that is gaining attention employs speech decoding from neural data. Recent
studies have shown that a combination of direct neural recordings and advanced computational
models can provide promising results. Understanding which decoding strategies deliver best and
directly applicable results is crucial for advancing the field. Approach. In this paper, we optimized
and validated a decoding approach based on speech reconstruction directly from high-density
electrocorticography recordings from sensorimotor cortex during a speech production task. Main
results. We show that (1) dedicated machine learning optimization of reconstruction models is key
for achieving the best reconstruction performance; (2) individual word decoding in reconstructed
speech achieves 92%—100% accuracy (chance level is 8%); (3) direct reconstruction from
sensorimotor brain activity produces intelligible speech. Significance. These results underline the
need for model optimization in achieving best speech decoding results and highlight the potential
that reconstruction-based speech decoding from sensorimotor cortex can offer for development of
next-generation BCI technology for communication.

1. Introduction

Due to a motor neuron disease or a brainstem
stroke, people can lose all voluntary control over
their muscles, including the ability to speak or
use other movements for communication. Brain—
computer interface (BCI) technology aims to provide
a means of communication to these individuals.
Recent advances in BCI research have demonstrated
the potential of current approaches to record, process
and analyse neural activity in order to decode speech
[1-28]. This work is primarily conducted in non-
disabled human subjects who participate in speech
production experiments while their brain activity is
recorded, with the goal to infer spoken speech from
the acquired brain signals. This setup is used as a

© 2023 The Author(s). Published by IOP Publishing Ltd

testbed for development and validation of speech
decoding frameworks prior to their use in real-world
BCI applications with paralyzed individuals [29-35].
See [36—46] for reviews on BCIs for communication
and speech.

Previous work demonstrates that speech decod-
ing from brain activity is a challenging task. In
order to realize a real-world speech-based BCI applic-
ation, several key components of such a system
need to be identified. This includes decisions on
the neural recording modality (acquisition tech-
nique), the cortical areas that are most informative
for decoding (neural sources), the target speech fea-
tures to decode (decoding targets) and the decod-
ing model itself. Regarding the acquisition tech-
nique, the most promising results in the field so
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far appear to have come from the use of invas-
ive recording modalities, mainly electrocorticography
(ECoG) [10-12, 15,18, 20,23, 24]. This is because
ECoG grids, and particularly those with a high spa-
tial density (high-density ECoG; HD ECoG), provide
excellent signal quality and high spatial and tem-
poral resolution, which are key for achieving accurate
decoding results. Preparatory BCI research and devel-
opment can be performed in non-disabled patients
with medication-resistant epilepsy who undergo tem-
porarily implantation with ECoG electrodes (typic-
ally, for 7-10days) for clinical monitoring of their
condition and potential subsequent removal of neural
sources of epilepsy.

Regarding the neural sources, among the areas
most informative for decoding is the motor cortex,
which coordinates voluntary muscle control. Studies
in amputees and severely paralyzed individuals have
shown that motor cortex activity during attempted
movement of the missing limb or attempted move-
ment by the paralyzed individual is similar to the
activity during actual movement in non-disabled
individuals [31, 47]. Motor-based BCI research has
led to the development of various BCI applications,
such as the control of a robotic arm in tetraplegia
[48], a BCI speller based on attempted hand move-
ment in a locked-in individual [31] and a BCI for
speech detection and decoding in an individual with
anarthria [33].

Choices of decoding targets and decoding model,
however, are more difficult and varied. In principle,
use of motor cortex as the neural source for decoding
means that one of the most straightforward targets
of decoding would be information about the move-
ment of facial muscles involved in speech production.
This is typically referred to as the kinematic articu-
lator traces [18, 49]. However, for development of
such a speech decoding approach, articulator move-
ments need to be recorded during speech simultan-
eously with the brain activity, which is rarely feas-
ible in ECoG research due to the additional burden it
would inflict on the study participants. Acoustic-to-
articulatory inversion models can potentially be used
to facilitate decoding and sound reconstruction using
kinematic traces [18, 50]. Otherwise, another sys-
tem will be required to map the decoded kinematic
movements to language information, such as phon-
emes, syllables or words [51]. One could also con-
sider using these language labels as direct targets of
decoding. This has been done with certain success
especially when language models are used to cor-
rect decoding mistakes in continuous speech [33,
35]. However, accurate decoding of isolated word
and phonemes from brain activity has not been
trivial, especially when decoding a large number of
classes [10, 30, 35]. Moreover, some ethical concerns
have been raised in relation to the use of language
models for BCIs [52]. An alternative candidate for the
target of speech decoding is acoustic speech features
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from simultaneously acquired microphone record-
ings of produced speech, available at the BCI develop-
ment stage that relies on experiments in non-disabled
participants [20, 21, 26, 27]. Such acoustic proper-
ties are fast-changing, highly repeatable speech fea-
tures that have been previously shown to explain pat-
terns of motor and premotor brain activity [53, 54].
Importantly, learning a brain mapping to a closed set
of acoustic features, such as spectrogram frequency
features or spectrotemporal modulation features, can
allow open-vocabulary speech decoding. While pre-
vious work has shown that acoustic information is a
promising candidate for decoding [20, 21, 26, 27], it
remains unclear to what extent acoustic properties of
speech may be decoded directly from sensorimotor
cortex using HD ECoG recordings and how intelli-
gible resulting reconstructed speech would be.

A number of speech decoding models from brain
activity have been proposed in the past. Recently, deep
learning models have become increasingly more pop-
ular in the BCI field due to their potential for learn-
ing complex relationships between sources and tar-
gets of decoding [18, 20, 24-26, 33, 55]. However,
there is a plethora of deep learning architectures [56]
and parameter choices. As a result, many studies tend
to borrow model architectures and parameters from
other fields and apply them with minimal changes
to neural data for speech decoding. Thus far, no
comprehensive study on optimization of deep learn-
ing models for speech reconstruction has been per-
formed. Moreover, there is a lack of consensus regard-
ing choices of brain and audio speech features that
are used in such models. Current studies use different
methods for ECoG data preprocessing, including de-
noising reference schemes and frequency component
ranges, as well as different types of audio speech fea-
tures. Finally, evaluation of speech decoding models is
also approached differently, and consensus regarding
which metrics may be more informative is currently
lacking. Overall, it remains unclear whether such a
neuroengineering approach for speech reconstruc-
tion from the motor cortex could provide the basis for
a real-world autonomous BCI application for decod-
ing intended speech, and what the next practical steps
for it would be.

In the present work, we aimed to decode acous-
tic properties of speech from sensorimotor cortex
by building and evaluating deep learning models
for the reconstruction of speech acoustics. For this,
we collected HD ECoG data during a word pro-
duction task, in which five human subjects spoke
12 unique words out loud, repeating each word
ten times (figure 1). Having ruled out the pos-
sibility of acoustic contamination of neural signals
(see section 5.6) [57], we performed a dedicated
machine learning procedure to optimize paramet-
ers of speech reconstruction models and examined
metrics for evaluation of the reconstruction results
(figure 2). First, we report a significant improvement
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Experimental setup

word 1

Figure 1. (a) Experimental setup. (b) Electrode coverage in all participants. Red crosses indicate bad electrodes removed from the
analysis (S1: none, S2: five electrodes, S3: 1 electrode, S4: 17 electrodes, S5: 1 electrode).

Electrode coverage

of the reconstruction accuracy due to model optim-
ization and identify parameters associated with best
results. Second, we show that more complex decoding
models lead to better speech reconstruction. Third,
we found that individual metrics for evaluation
of speech reconstruction reflect different aspects of
model performance and that low- and high-level met-
rics can be dissociated. Fourth, decoding of individual
words from speech reconstructed from sensorimotor
brain activity achieved 92%-100% accuracy (chance
level is 8%). Fifth, reconstructed speech exhibited
high perceptual quality due to the model optim-
ization procedure. Altogether, these results demon-
strate the potential for reconstruction of identifiable,
high-quality speech directly from sensorimotor brain
activity and the importance of model optimization in
achieving best perceptual results. These findings con-
tribute to the state of the art in the field of speech
decoding and reconstruction for BCI and have the
potential to guide its further development.

2. Results

For speech reconstruction from sensorimotor
brain activity, we optimized and evaluated three
widely-used artificial neural network architectures:
a multi-layered perceptron (MLP), a densenet con-
volutional neural network (DN) [58] and a sequence-
to-sequence recurrent neural network (S2S [59],
figure 2). First, we report results of the optimiza-
tion procedures (how successful they were and what
parameters of the reconstruction model were optim-
ized). Next, we report low-level metrics for evaluation
of the reconstruction accuracy (Pearson correla-
tion, match in voice activity detection (VAD), short-
term objective intelligibility (STOI)) and high-level
metrics (identifiability of words and speakers with
machine learning classifiers and speech perceptual
intelligibility with human perceptual judgments).
Finally, to determine which neural sources were most
informative for achieving best results, we assessed the

contribution of individual intracranial electrodes to
the reconstruction accuracy.

2.1. Model optimization

2.1.1. Optimization of the reconstruction loss in
validation and test data

The three model architectures (MLP, DN and S2S)
were optimized separately due to differences in
their hyperparameters. Each model was optimized
per subject using the Optuna (https://optuna.org)
framework [60]. We used a form of Bayesian optim-
ization that constructed a distribution of the recon-
struction loss given various parameter choices by tak-
ing into account the history of parameter changes (see
section 5 for details). Per HD ECoG subject, all task
data was divided into train, validation and test sub-
sets (figure 2). Per word, one randomly chosen repe-
tition was added to the validation set (12 words in
total) and another randomly chosen repetition was
added to the test set (12 word in total, see section 5
for details). During training, the models minimized
the reconstruction loss on the train set, measured as a
mean squared error between target and reconstructed
speech spectrograms. The reconstruction loss com-
puted on the held-out validation set was used to
optimize model parameters. After the optimization
was complete, the reconstruction loss was computed
on a separate test set to evaluate the results using
leave-one-out cross-validation (LOO-CV), wherein,
per each of 12 words in the test set, the model was
retrained using optimal parameters on all remaining
data.

Overall, we observed a considerable drop in
the reconstruction loss on the validation set, which
consisted of a single trial of every unique word
(figure 3(a)). We also report substantial differences
across subjects with respect to the minimal loss
achieved (S1 and S5 reached much lower overall loss,
especially in DN in S2S), and apparent interaction
between subjects and models (S1 and S5 showed more
distinct loss profiles across models compared to S2, S3
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Figure 2. Overview of the approach. The present study trained, optimized and evaluated three deep learning speech
reconstruction models: MLP, densenet (DN) and sequence-to-sequence (S2S). Each model was used to reconstruct target speech
spectrograms based on input HD ECoG neural activity. Per HD ECoG subject, each model was optimized separately. For this, the
task data was divided into train, validation and test sets. During optimization, input, output and model parameters were
optimized in a way that minimized the speech reconstruction loss on the validation set. Once optimal set of parameters was
identified, each model was retrained and tested on a held-out test set using leave-one-out cross-validation (LOO-CV). For speech
synthesis from reconstructed and target spectrograms, a separate pretrained vocoder called WaveGan was used. For evaluation, we
employed low-level metrics such as Pearson correlation, VAD match and short-term objective intelligibility (STOI); and
high-level metrics, such as word and speaker decoding with machine learning classifiers and perceptual judgments with

behavioral experiments.

and S4, who showed similar profiles for MLP and S2S
and whose minimal loss in DN and S2S was greater
compared to S1 and S5).

Because the validation loss was used to guide
model optimization (see section 5 for details), it was
possible that optimal models became overfitted to
the validation data and therefore would not gener-
alize to a held-out test set. We tested this possib-
ility with a Wilcoxon signed-rank test in all sub-
jects using loss values in a test set obtained with
non-optimized and optimized models (figure 3(b)).
Non-optimized models used a parameter set that was
chosen at random at the first step of the optimiza-
tion process. The result showed a significant decrease
of test loss in optimized models compared to non-
optimized ones: Z, = 5.9, p = 2 x 107?), and separ-
ately per model: Zyp = 3.15, p=6 x 1074, Zpy =
5.01, p =3 x 1077 and Zsys = 1.93, p=.03 based on
non-parametric Wilcoxon tests. This means that the
observed optimization effects generalized to unseen
test data that had not been part of optimization.

2.1.2. Optimal parameters and parameter importance

Since optimization of speech reconstruction mod-
els overall led to a decrease of the reconstruction
loss, we subsequently identified the optimal para-
meter configurations associated with best performing
models. The optimization routine tuned three types
of parameters: (1) input (brain data), (2) output (tar-
get mel-spectrogram), and (3) model-specific hyper-
parameters. All parameters and their ranges were
selected based on previous literature and own exper-
ience. Parameters of the brain data (model inputs)
included the type of reference for de-noising HD
ECoG signals (common average reference [CAR]
or bipolar), specific HFB frequency range of HD
ECoG signals (60-300 or 70-170 Hz) and the tem-
poral window of data used for modeling one spec-
trogram time point (160 or 360 ms). For reconstruc-
tion, we chose mel-spectrograms of speech as they
represent sound acoustics on a spectrum inspired
by human auditory perception [61]. Parameters of
mel-spectrograms (model outputs) included the type
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Figure 3. (a) Optimization history for the validation set plotted over the course of the optimization procedure, i.e. Optuna
optimization ‘trials’ (see section 5 for details). (b) Optimization effects in the test set. Reconstruction loss computed on the test
set is shown for non-optimized (a parameter set chosen at random at the start of the optimization procedure, i.e. first Optuna

represent different types of parameters: input (purple), output (red), general model hyperparameters, such as dropout and
learning rate (gray) and model-specific parameters: MLP (blue), DN (orange) and S2S (green). These plots represent values of
each parameter in the optimal model. For example, for S1 MLP best parameters were: CAR, 60-300 Hz, 160 ms window—input;
40 features of clean audio at 75 Hz—output; dropout of 2e — 4, learning rate of 1e — 4, four layers of 256 nodes each.

(d) Parameter importances per model. Importance scores were normalized across parameters and are shown per model-subject
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architecture (MLP, DN, S2S) and subject. Different colors

of audio preprocessing: microphone audio as it was
acquired (raw) or de-noised microphone audio that
filtered out all acoustics that were not produced
by the subject speaking (clean, see section 5 for
details), and details of spectrogram computation:
the number of mel-frequency bins (40 or 80) and
the sampling rate (15, 25 or 75Hz, see section 5
for details). Finally, model-specific hyperparameters
included common for all models (learning rate and
dropout) and architecture-specific parameters (num-
ber of nodes and number of layers in MLP; bottle-
neck, growth and reduce factor, number of blocks in
DN, number of encoding and decoding layers and
bidirectionality in S2S).

To explore optimal parameters, first, we visualized
optimal parameter configurations for each model-
subject pair and each type of parameter (figure 3(c)).
Inspection of these plots allowed us to spot consist-
encies across models and subjects, such as domin-
ance of CAR, 60-300 Hz of high gamma range and
360 ms temporal window among the optimal config-
urations of the input; preference for 40 mel features
in clean audio at lower sampling rates (15 or 25 Hz)
in the optimal configurations of the output. Across
all model architectures there appeared to be a prefer-
ence for a larger number of layers and nodes. In the
case of S2S, optimal models in all subjects included
bidirectionality.
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Figure 4. (a) Examples of original and reconstructed spectrograms (test data, DN model, S5). (b)—(d) Low-level evaluation
metrics computed on test data and shown for non-optimized and optimized versions of each model: Pearson correlation

(b), voice activity detection (VAD) match (c), short-term objective intelligibility (STOI) (d). Boxplots outline 25th and 75th
percentile of results across test trials of all subjects. Red line shows medians. Semi-transparent smaller markers show results per
individual test trial of each subject. Opaque bigger markers show averages across test trials per subject. Lower (based on data
shifts) and upper (based on target audio waveforms) performance bounds are shown in gray and pink, respectively. Results for the
three model architectures are shown in different colors (MLP in blue, DN in orange and S2S in green). Color saturation denotes
the use of optimization: results for non-optimized models are shown as non-saturated and results of optimized models are

saturated. Significant differences in medians are marked: p < .05 *, p <.01 (**) and p <.001 (***).

To examine the effects that different parameters
had on the loss values, we used parameter import-
ance estimates provided within Optuna. Parameter
importance was estimated based on a non-linear
regression that used parameter values and their inter-
actions as predictors of the reconstructions loss val-
ues. Larger importance was associated with larger
prediction strength of specific parameter combin-
ations. Given the large number of parameters and
their interactions, here, we only interpreted paramet-
ers with the largest importance levels. Overall, across
subjects, we observed that the reconstruction loss was
most affected by output parameters, such as type
of audio and sampling rate (figure 3(d)). For MLP,
the number of mel features and number of layers
were the next most important parameters. For DN,
the size of the input temporal window, dropout and
learning rate were the next most important paramet-
ers. For S2S, the number of encoding layers, learn-
ing rate and dropout were the next most important
parameters.

These results indicate that optimal configura-
tions of parameters lead to lower reconstruction
losses. Specifics of audio processing may be of par-
ticular importance, while the exact values of other

parameters may be less relevant given their lower
importance. Optimal parameters were often consist-
ent across models and subjects. Yet, it also appeared
that some parameters may be subject and model-
specific, highlighting the need for subject- and
model-specific optimization for achieving best recon-
struction results.

2.2. Evaluation with low-level measures

Having reached optimal model performance in terms
of the reconstruction loss, next, we sought to eval-
uate the reconstruction quality. After a brief visual
inspection of the reconstructed and target spectro-
grams (figure 4(a)), we turned to objective metrics of
reconstruction quality typically used in the literature
[19-21, 26]. These are measures based on low-level
acoustic features that are easy to calculate and inter-
pret. Three metrics were considered: (1) Pearson
correlation between reconstructed and target speech
fragments, (2) match in VAD between reconstructed
and target fragments, and (3) STOI measure [62].
VAD match calculates the correspondence in detec-
ted voice activity between reconstructed and target
waveforms. STOI, originally developed for compar-
ison of clean and degraded signals, is an estimate of
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speech intelligibility based on the spectrotemporal
feature correspondence between the audio fragments.
It is often used to assess intelligibility of speech recon-
structed from brain activity [19-21, 63]. In addi-
tion, we provided lower (based on random shifts) and
upper (based on target audio fragments) bounds of
model performance. We also focused on two com-
parisons of metric values: (1) between optimized
and non-optimized models (within-model), and (2)
across the three optimized models (MLP, DN and
S28).

Median Pearson correlations across subjects, cal-
culated between reconstructed and target spectro-
grams, were significant against chance for all models:
p=3x1073,p=28x10"* p=0 for non-optimized
MLP, DN and S2S, respectively, and p=1x 1073,
p =0, p=0 for optimized MLP, DN and S2S, respect-
ively, based on a non-parametric permutation test.
We found the largest optimization effects compared
to VAD match and STOI (figure 4). The difference
between optimized and non-optimized reconstruc-
tion models in terms of Pearson correlation scores
was significant for MLP and DN only: Zyp = 2.67,
p=4x1073, Zpy =5.85, p=2x 1077 and Zsys =
1.66, p=.05 based on non-parametric Wilcoxon
tests with Bonferroni correction. This was some-
what expected since Pearson correlations are related
to the reconstruction loss (measured as the mean
squared error between predictions and targets). In
addition, Pearson correlations in DN were signific-
antly greater compared to MLP and S2S: H = 14.26,
p=28x 10~*, based on a non-parametric Kruskal—
Wallis test and post-hoc Dunn test on individual
comparisons: ppn-mrp = 1 X 1074 and ppy.s2s = .04,
corrected for pairwise multiple comparisons.

VAD match and STOI were calculated on syn-
thesized waveforms. This allowed us to provide ceil-
ing estimates for each subject-model pair by com-
puting the metric value on original audio fragments
(used as input to the reconstruction models) and
audio fragments resynthesized from spectrograms to
waveform using the external speech synthesis model
(Parallel WaveGAN vocoder). Median VAD match
values were significant against chance for all models
except for non-optimized MLP: p=.06, p=0, p=0
for non-optimized MLP, DN and S2S, respectively,
and p=.03, p=0, p =0 for optimized MLP, DN and
S2S, respectively, based on a non-parametric per-
mutation test. Median STOI values were only mar-
ginally significant against chance: p=.02, p=.03,
p = .02 for non-optimized MLP, DN and S2§, respect-
ively, and p=5x10"%, p=2x10"%, p=.11 for
optimized MLP, DN and S2S, respectively, based
on a non-parametric permutation test. Only DN
showed an effect of model optimization for STOI:
Zpn = 3.27, p=5x 10™* based on non-parametric
Wilcoxon tests with Bonferroni correction. There was
no significant effect of model architecture.

] Berezutskaya et al

Similar to the results from the section on model
optimization, we also observed considerable variance
in metric scores across five subjects with S1, S2 and S5
on average obtaining greater Pearson correlation and
STOI scores compared to S3 and S4.

It is important to note that these metrics rely
on low-level acoustic features and are convenient to
consider when evaluating audio reconstruction qual-
ity (especially given the low-level spectrogram feature
loss used in training). In the light of the ultimate goal
of using these reconstruction models in clinical BCI
applications, it does not suffice to limit evaluation to
low-level quality metrics. Therefore, next we assess
reconstruction of high-level characteristics of speech.

2.3. Evaluation with high-level measures

We analyzed high-level properties of the reconstruc-
tions, such as identifiability of individual word and
speakers, as well as intelligibility and perceptual qual-
ity of resulting speech. First, we assessed word and
speaker identifiability with objective metrics, such
as machine learning classifiers. Then, in two sep-
arate speech perception experiments, we collected
subjective human judgments of word intelligibility
and speaker recognition. Finally, in a third behavi-
oral experiment, we collected and analyzed perceptual
quality judgments of the reconstructions.

2.3.1. Machine learning classifiers
We trained a linear logistic regression classifier to
decode word identity (out of 12 individual words).
For audio reconstructions, a linear logistic regres-
sion classifier was trained on target audio spectro-
grams per subject and tested on corresponding recon-
structions from the test set per subject and model
(including optimized and non-optimized versions of
each model). Word classification accuracy was highly
significant (reaching accuracy of 92%-100%, chance
level of 8%) across all subjects and models. There was
no significant difference in accuracy between optim-
ized and non-optimized models, different model
architectures or subjects (figure 5(a)). In addition,
we examined classifiers’ confidence about the pre-
dicted word classes expressed in probability distribu-
tions over all candidate classes per trial. The median
confidence was 1 suggesting that word classification
from speech reconstruction was robust (figure 5(b)).
To test this further, we performed a noise study, in
which we repeatedly added white noise (from stand-
ard normal distribution) to the input training and
test data of the classifier, retrained it and recalculated
its accuracy on the test data. We observed that word
identification accuracy did not change as a function of
amount of noise, resulting in robust and stable clas-
sification accuracy, even when considerable amounts
of noise were added (figure 5(c)).

For reference, we retrained each logistic regres-
sion on brain input rather than audio spectrograms
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Figure 5. (a) Word identifiability as assessed with word classification using audio reconstructions from optimized and
non-optimized versions of the three models (MLP, DN, S2S). The three model architectures are shown in different colors (MLP in
blue, DN in orange and S2S in green). For reference, word classification using raw brain input (to be passed as input to the speech
reconstruction model) is also shown. Color saturation denotes the type of input data: brain input (least saturated), speech
reconstructions obtained with non-optimized models (medium saturated) and speech reconstructions obtained with optimized
models (most saturated). In the case of brain inputs, brain data with optimal input parameters per model (sampling rate,
reference and HFB range) was used. (b) Probability matrices for predicted and target test words for a classifier trained on audio
spectrograms and tested on reconstructions. Top panel shows probability matrices averaged over subjects. Optimized DN model
was used to obtain the reconstructions. The lower panels represent matrices of best (S1) and worst performing (S3) subjects with
respect to the word classification accuracy. For reference, next to the matrices computed using audio reconstructions with
optimized models, matrices computed using raw brain input are shown. (c) Results of the noise study: performance of the
classifiers trained and tested on noisy inputs. The amount of noise was gradually increased. Individual markers show performance
per subject. Results from all three models are aggregated together per bar. Individual subject markers reflect performance of
individual models (MLP in blue, DN in orange and S2S in green). For reference, results using raw brain input are shown in pale
purple. Results using optimized reconstructions with optimized models are shown in dark purple. (d) Speaker identifiability as
assessed with speaker classification using classifiers trained on audio spectrograms and tested on reconstructions. Results for
optimized and non-optimized versions of the three models (MLP, DN, S2S) are shown. A confusion matrix for the best

performing classifier (optimized DN) is shown on the right.

and tested it on the same test set of 12 words as
above. Interestingly, we observed larger variance in
word classification accuracy across subjects com-
pared to the use of audio spectrogram reconstructions
(figure 5(a)), consistent with inter-subject variabil-
ity patterns from low-level evaluation metrics (lower
performance of S3 and S4). Median classifier con-
fidence using brain input was .3 and the accuracy
decayed rapidly as more noise was added to the brain
input. It is important to note, however, that using
raw brain input in word classification with logistic
regressions is at a disadvantage compared to using
speech reconstructions as it does not include non-
linear transformations of brain signals that optimized
reconstruction models provide.

Next, we trained logistic regression classifiers to
decode speaker identity. As with word classification,
the classifiers were trained on target spectrograms
and tested on reconstructions for optimized and non-
optimized versions of each model. We observed the
highest accuracy for optimized DN model, reaching
73% (ppn = 0 based on random label permutations,

8

chance level is 20%, figure 5(d). There was a trend for
optimized models to perform better (in DN and MLP,
but not S2S). DN and S2S models achieved higher
accuracy compared to MLP. The latter provided insig-
nificant decoding accuracy: pyrp = .45, pmrp = .2 for
non-optimized and optimized models, respectively.
Due to the difference in the number of channels in
input brain data, no classifiers on brain input were
trained for speaker decoding.

2.3.2. Human perceptual judgments

With follow-up speech perception experiments, we
sought to test whether word and speaker recognition
not only were successful with machine learning clas-
sifiers trained on target spectrograms, but were also
possible with human perceptual judgments.

We conducted three experiments: a word recog-
nition experiment (I), a speaker recognition experi-
ment (II) and an audio comparison experiment (III,
see section 5 for details). In experiments I and II,
30 and 29 healthy Dutch-native volunteers respect-
ively, were presented with an audio reconstruction
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Figure 6. Human perceptual judgments obtained with three behavioral experiments. (a) Word intelligibility (experiment (I).

(b) Speaker recognition (experiment II). (c) Perceptual quality of optimized and non-optimized model reconstructions
(experiment III). Perceptual judgments per each experiment were plotted against low-level evaluation metrics (scatter plots to the
right of each boxplot panel). Boxplots outline 25th and 75th percentile of behavioral results. Red line shows medians.
Semi-transparent smaller markers show results per behavioral participant on data of each HD ECoG subject (averaged over 12
test word trials). Opaque bigger markers show averages across behavioral participants per HD ECoG subject. Results for the three
model architectures are shown in different colors (MLP in blue, DN in orange and S2S in green). Lower (based on randomly
assigned perceptual judgments) and upper (based on target audio waveforms) performance bounds are shown in gray and pink,
respectively. Experiment III did not use target audio waveforms and therefore does not have the upper performance bound.
Significant differences in medians are marked: p < .05 (*), p <.01 (**) and p <.001 (***). Boxplots in experiments I and II
show accuracy of word and speaker recognition based on binary comparisons. Boxplots in experiment III show whether
reconstructions from optimized or non-optimized models were judged to be better (more intelligible, less noisy). An arbitrary
value (perceptual quality weight) of 1 was assigned to each judgment if the audio produced by the optimized model had been
judged as better and a value of —1 otherwise (see section 5 for more details). In order to make scatter plots of perceptual
judgments against low-level metrics, perceptual judgments were recalculated per test word trial (averaged over behavioral
participants). Therefore, each data point of a scatter plot represents data per single word from the test set of each HD ECoG
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and two options, of which they were asked to choose
one that suited the reconstruction best. In the word
intelligibility experiment, the two options were two
written words (for example, janneke’ and ‘groot-
moeder’), one being the correct word, and the other
chosen at random from remaining 11 words. In the
speaker recognition experiment, two options were
target audio fragments of two speakers pronoun-
cing the same word as in the reconstruction (for
example, janneke’ said by S1 and S4), one being
the correct speaker, and the other chosen at ran-
dom from remaining four speakers. Both experiments
included catch trials that used target audio fragments
instead of reconstructions. This was done to obtain
ceiling estimates of word intelligibility and speaker
recognition.

In the case of word intelligibility, participants
on average were able to identify words signific-
antly above chance across subjects and models
(except for some models of S3 and all models of
S4): median accuracy values reached 58%, 58%, 67%

for MLP, DN and S2S models, respectively, all sig-
nificant against chance (p=4x 1074, p=1x 107"
and p =0, respectively, based on a non-parametric
permutation test). Best scores were obtained for
DN and S2S models: H=7.67, p=.02, based on a
non-parametric Kruskal-Wallis test and post-hoc
Dunn test corrected for pairwise multiple com-
parisons: Psas-mip = 7 X 10~% and Ps2s-DN = .06.
(figure 6(a)). Moreover, there was a positive rela-
tionship between low-level Pearson correlation and
high-level word intelligibility metric for DN and S2S
models.

In the speaker recognition task, participants
showed even better overall performance and a large
gap between behavioral scores and permutation-
based lower bound: median accuracy values reached
75% for all models, which was significant against
chance (all p-values are equal to zero based on a non-
parametric permutation test). There was no signific-
ant difference in scores across models and the only
model with a positive relationship between Pearson
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correlation and speaker recognition judgments was
MLP (figure 6(b)).

These results differ from the performance of
machine learning classifiers for both word intelligib-
ility and speaker recognition. In the case of word
intelligibility, machine learning classifiers reached an
accuracy of 92%-100% (chance level 8%) in identify-
ing individual words, whereas behavioral judgments
indicated that perceptual quality of reconstructed
words was considerably lower and provided an aver-
age accuracy of 58%-66% (chance level 50%). In
both cases, the MLP model was outperformed by
DN and S28. For speaker recognition, machine learn-
ing classifiers showed best results for DN and S2S as
well: 73% and 57% respectively (chance level 20%),
with behavioral judgments achieving 75% (chance
level 50%) for all models. Due to the differences
in the computation of accuracy between machine
learning classifiers and perceptual judgments, direct
comparison between the two results cannot be per-
formed. Moreover, behavioral experiments were per-
formed on synthesized speech waveforms whereas
machine learning classifiers used normalized spec-
trogram data. In order to synthesize waveforms the
spectrograms were re-scaled and centered with mean
and standard deviation of the target audio and passed
through the external vocoder. This was necessary for
correct processing by the vocoder and is a stand-
ard step for processing new data by a pretrained
model [64].

In another behavioral experiment (experiment
III), we sought to assess model optimization effects
on perceptual scores. Similar to the previous exper-
iments, 29 participants were presented with two
options: non-optimized and optimized reconstruc-
tion audio fragments, otherwise matching in word,
speaker and model (for example, optimized and non-
optimized ‘janneke’ reconstruction using the MLP
model on data of S1). No catch trials using tar-
get audio were used. We found that, on average,
participants judged reconstructions from optimized
models to be perceptually better across all mod-
els. All median values across subjects were posit-
ive: .17, .25 and .17 for MLP, DN and S2S mod-
els, respectively, all significant against chance (p =
6 x 1074 p=0and p = 8 x 1074, respectively, based
on a non-parametric permutation test). Largest per-
ceptual gains were obtained for optimized DN and
MLP models: H=18.74, p=8 x 107>, based on
a non-parametric Kruskal-Wallis test and post-hoc
Dunn test corrected for pairwise multiple compar-
isons: PDN-s2s = 3 X 10> and Ppwmrp-s2s = 3 X 1073,
(figure 6(c)). This result confirmed not only that
optimization led to a lower reconstruction loss and
more accurately preserved low-level features (meas-
ured with Pearson correlation), but also that optim-
ized models were associated with better perceptual
quality of the reconstructions.

10

] Berezutskaya et al

Altogether, our behavioral results further suppor-
ted the previous conclusions made based on the loss
analysis, low-level and objective high-level evaluation
metrics, and confirmed overall high-quality of the
optimized speech reconstructions.

2.4. Contribution of individual electrodes

Finally, given overall high-quality reconstruction
accuracy, as assessed with multiple low-level and
high-level metrics, we sought to investigate the rela-
tionship between model performance and input brain
features. Understanding interactions between elec-
trode location on the sensorimotor cortex and its
influence on speech reconstruction quality is vital for
future applications of this work in the BCI field. To
assess this, we performed an input perturbation ana-
lysis to assess individual contribution of each HD
ECoG electrode to the reconstruction accuracy. For
this, during testing (after models had been normally
trained) per electrode we perturbed brain data that
was input to the reconstruction models (optimized
MLP, DN or S2S) by replacing that electrode’s time
course with zero values (done after centering the
input data) and recording the resulting loss value.
Thus, we were able to associate perturbation of data
per electrode with the amount of change in the loss
value compared to using all input data.

Such input perturbation analysis revealed that
most informative electrodes (those associated with
largest increases in the loss value, and consequently,
worse reconstruction accuracy) were grouped in
small clusters along the ventral and dorsal premo-
tor and motor areas, rather than being evenly dis-
tributed across the HD ECoG grids (figure 7). We
also observed a degree of variability across patients
and, to a smaller extent, across reconstruction mod-
els. This, together with previously mentioned differ-
ences across subjects may indicate that different cor-
tical locations can be more or less informative for
speech decoding across subjects, and that an indi-
vidual subject approach is beneficial for achieving
high accuracy of results.

3. Discussion

In this study, we performed a systematic optimiza-
tion and evaluation of models for speech reconstruc-
tion directly from sensorimotor brain activity recor-
ded with HD ECoG grids. We found that end-to-end
deep learning approaches, currently dominating the
field, overall benefited from model optimization, and
that the choice of output parameters of these mod-
els (target spectrograms) had the largest effect on the
reconstruction quality. Next, we showed that optim-
ized models led to fairly good reconstruction quality
as assessed with both low-level evaluation metrics and
high-level speech measures, such as word and speaker
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identifiability and perceptual quality. Word recog-
nition in reconstructed audio was markedly more
accurate, stable across subjects and robust compared
to raw brain input. Behavioral experiments showed
certain individual word intelligibility and optim-
ization gains in perceptual judgments. Finally, we
quantified the relationship between the reconstruc-
tion accuracy and location of HD ECoG electrodes,
revealing that the largest contribution to model per-
formance was made by small clusters of electrodes
throughout the ventral and dorsal premotor and
motor cortices. These results have the potential to
further advance the state-of-the-art in speech decod-
ing and reconstruction for subsequent use in BCIs
for communication in individuals with severe motor
impairments.

3.1. Optimized complex model architectures lead
to best reconstruction of spoken speech from brain
signals

For all models, optimization led to a decrease in
the reconstruction error. Our results indicate that
input parameters, or options for preprocessing brain

data, and model-specific hyperparameters may affect
model performance compared to the choices of out-
put audio parameters. Specifically, the quality of
microphone recordings and audio denoising pro-
cedures seem to be key for achieving best perform-
ance. This appears logical, but the clinical setting
in which ECoG data are often acquired (especially
for experiments with participants during awake sur-
gery) can be a challenging environment for collect-
ing high-quality data, and this needs be taken into
account when planning and conducting the research.
Moreover, this result may contribute to the discus-
sion about the type of information that drives neural
responses. Background noise removed from ‘clean’
audio signals was part of the auditory input to the
brain, yet in most subject-model pairs, including
S1 who had limited auditory coverage, reconstruc-
tion was best if only produced speech, and not all
perceived sound, was used. Based on these results,
our recommendation for further BCI research on
speech reconstruction in non-disabled participants
is to ensure good-quality audio recordings, denoise
microphone signals and use spectrogram features
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over 40 frequency bins at the sampling rate of
15-25 Hz.

Next, we observed that computationally more
complex models, such as a convolutional densenet
(DN) model and a recurrent S2S model, outper-
formed a simpler MLP architecture on a number of
performance metrics. These included Pearson correl-
ation between reconstructed and target audio (DN),
word and speaker classification accuracy (DN and
S2S) and perceptual judgments of word identifiab-
ility (S2S). Moreover, MLP architectures with a lar-
ger number of layers (4 from the range of 1 to 5
layers) and nodes (208 and 256 from the range of
16 to 256 nodes) turned out to generate the best
MLP results. These results suggest that high com-
plexity of deep neural network models is required to
achieve more accurate speech reconstructions. Our
results also indicate larger optimization effects in
DN and MLP compared to S2S (figures 3(b), 4(a)
and 5(c)). And even though DN occasionally out-
performed S2S, the improvements were marginal,
which makes it difficult to conclude that convolu-
tional architectures should be preferred over recur-
rent ones. It is important to note that computational
complexity refers to the type of computed opera-
tions, and not the number of trainable parameters.
Specifically, DN benefits from local convolutions and
skip-connections, and S2S has state memory and an
attention mechanism, whereas MLP only uses basic
linear operations followed by a non-linear activation
function.

Recent work in computational neuroscience sug-
gests that the use of recurrent connections and atten-
tion modules can be beneficial in processing brain
signals [65-67]. Recurrence can help capture local
and long-range temporal dependencies in the data
whereas attention helps to effectively process tem-
porally organized inputs. It is important to note that
the present results have been obtained with relat-
ively small datasets, in which subjects pronounced
individual words. It is possible that for speech data
that exhibits longer temporal dependencies, such as
speech phrases, sentences and narratives, attention-
based encoder—decoder models will further outper-
form convolution-only architectures, such as DNs
[26].

3.2. Individual evaluation metrics highlight
different aspects of model performance

Evaluation of speech reconstructed from sensorimo-
tor cortex was performed using various low- and
high-level metrics. We observed that each metric
assessed model performance differently. Pearson cor-
relation metric showed the largest improvement of
the reconstructed speech over the permutation-based
baseline and was the only low-level metric to reflect
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model optimization gains. In general, this result
appears logical as there is a straightforward relation-
ship between the reconstruction loss (mean squared
error) and Pearson correlation of predictions and tar-
gets. In the future, more sophisticated loss functions
may be explored especially for achieving higher per-
ceptual quality of the reconstructions, which could
be regarded as the ultimate test of performance in
BCI applications for restoring communication. VAD
match metric showed improvement compared to the
baseline, yet no model optimization effects. It is
possible that distinguishing between reconstructed
speech and silence may have been a simple enough
task that did not require optimization. Finally, due to
the lack of significance and overall low values, STOI
metric did not seem to be informative above and
beyond what the other two measures showed. This
could in part be due to the way it is calculated in
that it requires audio fragments to be at least 300 ms
in length. This limitation can be particularly incon-
venient when reconstructing individual monosyllabic
words. Altogether, low-level assessment of recon-
struction results indicated that Pearson correlation
remains the simplest and most straightforward low-
level metric for evaluation of reconstruction accur-
acy in individual words, as long as the mean-squared
error, otherwise known as the ‘pixel loss), is used for
model training. VAD and VAD match can remain
useful in identifying speech fragments in the brain
signal, especially if such identification is not trivial,
such as during covert or attempted speech. STOI
as an evaluation metric may potentially be phased
out.

The present study also explored several high-
level metrics. Machine learning classifiers demon-
strated high levels of word and speaker identifiability
in reconstructed speech. Perceptual judgments of
speech intelligibility seemed to agree to some extent
with Pearson correlation and machine learning clas-
sifiers. It was clear, however, that perceptual quality
provided a unique measure that could not fully be
captured in any other objective measure considered
here. Therefore, we propose that future work relies
less on commonly used metrics, such as Pearson cor-
relation and STOI, and instead prioritizes human
perceptual judgments of speech reconstruction
quality.

3.3. Direct speech reconstruction from
sensorimotor cortex as the basis for
next-generation BCI applications

The results of this study indicate that in addition
to fairly good audio reconstructions, the presen-
ted models can help achieve accurate word classi-
fication with a rather simple linear classifier. The
reconstruction-based word decoding was highly
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stable across subjects, resulted in decreased subject-
specific variability (figure 5(a)), and was robust
against noise (figures 5(b) and (c)).

It is not trivial to directly compare these results
with other word decoding work from sensorimotor
cortex in the BCI field. Previous work has shown
significant word classification results during speech
production by decoding from raw ECoG brain input
(average accuracy of 85413% for 45 binary word clas-
sification tasks [2], average accuracy of 47.1% for
decoding 50 words [33] and average accuracy of
54.2% for decoding 26 words [35]). This required
a relatively large number of repetitions of each word
(30 repetitions of 10 words [2], 34 repetitions of 50
words [33], hundreds of repetitions over days and task
blocks of 26 words [35]). The present study demon-
strates that high accuracy and robust decoding can
be achieved on rather small datasets (10 repetitions
of 12 words) if using speech reconstructions for clas-
sification, thereby highlighting the potential of this
approach for further use in BCL

Training word decoders on external speech data
(for example, publicly available large audio corpora)
and testing them on reconstructions from ECoG data
from unseen subjects may be a potential next step
for future application of this work in BCI. This may
help leverage effects of transfer learning across vari-
ous speakers and aid in extracting higher-level acous-
tic features for better generalization. Highly accurate
(>90% accuracy) and reliable discrete decoding of
several classes of words (compared to the state-of-the-
art binary decoding [31]) will help BCI devices offer
more degrees of freedom to their users and thereby
provide a new state of the art in the field. Moreover,
further increasing the number of decodable words to
a set of 50 or 100 commonly used words can lead to
the development of the next-generation BCI techno-
logy for communication [33].

The goal of the present study was to investig-
ate the potential of speech reconstruction with HD
ECoG over the sensorimotor cortex. As a result, this
study provides the best strategies for speech recon-
struction and decoding in terms of decoding mod-
els and its parameters, evaluation metrics and, to
some extent, indications for electrode placement (see
below). Importantly, the current work has been per-
formed in non-disabled participants. Replication of
direct speech reconstruction and decoding from the
brain of BCI users, such as individuals with paralysis,
is not trivial due to the lack of microphone audio data.
We envision two possible solutions for this. First solu-
tion would involve using speech audio from external
speakers as targets and training the BCI user to mimic
the speech they heard. Second solution could be based
on transfer models [68, 69] trained on speech from
non-disabled participants to learn speaker-invariant
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speech representations. In addition, external sound
generation models [70, 71] can be employed to aid
speech reconstruction.

3.4. Informative neural sources may be distributed
across sensorimotor cortex

Apart from the neural targets and decoding model,
the results of the present study also contribute to the
discussion about the neural sources of decoding and
the details of the acquisition technique. Specifically,
the present study showed successful speech recon-
struction and word identifiability using HD ECoG
electrodes over the sensorimotor cortex—one of the
most promising regions in BCI implants for commu-
nication. It is important to note that other regions,
such as Heschl’s gyrus and superior temporal cortex,
were not the focus of this study, as their primary func-
tion is auditory processing of perceived speech. In the
present work, we used a technique called input per-
turbation analysis to identify HD ECoG electrodes
that were most informative for speech reconstruc-
tion and word decoding. Our results indicate that
multiple regions throughout the motor, premotor
and potentially inferior frontal gyrus contribute to
accurate speech reconstruction. This is largely in line
with previous work [4, 9, 10, 15]. Interestingly, sub-
jects with best reconstruction results (S1, S2 and S5)
benefited from contributions of electrodes located
in the dorsal premotor and motor cortex (figure 7).
The subject who did not have dorsal motor coverage
(S4) showed contribution of electrodes in the inferior
frontal gyrus, but their contribution scores were low-
est compared to those of other subjects, who had elec-
trodes located in dorsal premotor and motor cortex.
These results may indicate the potential of dorsal pre-
motor and motor regions in speech reconstruction
and are in line with the previous reports on speech
decoding from that region [25, 28, 33].

3.5. Inter-subject variability of results and
concerns for BCI

We also observed that despite optimizing individual
subject’s datasets, there was a large variance in model
performance across subjects. This inter-subject vari-
ability is a common outcome in speech decoding
studies [12, 20, 23] and can stem from several factors.
One key factor is the choice of the brain area that
is covered with electrodes. Missing an important
patch of cortex can dramatically reduce performance.
Electrode placement, however, is influenced by clin-
ical considerations such as orientation of the grids
to accommodate the leads, anchor veins that make
optimal positioning impossible, and lack of know-
ledge about which cortical patches are most informat-
ive. Other factors include patient alertness and motiv-
ation, medication and epileptic spikes that confound
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the brain signals. In the present study, data from S4
was collected during awake surgery, where participant
alertness may have been considerably reduced. Bigger
datasets with larger numbers of participants would be
beneficial for systematic investigation of these factors.
Their optimization at data collection, processing and
decoding stages may be key for further progress in the
field.

Importantly, we also find that although low-
level features and perceptual quality of reconstruc-
tions varied across participants, word identifiabil-
ity in reconstructed speech remained accurate and
robust across all subjects. These results highlight
the possibility of using direct speech reconstruction
as a tool for boosting word decoding from brain
data.

3.6. Limitations
The present work has a number of limitations.

Speech reconstruction in the present study is per-
formed on a relatively small dataset of twelve words
repeated ten times per participant, and therefore
our results (specifically, high decoding accuracy of
92%-100%) should be interpreted with some cau-
tion. Human HD ECoG recordings from temporar-
ily implanted grids are quite costly and rare data to
collect. It is rarely possible to obtain more data from
word repetition tasks in one subject than what is
presented here.

Given a wide range of options and a lack
of consensus regarding the effects of parameter
choices (input, output and model-specific paramet-
ers) in the literature, here, we limited ourselves
to a few sets of parameters. Our choices were
informed by existing literature and own experi-
ence, however, several improvements can be con-
sidered in the follow-up work. First, some recent work
has demonstrated the potential of lower-frequency
information and its coupling with HFB for speech
processing and decoding [19, 28, 72]. Therefore,
future work on speech reconstruction from sensor-
imotor cortex could explore the effects of adding
lower-frequency ECoG components. Second, sev-
eral of the input and output parameters in the
present work were considered to be categorical vari-
ables during optimization (for example, specific fre-
quency range of HFB and the temporal window
of brain data used for modeling one spectrogram
time point) with only a limited number of values
used. This could be improved in the follow-up work
in order to consider a more appropriate distribu-
tion over these parameter choices, include a lar-
ger range of options and achieve better optimiz-
ation. Finally, some analyses that explored optim-
ization effects were limited by high computational
costs. Specifically, the comparison of optimized and
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non-optimized models was only fully performed by
comparing optimized models to a single random
set of parameters (figure 3(b)). To compensate for
that, for one subject, we performed a more thorough
comparison using several random parametrizations
that overall confirmed previously obtained results
(figure S1).

Finally, the present study implements an input
perturbation analysis in order to identify electrode
contribution to reconstruction accuracy. Our imple-
mentation of this method has a number of limita-
tions. Specifically, it does not take into account mul-
tivariate activity that is likely to be informative for
reconstruction and instead simplifies the spatial rela-
tionship between individual electrodes. Similar to the
points made above, electrode contribution and selec-
tion could potentially be implemented as part of the
optimization procedure as well.

4, Conclusion

In this study, we performed dedicated optimization
and evaluation of different deep learning models for
speech reconstruction directly from intracranial sen-
sorimotor neural activity during a speech production
task. We showed that machine learning optimization
of speech decoding pipelines and detailed evaluation
of model performance metrics allow for achieving
more accurate and interpretable reconstruction res-
ults, and improve our understanding of the brain sig-
nal and its relation to the speech features. Altogether,
our results indicate that direct speech reconstruc-
tion from sensorimotor brain activity provides highly
accurate and robust word decoding performance and
overall intelligible speech, and therefore, has the
potential to advance the state of the art in real-world
applications of BCIs for communication in severely
paralyzed individuals.

5. Methods

5.1. ECoG experiment

5.1.1. Participants

Four participants (S1, S2, S3, S5, age 36, 30, 51
and 24, respectively; three females) with medication-
resistant epilepsy were admitted to the intensive epi-
lepsy monitoring unit for diagnostic procedures after
they underwent temporary implantation with sub-
dural ECoG electrode grids to determine the source of
seizures and test the possibility of surgical removal of
the corresponding brain tissue. In addition to clinical
procedures, participants gave written informed con-
sent to participate in scientific research that accom-
panied ECoG recordings and could be conducted
between clinical procedures. Participants also gave
written informed consent for implantation of an
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additional HD ECoG grid over their sensorimotor
cortex for research purposes. One more participant
(54, age 21, male) underwent clinical awake surgery
for brain tumor removal. During the surgery, a grid
of HD ECoG electrodes was placed subdurally over
the sensorimotor and inferior frontal cortices while
the subject participated in functional mapping (up
to 10 min) to guide tumor resection. The participant
gave written informed consent to acquire and use
their HD ECoG data from functional mapping tasks
for research purposes. The study was approved by the
Medical Ethical Committee of the University Medical
Center Utrecht in accordance with the Declaration of
Helsinki (2013).

5.1.2. Stimuli and task

Stimuli consisted of 12 unique Dutch words: ‘waar’,
Gip’, ik, ‘ga’, ‘boe’, ‘kom’, ‘hoed’, ‘spelen’, ‘plukken’,
‘allemaal’, janneke’, ‘grootmoeder’. These words were
selected from a Dutch children’s book ‘TJip and
Janneke’ to maximize the occurrence of specific
phonemes (/k/, /p/, /a/ and /u/) used in a different
task [15].

During the word production experiment, each
participant was presented with a visual cue (target
word on screen) and instructed to read aloud the
word shown on screen. Each word was presented ten
times. The order of words was randomized over parti-
cipants, resulting in 120 word trials in total. Inter-trial
interval duration was randomized and on average was
equal to four seconds in S1, S2, S3 and S5: 4.08 +-1.52
inS1,3.934+1.48inS2,4.11 +1.741in S3, and 4.06 +
1.34in S5. Due to time constraints during awake sur-
gery, inter-trial interval in S4 was reduced to 2.49 &
0.36. The four participants implanted with ECoG
grids for epilepsy monitoring (S1, S2, S3, S5) were
also presented with ‘rest trials’ (-’ on screen), dur-
ing which they were instructed to be silent. The parti-
cipant who underwent awake brain surgery (S4) was
not presented with ‘rest trials’ due to time constraints.
The experiment took 9.18 min in S1, 9.09 min in S2,
8.96 min in S3 and 9.51 min in S5. S4 completed the
task in 6 min and 2s.

5.1.3. Experimental procedures

All participants were implanted with HD ECoG grids
over the sensorimotor cortex. The suspected patho-
logical regions did not extend to the sensorimotor
region covered by the HD grids. This was clinic-
ally confirmed after implantation. In all participants,
except for S2, HD grids were implanted over the left
hemisphere. The hemisphere for HD ECoG implant-
ation was the same as for clinical ECoG grids, and that
was determined based on the clinical need. HD grid
configurations differed slightly across participants
with S1 implanted with 128 contacts, 1.2 mm exposed

15

] Berezutskaya et al

diameter, inter-electrode distance 4 mm, and S2, S3,
S4 and S5 implanted with 128 contacts, 1 mm exposed
diameter, inter-electrode distance 3 mm.

In the experiment with participants in the intens-
ive epilepsy monitoring unit (S1, S2, S3 and S5),
words were presented to the participants on a com-
puter screen (21 in. in diagonal, at about 1 m dis-
tance) using presentation software (Neurobehavioral
Systems). In the experiment with the participant in
the operating room (S4), words were presented on
a tablet using custom Python scripts. In both cases,
HD ECoG data were acquired using the NeuroPort
neural recording system at a sampling rate of 2000 Hz
(Blackrock Microsystems). Synchronization of the
task with neural recordings was achieved based on
event codes sent from stimulus presentation software
to the recording computer.

In addition to the neural data, audio recordings
were acquired using an external microphone (Audio-
Technica AT875R), connected directly to the neural
recording system. This ensured synchronization of
the microphone recordings with neural data acquis-
ition. Microphone data were recorded at 30 000 Hz.

5.1.4. ECoG data processing

HD ECoG data were loaded in MATLAB using the
NPMK toolbox. The data were preprocessed using
custom software. First, all electrodes with noisy or
flat signal (based on visual inspection) were excluded
from further analyses (SI: none, S2: 5 electrodes,
S3: 1 electrode, S4: 17 electrodes, S5: 1 electrode).
Second, a notch filter was applied to the remain-
ing electrodes to account for the effects of line noise
(50 Hz and its harmonics). Third, common average
(CAR) or bipolar referencing (using the next nearest
channel) was applied. Fourth, data were transformed
to the frequency domain using Gabor wavelet decom-
position at either 60-300 Hz or 70-170Hz in 1Hz
bins with decreasing window length (four wavelength
full-width at half maximum). Fifth, HFB amplitude
was obtained by averaging amplitudes for the entire
range of extracted frequencies. Sixth, the resulting
time series per electrode were log-transformed and
downsampled to 100 Hz. In total, four preprocessed
HD ECoG files were made per participant: bipolar in
the range of 60-300 Hz, bipolar in the range of 70—
170 Hz, CAR in the range of 60-300 Hz and CAR in
the range of 70-170 Hz.

In order to provide statistics of baseline HD ECoG
activity, during the task, per participant, we identi-
fied a continuous fragment of at least five seconds in
length, during which the participant remained silent
and at rest. Mean and standard deviation of baseline
neural activity was calculated per electrode. These
values were used for normalization of HD ECoG
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task data during training of speech reconstruction
models.

Electrode locations were coregistered to the ana-
tomical MRI in native space using computer tomo-
graphy scans [73, 74] and FreeSurfer [75].

5.1.5. Microphone data processing

Microphone data were loaded in MATLAB using the
NPMK toolbox and resaved in the wav format at the
original sampling rate of 30 000 Hz. Event codes from
the stimulus presentation software provided inform-
ation about onset of each trial and the target word
per trial, but to extract precise timing of the pronun-
ciation of each word, we used the PRAAT toolbox
(https://praat.org) [76]. Using PRAAT we manually
annotated each participant’s microphone recording
file (wav) with onsets and offsets of individual words.

Per participant, we also performed audio denois-
ing procedures to obtain ‘clean’ versions of each ori-
ginal, or ‘raw’, microphone recording. Denoising was
performed with Audacity. First, a high-pass filter was
applied at 60 Hz. Then, a built-in noise removal tool
was used first to estimate background noise from a
fragment of three to five seconds in length, and then
to subtract the estimated noise signal from the rest
of the audio. This process was repeated four or five
times to obtain cleaner background. Finally, addi-
tional manual corrections were applied to remove
irregular noise, such as occasional talking of staff
present in the room, sounds of medical equipment
or other background noise. Both raw and clean audio
files were used in speech reconstruction.

For training of speech reconstruction models, we
extracted spectrogram features from raw and clean
audio files of microphone recordings. We extracted
log-mel spectrograms in the frequency range of 80 to
7600 Hz, as they best approximate human speech per-
ception. For parameter optimization, we varied the
following spectrogram extraction parameters: num-
ber of mel frequency bins (40 or 80), window length
(1470, 882, 525) and hop size (1470, 882, 294). The
choice of the latter two parameters determined the
sampling rate of the resulting audio: 15, 25 or 75 Hz,
respectively.

5.2. Speech reconstruction

5.2.1. Modeling approach

Brain data was used as input and speech spectrograms
as output. Only data during speech pronunciation
was used in model training and testing. Spectrograms
of the microphone audio data, that the models are
trained, tested and validated on, are referred to as tar-
get audio spectrograms. The speech reconstruction
model was trained to solve a regression problem of
mapping 2d brain inputs (electrodes by time) onto 1d
audio outputs (frequency vector at one time point):
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y=f(X)+e, (1)

where y € R™ is a vector of spectrogram frequency
values per one time point and m frequency bins,
X € R"™P is a matrix of associated neural record-
ings with n corresponding to the number of data
points over time and p corresponding to the num-
ber of ECoG electrodes, f(-) is a non-linear trans-
formation function and € ~ AN'(0,072I) is a noise
term. The transformation function is learned by
the reconstruction model based on the artificial
neural network. The reconstruction model is trained
end-to-end.

5.2.2. Reconstruction model architectures

Three commonly used artificial neural network archi-
tectures were employed as the reconstruction mod-
els: an MLP, a DN and an S2S recurrent neural
model (figure 8). MLP is an artificial neural net-
work that consists of layers of nodes that apply lin-
ear transformations to their inputs, followed by a
non-linear activation function. In our configuration,
each linear layer was followed by batch-normalization
and leaky ReLU (negative slope = 0.25) activation
function.

DN [58] is a convolutional neural network archi-
tecture with skip connections that aim to handle van-
ishing gradients. It consists of blocks of convolutional
layers. In a block, the outputs of all preceding layers
are directly connected as additional inputs to all sub-
sequent layers via concatenation. To accommodate
processing of growing inputs, each subsequent layer
grows in number of nodes (channels) by a specified
growth factor. To compress the model and downscale
its complexity, transition blocks are inserted after
each convolutional block. They reduce the amount of
information currently processed by the network by a
value of the reduce parameter. In addition, bottleneck
layers can be used to reduce the number of network
channels in a block (by using 1 x 1 convolutions).

S2S [59] is a recurrent neural network architec-
ture with an encoder and a decoder components. The
encoder processes temporal information in the input,
its representation in the hidden state at the last time
point is used as input to the decoder. Additionally,
an attention mechanism is often employed for bet-
ter performance. Here, we used a form of global
attention [77] to weigh encoder outputs and produce
a context vector that is used as input to the decoder.
Both encoder and decoder components in our S2S are
based on a gated recurrent units [78, 79].

5.2.3. Parameter optimization
Optimization was performed per model architecture
and per subject using tree-structured Parzen estim-
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Reconstruction model architectures
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Figure 8. Reconstruction model architectures: MLP, DN and S2S. Visualization of model architectures was made with Netron
(https://github.com/lutzroeder/netron) and subsequently modified. Specifically, for improved readability, layers with trivial
operations, such as squeeze and transpose, were removed and the color scheme was extended to include unique colors for all

individual layers.

ators (TPE) as implemented in the Optuna (https://
optuna.org) package [60]. This enabled us to optim-
ize choices of categorical variables, yet came with
a drawback of having to use independent samples.
The latter meant that hyperparameter values were
selected independently without considering interac-
tions between them. The parameter optimization
procedure aims to identify a set of model paramet-
ers § that minimize the objective function f(6)—
reconstruction loss in our case:

0* = arg minf(6). (2)
0cO

In order to identify optimal parameters, TPE estimate
the posterior probability p(y|#), where y is the valida-
tion reconstruction loss. This is done using the Bayes
rule:

p(10) o< p(Oly)p(y)- 3)

The probability p(f|y) is estimated using a decision
boundary based on a threshold y*:

106) ify<y*

. . (4)
g0) ify>=y"

p(Bly) =

Effectively, TPE estimates two probability distri-
butions of model parameters: I(#) associated with y
values below the threshold and g(#) for y values above
the threshold. The expected improvement EI of the
optimization algorithm is proportional to the ratio
1(0) to g(0). EI is maximized by iteratively drawing
samples from I(#) and g(#), calculating their ratio and
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selecting a set of parameters 6 that maximizes that
ratio:

El» <7+§((g))(1 —7)>_ : (5)

Using the TPE framework as implemented in
Optuna, we optimized several input and output para-
meters and model hyperparameters. Separate input
files were used for referencing (bipolar or CAR) and
band width (60-300 or 70-170 Hz). The window
of input data for reconstructing one time point of
the audio could also be adjusted (160 or 360 ms).
Separate output files could also be used depending
on the number of mel features (40 or 80) and audio
type (clean or raw). Depending on the target audio
sampling rate (15, 25 or 75), corresponding audio and
neural files were used.

Model parameters included architecture-specific
and general parameters. General parameters included
learning rate of the optimizer and dropout ratio.
Parameters specific to the model architecture
included number of layers and nodes per layer in
MLP, presence of bottleneck layer, growth factor,
reduce factor and number of layers in DN and num-
ber of encoding layers, number of decoding layers
and bidirectionality in S2S.

5.2.4. Training procedures

Data was divided into train, test and validation sets in
apseudorandom fashion. One trial per each word was
selected for validation (12 words in total) and another
trial for each word was selected for test (12 words
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in total). Pseudorandomization ensured that no con-
secutive trials were used in validation or test. It also
attempted to distribute validation and test trials such
that they were well spread-out throughout the entire
task.

Each model was trained to take in input brain
data and reconstruct target audio spectrogram. To
reconstruct one time point of the audio spectro-
gram, a temporal window of varying length (160 or
360ms) around the target time point was selected
in neural data as input to the model. Each model
was trained for 500 epochs, after which the recon-
struction loss was calculated on the validation set.
The Adam optimizer [80] with fixed parameters
except for the learning rate was used. All training
and testing procedures were implemented in PyTorch
(https://pytorch.org). The models were trained using
a single graphics processing unit NVIDIA GeForce
RTX 2080 Ti. The number of trainable parameters
differed per neural network architecture and its spe-
cific configuration.

The described model training procedure was
embedded in the model optimization study by
Optuna. A separate study was made per model (MLP,
DN, S2S) and subject (S1, S2, S3, S4, S5). Each
Optuna study was set to run for 100 ‘trials’ (not to
confuse with a task trial, ‘trials’ in an Optuna study
refer to a single model training procedure with a fixed
set of parameters). In each Optuna trial, a set of model
parameters was selected, the model was trained for
500 epochs and the reconstruction loss on the valid-
ation set was calculated. The latter was used to guide
parameter selection in the subsequent Optuna trials.
In the end, the best Optuna trial with the correspond-
ing parameter set was identified as the Optuna trial
with the lowest reconstruction loss on the validation
set.

Given the limited amount of data in this study,
several techniques were employed to reduce overfit-
ting. First, the standard dropout [81] technique was
used. Second, a separate validation set was used to
guide model and parameter choice. No data augment-
ation was applied.

5.2.5. Parameter importance

After model optimization, functional ANOVA (fAN-
OVA) [82] as implemented in Optuna, was used
to fit a random forest regression model and pre-
dict the reconstruction loss in the validation set
given a specific parameter set. FANOVA estimated the
effects of main variables (parameters) and interac-
tions between them on the variance of the dependent
variable (reconstruction loss).

5.2.6. Testing procedures

To obtain reconstruction results on the test data-
set, LOO-CV was employed. LOO-CV refers to leav-
ing one test word (test set consisted of 12 unique
words) out of training each time. A separate model
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was trained for 500 epochs per each word in the test
set using the set of optimal parameters identified dur-
ing model optimization. Data from the validation set
was added to the training set to increase the amount
of available data.

The model at the 500th epoch was used to
obtain reconstructed spectrograms of the target test
word. For all evaluation procedures, reconstructed
and target spectrograms were computed per test
word trial beginning with word onset and ending
with word onset plus one second, which matched
the duration of the longest trial across all subjects.
An external vocoder, Parallel WaveGAN [64] (as
implemented here: https://github.com/kan-bayashi/
ParallelWaveGAN), was used to synthesise speech
waveforms from the reconstructed spectrograms.
Parallel WaveGAN is a generative deep neural net-
work trained to synthesize speech waveforms given a
mel-spectrogram. We used publicly available weights
of the vocoder model (ljspeech_parallel wavegan.vl)
pre-trained on the L] Speech dataset of spoken
English (LibriVox project). Our experiments showed
that despite being trained on English speech the
model synthesized high-quality intelligible Dutch
speech as well. In order to synthesize waveforms
both target and reconstruction spectrograms were
upsampled to match input dimensions the vocoder
model was trained on: 80 mel-frequency bins at a
sampling rate of 86.13 Hz. Each evaluation metric
(except for speaker classification and human percep-
tual judgments) was then computed per LOO-CV
fold (per one of the 12 word trials in the test set).

5.3. Low-level evaluation metrics

Pearson correlation, as implemented in the Scipy
(https://scipy.org) library for Python, was computed
between reconstructed and target spectrograms by
vectorizing the spectrograms per word and correlat-
ing resulting vectors. This was done to account for the
relative differences in spectrogram energy over fre-
quency bins and time points.

Match in VAD and STOI [62] were computed
on waveforms synthesized from reconstructed and
target spectrograms using the WaveGAN vocoder.
VAD was applied separately to each audio file (recon-
structed and target speech). It was computed per
each 30 millisecond window of audio and resul-
ted in a string of ‘one’ (voice activity detected)
and zero (no voice activity detected) values per file.
We used python-based interface (https://github.com/
wiseman/py-webrtcvad) for online free VAD service
https://webrtc.org. VAD match was then calculated as
the fraction of VAD output matches between recon-
structed and target speech fragments:

i fO

match = =*=-——, where
n

i£ VAD® — vAD®
0 — {1 if VAD{” = VAD}

0 otherwise

. (6)
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where y is the target waveform, y is the reconstructed
waveform of equal length and 7 is the number of 30
millisecond windows in each file, per which one VAD
value was computed.

STOI was computed on synthesized waveforms
using a STOI package for Python (https://github.
com/mpariente/pystoi). For those waveforms with
a duration that was shorter than the minimum
required for STOI computation (30 frames, or
300 ms, recommended for intermediate intelligibil-
ity), the algorithm set the output value to 107>, All
such trials were excluded from subsequent analyses.

For each low-level evaluation metric, surrogate
baseline distributions were computed for calcula-
tion of statistical p-values. This was done by shift-
ing the neural data to time points corresponding to
non-speech fragments 1000 times prior to obtain-
ing test reconstructions and recalculating each low-
level metric for each shift. This was done because
one of the metrics, namely VAD match, only distin-
guished between speech and non-speech fragments
and did not discriminate between individual words.
Additionally, to provide another baseline for Pearson
correlation and STOI metrics that focused on dis-
tinctions between individual words, we computed
statistical p-values based on word permutations. For
this, we used 1000 permutations of word labels when
selecting data from the target audio files, thereby dis-
rupting the correspondence between reconstructed
and target speech fragments. The statistical p-values
were comparable to those obtained with the shift-
based baseline.

5.4. High-level evaluation metrics
5.4.1. Machine learning classifiers
Word classification was performed using logistic
regression. Per each test word (out of 12, in the LOO-
CV), the classifier was trained either on raw brain
input (same data as input to the speech reconstruc-
tion models), or target audio spectrograms from the
train set data. The classifiers were then tested on the
test data: raw brain data or reconstructed spectro-
grams (obtained by passing raw brain input through
the speech reconstruction models). To investigate
word length effects, we additionally retrained the clas-
sifiers using audio fragments padded with Gaussian
noise. This was done for all shorter words following
guidelines from previous work [23]. The perform-
ance difference between original and noise-padded
classifiers was not significant in any of the subjects:
Zorig-noise = —0.03, p = 0.52 for non-optimized mod-
els and Zyrig_noise = 1.27,p = 0.1 for optimized mod-
els based on non-parametric Wilcoxon tests.

In addition to this, a separate noise study was
performed to estimate the performance robustness
of word classifiers. We iteratively added incremental
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amounts of white noise to the classifier input data
during training and recomputed their perform-
ance on test data. In the case of the reconstruc-
ted data, the noise was applied after the recon-
structions were obtained with the deep learning
models.

Next, a speaker classifier was trained on target
speech spectrograms of all participants. Per speech
reconstruction model, it was tested on the recon-
structed spectrograms. Python library Scikit-learn
(https://scikit-learn.org) was used for training and
testing all classifiers.

For both metrics, permutation tests (1000 shuffles
of classification labels) were conducted to provide a
surrogate baseline distribution for calculation of stat-
istical p-values for each observed metric.

5.4.2. Human perceptual judgments

Human perceptual judgments of reconstructed spec-
trogram were collected from healthy volunteers in
a series of online behavioral experiments. We con-
ducted three experiments: a word recognition experi-
ment (I), a speaker recognition experiment (II) and
an audio comparison experiment (III). Participants
(native Dutch with normal hearing; I: 30 participants,
age 27 £ 8, 12 females; I1: 29 participants, age 27 & 8,
7 females; I1I: 29 participants, age 27 = 8, 8 females)
were recruited online via Prolific (https://prolific.co).
Each experiment was listed separately, and Prolific
users were free to choose to participate in any num-
ber of experiments in any order. All participants gave
their written informed consent and were reimbursed
for their participation. The study was approved by the
ethical committee of the Faculty of Social Sciences at
Radboud University.

Experiments were implemented using Gorilla
Experiment Builder (https://gorilla.sc). Because tar-
get and reconstructed microphone recordings were
used in the experiments, to make voices of individual
participants (S1, S2, S3, S4 and S5) unrecognizable,
pitch of all audio files was shifted by 1 or 2 tones
up or down, depending on the ECoG participant. In
each experiment, behavioral study participants were
told that the study investigated the effect of audio
degradation on speech intelligibility. In experiment I,
participants were presented with an audio fragment
and two written words, and were instructed to select
the word that corresponded to the audio they heard.
In experiment II, participants were presented with
three audio fragments: the ‘target’ audio at the top
of the screen, and two audio fragments at the bot-
tom, labeled ‘speaker X’ and ‘speaker Y’. Participants
were instructed to select the speaker label that corres-
ponded to the speaker of the ‘target’ audio. In experi-
ment III, participants were presented with two audio
fragments and were instructed to select the fragment
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with an overall better audio quality (more intelli-
gible, less noisy). Data from each experiment, as well
as screenshots of each experiment’s layout have been
made publicly available (see section 5.7). In exper-
iments I and II, synthesized audio waveforms from
both reconstructed (MLP, DN and S2S) and target
spectrograms were used. Only optimized models were
used for producing reconstructions, resulting in 360
trials: data from 5 ECoG subjects x 12 words from the
test set x 3 speech reconstruction models x 2 types
of audio files (reconstructions and targets). In exper-
iment III only reconstructed audio were used for dir-
ect comparison of perceptual quality of MLP, DN and
S2S outputs. In addition, both optimized and non-
optimized (that used a randomly chosen parameter
set from the first Optuna ‘trial’) models were used for
producing and comparing the reconstructions, res-
ulting in 360 trials: data from 5 ECoG subjects x
12 words from the test set x 3 speech reconstruc-
tion models x 2 types of optimization (optimized and
non-optimized).

Behavioral judgments from experiments I and II
were loaded into Python, response accuracy was aver-
aged over test words, and the results were plotted per
behavioral participant, HD ECoG subject and model
(figures 6(a) and (b)). Responses from experiment I11
were assigned an arbitrary weight of 1 if reconstruc-
tion with the optimized model was rated as having
higher quality, and a weight of —1 otherwise. The
weights were then averaged over test word trials and
plotted per behavioral participant, HD ECoG subject
and model. Non-parametric tests were used for calcu-
lation of significance. For this, on every trial, instead
of taking the participant’s response, the choice was
made at random. This procedure was repeated 1000
times. The surrogate distributions were used in calcu-
lation of statistical p-values for the observed human
judgments.

Finally, we made scatter plots and fitted a
regression line between results obtained with
low-level evaluation metrics (Pearson correlation,
VAD match and STOI) and human perceptual
judgments

5.5. Input perturbation analysis

To estimate individual electrode contributions to
the performance of the reconstruction model, an
input perturbation analysis was performed. For this,
per subject and model, we used the reconstruction
loss of the optimized trained model on test data as
our reconstruction loss baseline. Then, we iteratively
recomputed the reconstruction loss on test data the
number of times equal to the number of electrodes.
Each time, prior to computing the loss but after input
normalization, we zeroed out input of one of the elec-
trodes. Then, we calculated the difference between
the resulting reconstruction loss compared to the
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baseline loss value (when input data from all elec-
trodes was used). This way, if an electrode contrib-
uted to the reconstruction, taking out its signal dur-
ing testing resulted in increase of the loss compared
to the baseline. We z-scored the resulting difference
values and plotted them on the brain.

5.6. Audio contamination analysis

Recent work has demonstrated that direct neural
recordings can show signs of acoustic contamina-
tion in their acquired signals [57]. To account for
this possibility, we performed an audio contamina-
tion analysis. Similar to the study by Roussel et al
we computed correlations between spectrotemporal
signals of microphone speech recordings and HD
ECoG activity. Spectrograms were computed using
thelibrosa (https://librosa.github.io/librosa) package.
For this, short-time Fourier transform (STFT) was
applied to audio (at sampling frequency of 16 kHz)
and brain (at sampling frequency of 2 kHz) data. We
selected signal processing parameters that produced
spectrotemporal signals of matching temporal resol-
ution (STFT window of 131 ms for audio and STFT
window of 256 ms for HD ECoG), necessary for the
correlation analysis. A default window overlap of 25%
and a Hann window function were used. Prior to
STFT calculation, HD ECoG data were notch-filtered
to account for the line noise (at 50 Hz and all its
harmonics) and referenced using either the common
average or the bipolar scheme, since both types of sig-
nals had been used in the previous analyses. Pearson
correlation coefficient was computed for audio and
HD ECoG signals across all speech production tri-
als (between 116 and 120 trials depending on the
participant).

The analysis did not reveal any signs of acoustic
contamination in four subjects out of five (figure 9).
Only S5 showed noticeable correlations between sev-
eral HD ECoG channels and the audio spectrogram
in the range of 100-140 and 210-280Hz. To per-
form a more detailed analysis we used the acous-
tic contamination toolbox provided by Roussel and
colleagues [57]. Using the toolbox, we calculated
cross-correlations between audio and HD ECoG sig-
nals of S5 during speech and calculated the statistical
p-value for audio-ECoG correlations along the main
diagonal. The detailed analysis revealed that (1) the
bulk of the correlation peaked at the negative lag of
170 ms (ECoG activity preceded audio), and (2) the
mean diagonal correlation of .2 did not reach signi-
ficance based on the permutation tests (with the stat-
istical p-value of p = .19. based on 10 000 reshuffles of
contamination matrices).

5.7. Code and data availability
Code of all analyses can be accessed at https://github.
com/Immiora/word_decoding HD_ECoG.
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Figure 9. Results of the acoustic contamination analysis. a. Spectrograms of the microphone audio recordings and associated HD
ECoG signals. Per subject ECoG signal of one electrode is shown. The electrode was selected based on t-tests that compared mean
HEFB activity between speech and silence trials per electrode. The electrode with the largest positive ¢-value was used for the plot.
Selected parameters resulted in the matched temporal resolution of the spectrogram signals (16000/(4096/4) in audio and
2000/(512/4) in HD ECoG). The audio spectrogram is shown in the frequency range that matches the ECoG spectrogram. Plots
show HD ECoG data prior to referencing (common average or bipolar). (b), (c) Correlation plots between audio and HD ECoG
temporal signal per frequency bin (between 0 and 300 Hz) and per electrode. Each value is the average Pearson correlation over all
word production trials. Correlation plots are shown for CAR (b) and bipolar (c) reference schemes for HD ECoG signals. The
bottom right panel shows results of the detailed contamination analysis using a toolbox from Roussel and colleagues [57]. The
panel shows results of the cross-correlation analyses that indicate that the bulk of the correlation was not centered around zero
(when ECoG and audio signals are aligned in time), but was shifted toward the lag of —170 ms. Negative shifts mean that ECoG
activity preceded audio data it was correlated with, which agrees with the previous reports of pre-activation of motor and
premotor cortices prior to speaking. The formal analysis revealed that mean correlation between audio and ECoG data was .2,
which did not reach significance based on the permutation tests (with the statistical p-value of p =.19. based on 10 000 reshuffles
of the correlation matrices).
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this study are openly available [83].
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