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Introduction
G protein-coupled receptors (GPCRs) are the 
single largest class of pharmaceutical targets, with 
over 35% of the currently FDA-approved drugs 
directly acting on these receptors.1 GPCRs are 
crucial regulators of almost every cellular physio-
logical process, from vision to cardiovascular 
function and blood pressure.2 This is largely 
because they always reside at the plasma mem-
brane, thereby mediating the signal from the vast 
majority of extracellular stimuli that cannot pass 
across the cell membrane (e.g. ionized or not 
lipophilic enough molecules). Therefore, GPCR 
abnormalities result oftentimes in various pathol-
ogies, depending on the physiology of the dys-
functional receptor. Dysfunction of cardiovascular 
GPCRs lead to cardiovascular diseases, such as 

heart failure (HF), cardiomyopathies, cardiac 
hypertrophy, hypertension, angina, and so on.3,4 
All GPCRs share a common core motif of seven 
largely hydrophobic α helices, each spanning the 
entire plasma membrane [seven transmembrane 
(TM)-spanning or heptahelical receptors].5 The 
heptahelical motif is essential for interaction with 
G proteins only upon agonist binding on the 
extracellular side of the receptor.6–10 The receptor-
Gα subunit interaction activates, in turn, the het-
erotrimeric G protein, causing guanine nucleotide 
exchange and the separation of Gα from the Gβγ 
subunits.11–14 However, regulation of the dura-
tion of a GPCR signal is of paramount impor-
tance for cellular homeostasis and the cell utilizes 
various ways to terminate the GPCR signal, start-
ing with two major processes at the level of the 
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cell membrane. One of them operates on the 
receptor itself and involves GPCR phosphoryla-
tion by GPCR-kinases (GRKs), followed by 
arrestin binding (homologous or agonist-depend-
ent receptor desensitization).15,16 Phosphorylation 
by second messenger-dependent kinases, such as 
protein kinase A (PKA), is also supposed to ter-
minate G protein signaling (the so-called ‘heter-
ologous’ or agonist-independent receptor 
desensitization), but whether arrestin binding fol-
lows second messenger kinase-mediated phos-
phorylation is still a matter of intense debate. It is 
more likely that second messenger-dependent 
kinases switch the coupling of a particular recep-
tor to a different G protein, such as the case of 
PKA-induced Gs to Gi coupling switch of the β2-
adrenoceptor (reviewed in Ref. 16). The other 
process, perhaps even more important, operates 
on the active G protein. The main mechanism for 
G protein signaling termination is guanosine 
triphosphate (GTP) hydrolysis to guanosine 
diphosphate (GDP) by the intrinsic GTPase 
activity of the Gα subunit.12 As soon as GTP is 
converted to GDP, GDP-bound Gα subunit 
regains its affinity for the Gβγ subunits (switch II 
region loses its contacts with the guanine nucleo-
tide and binds Gβ again) and the G protein het-
erotrimer reassociates, no longer being able to 
transduce signals (i.e. neither Gα nor Gβγ can 
interact with effectors now).12

Unlike the monomeric Ras-like G proteins, all 16 
human Gα subunits of heterotrimeric G proteins, 
that is, the two members of the Gs, the eight mem-
bers of the Gi/o, the four members of the Gq/11, and 
the two members of the G12 family, possess intrin-
sic GTPase activity.12,17 Nonetheless, rates of 
GTP hydrolysis vary considerably for the various 
Gα subunits, with certain isoforms (Gαq, Gαz) 
being extremely slow at converting GTP to 
GDP.12,18,19 Importantly, the GTP hydrolysis 
rates for all heterotrimeric G protein Gα subunits 
measured in vitro appear slow and probably 
incompatible with in vivo functions.20–22 This is 
why the cell utilizes ‘regulator of G protein signal-
ing (RGS)’ domain-containing proteins, a ~120-
amino acid-long domain that can bind the Gα 
subunit and dramatically accelerate GTP hydroly-
sis.20–30 The proteins that contain this RGS 
domain, first discovered in yeast and in the nema-
tode worm Caenorhabditis elegans, are called RGS 
proteins.20–30 GTP hydrolysis is enormously (up 
to 2000 times higher) accelerated by RGS 

proteins, and both the amplitude and duration of 
Gα and free Gβγ subunit signaling are markedly 
reduced.12,31 Every protein with a functional RGS 
domain is categorized into a subfamily, designated 
by a letter (A–F) and the name of a representative 
member of that particular subfamily (next to the 
letter ‘R’).31–35 For instance, the A/RZ subfamily is 
named after the representative RGSZ protein 
member.36 Some RGS proteins, for example, 
RGS4 or RGS2, also interfere with the interaction 
of active (GTP-bound) Gα subunits with down-
stream effectors.26 By acting as GTPase-activating 
proteins (GAPs) on Gα subunits, RGS proteins 
also accelerate free Gβγ signaling termination, 
since the heterotrimer reassembles.26,27 It was ini-
tially thought that there might be a specific RGS 
protein for each of the 16 different Gα subunits 
but we now know that this could not have been 
further from the truth.27 Not only do the RGS 
proteins outnumber the Gα subunits, but also sev-
eral of them can act upon more than one Gα type/
family (e.g. RGS4 inactivates both Gαi/o and 
Gαq/11 subunits). Furthermore, Gαs is not a sub-
strate for any RGS protein, and it is still an open 
question whether Gα12/13 are. However, it seems 
that most (if not all) RGS proteins inactivate G 
proteins in a cell type- and GPCR-specific man-
ner, that is, they do not inactivate their Gα subu-
nit substrates at all times or under any 
circumstances.27 The identity of the receptor that 
has stimulated the G protein seems to play a cru-
cial role in whether that G protein serves as a sub-
strate for the RGS protein. For example, RGS4 
inactivates angiotensin II type 1 receptor (AT1R)-
stimulated Gαq but not gonadotropin-releasing 
hormone receptor-stimulated Gαq subunits.37,38 
This is extremely important to consider because it 
bestows RGS protein functions with exceptional 
receptor-G protein signaling pathway specificity 
that can be exploited for therapeutic purposes.

In the present review, we first discuss the current 
literature on the regulation of cardiac GPCRs by 
RGS proteins in the context of heart physiology 
but also of heart disease, followed by a closer look 
at cardiac RGS4, which has been documented to 
be implicated in HF and atrial fibrillation (AFib). 
Our review focuses exclusively on the cardiac 
effects of the B/R4 family of RGS proteins 
(RGS1–5, RGS8, RGS13, RGS16, RGS18, and 
RGS21), the smallest mammalian RGS protein 
family members that function primarily (if not 
exclusively) as G protein GAPs, that is, are bona 
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fide RGS proteins. Other proteins that contain 
RGS homology domains but serve other primary 
functions (e.g. GRKs, which are serine/threonine 
kinases), as well as a thorough discussion of the 
biology and physiology of RGS proteins in tissues 
outside the heart, are beyond the scope of the pre-
sent review.

Cardiac RGS proteins and regulation of 
GPCR signaling pathways
RGS1, RGS2, and RGS3 are expressed in both 
cardiac myocytes and fibroblasts. RGS2 is also 
robustly expressed in both vascular smooth mus-
cle and endothelial cells.32,39 RGS4 is highly 
expressed in the brain, heart, and adrenal 
glands.24,30,31 RGS5 displays mainly vascular 
expression.34,40,41 RGS8, RGS13, and RGS18 are 
mainly expressed in immune cells although 
RGS18 is also present in platelets. RGS16 and 
RGS21 are expressed in the heart.34,42–44 RGS3 
exists in multiple isoforms,34 of which the PDZ-
containing one is expressed in cardiac atria and 
both its long and short isoforms are abundant in 
the ventricles.37 In human aortic smooth muscle 
cells, RGS3 regulates sphingosine 1-phosphate 
receptor, endothelin-1 (ET-1) receptor, and 
AT1R signaling.37 Cardiac-specific overexpres-
sion of RGS3 blocks maladaptive hypertrophy 
and fibrosis and improves cardiac function.45 
RGS3 is also upregulated in spontaneously hyper-
tensive heart failure (SHHF) rat hearts.46 
However, in a SHHF rat model that developed 
congestive HF over time, RGS3 was found down-
regulated in the myocardium.46 Consistent with 
these findings, RGS3 appears elevated in myocar-
dial samples from human end-stage HF patients, 
suggesting a role in human chronic and advanced 
HF.47 Nevertheless, the specific GPCRs or sign-
aling mechanisms affected by the RGS3 expres-
sion changes in human HF are unknown, so it is 
unclear at present whether these RGS3 changes 
are causative or not.

Cardiac RGS4 is most abundant in the sinoatrial 
(SA) and atrioventricular (AV) nodal regions, as 
well as throughout the atria.48,49 It is also expressed 
in aorta and in ventricles.37,46,47 Its functions in 
the heart are discussed in detail in the following 
sections below. RGS2 plays a critical role in vas-
cular tone regulation but has been shown to affect 
cardiac compensation to pressure overload.50 It 
also appears to be involved in the counter-regula-
tory effects of atrial natriuretic factor against 

AT1R-induced hypertrophy.51 Notably, RGS2 is 
the only RGS protein reported to date to directly 
oppose Gs protein signaling, albeit not by acting 
as a GAP for Gαs but rather by interacting with 
adenylyl cyclase (the effector of Gαs) and inhibit-
ing it.52–54 No RGS protein acting as Gαs-GAP 
has been reported to date.36 RGS5 has also been 
reported to participate in cardioprotection against 
pressure overload, although no specific receptors 
were examined in that study.55 RGS5 or RGS2 
knockouts lead to worsened pressure overload-
induced cardiac fibrosis in mice.50,55 Gq/11-
coupled receptors AT1R endothelin type A 
receptor (ETAR) are major profibrotic mediators 
in human cardiac fibroblasts.56–58 RGS2 opposes 
AT1R signaling-dependent cell proliferation and 
collagen synthesis in ventricular fibroblasts.59 
However, cardiomyocyte-residing RGS2, acting 
in a paracrine fashion, may have contributed to 
these anti-fibrotic effects of cardiac RGS2.

RGS13 is one of the two RGS proteins (the other 
one being RGS2) that typically localizes in the 
cell nucleus.60 Indeed, upon cyclic 3′,5′-adeno-
sine monophosphate (cAMP) synthesis and 
cAMP-dependent protein kinase (PKA) activa-
tion, RGS13 translocates to the nucleus and 
interacts with the PKA-phosphorylated transcrip-
tion factor cAMP response element-binding 
(CREB) protein, inhibiting gene transcription 
downstream of CREB.61 However, this may not 
occur in the heart, given the very low RGS13 
expression in the myocardium.31 RGS16 is pre-
sent in both cardiac myocytes and fibroblasts31,62,63 
and is one of the very few RGS proteins identified 
to date that act as Gα12/13-GAPs.64 Bacterial 
lipopolysaccharide (LPS) endotoxin impairs car-
diac contractility and precipitates acute septic 
HF.65 Treatment of cardiomyocytes with LPS or 
ET-1 upregulates RGS16 transcriptionally, low-
ering phospholipase C (PLC)-β activation by 
ET-1-activated ETARs in cardiac myocytes.32,66

Therapeutic potential of cardiac RGS4

Cardiac RGS4 and HF
Exogenous overexpression of RGS4 in cardiomy-
ocytes attenuates ETAR signaling through PLCβ 
activation, thereby reducing contractility but 
also hypertrophy.67–69 Indeed, RGS4 overex-
pression in murine cardiac myocytes inhibits 
compensation for aortic banding-induced after-
load increase.68 Cardiac RGS4-overexpressing 
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mice also suffered from increased postoperative 
mortality following aortic banding.68 This could 
have occurred because of reduced Gq signaling-
dependent adaptive hypertrophic/inotropic 
responses.67 Surprisingly however, positive inot-
ropy in response to dobutamine was preserved in 
the RGS4-overexpressing mice,68 so β-adrenergic-
dependent contractility was intact. Perhaps the 
excess mortality happened because of RGS4-
mediated blockade of Gi/o protein signaling, which 
is essential for anti-apoptosis in the myocar-
dium.70,71 Importantly, RGS4 overexpression 
ameliorated cardiac hypertrophy in the survivors 
by inhibiting the ‘fetal’ gene program activation 
induced by the Gq protein/calcium signaling 
pathway.68 The salutary effects of RGS4 in 
Gq-dependent hypertrophy induction were also 
observed in transgenic mice overexpressing both 
RGS4 and Gαq in the same hearts.69 Thus, RGS4 
was established more than 20 years ago as cardio-
protective against hypertrophic signals and 
increased afterload courtesy of its Gq signaling 
inhibition. Corroborating this role for RGS4 is 
the fact that it is found upregulated in an experi-
mental rat model of cardiac hypertrophy as well.46

Importantly, cardiac RGS4 was found upregu-
lated in advanced human HF in two different 
populations.47,72 In a German study, RGS4 was 
found selectively upregulated, that is, the only 1 
out of 10 RGS proteins examined, at both the 
mRNA and protein levels, in human dilated or 
ischemic cardiomyopathy-related end-stage 
HF.72 In the English study, RGS4 mRNA and 
protein levels were increased in both end-stage 
and acute human HF.47 Additionally, RGS4 
dampened PLC activity in human left ventricular 
membranes, along with terminating ETAR-
dependent Gq/PLC/Ca2+ signaling.72 In conclu-
sion, cardiac RGS4 appears to be cardioprotective 
and its upregulation in the failing human heart 
may very well serve as a compensatory mecha-
nism in the face of excessive hypertrophic and 
maladaptive (metabolically demanding) Gq/PLC/
Ca2+ signaling by certain cardiac GPCRs.

Consistent with this, we recently uncovered that 
RGS4 also opposes the Gi/o protein signaling of 
the short-chain free fatty acid receptor (FFAR)-3 
in cultured cardiomyocytes.73 FFAR3 is activated 
mainly by gut microbial metabolites propionate 
and butyrate, but also by other free fatty acids 
with a shorter than six carbon atoms-long 

chain.74,75 Like the other three human FFARs 
(FFAR1, FFAR2, FFAR4), FFAR3 is a Gi/o-
coupled GPCR that promotes inflammation 
through interleukin (IL)-6 and IL-1β induction, 
transforming growth factor (TGF)-β-dependent 
fibrosis, and increased norepinephrine release 
(via Gi/o-derived free Gβγ-activated PLCβ activa-
tion and subsequent Ca2+ signaling).76–79 RGS4 
was found to be essential for the blockade of car-
diac FFAR3-mediated inflammation and fibrosis, 
as well as for neuronal FFAR3-dependent sympa-
tholysis that preserved cardiac βAR reserve (car-
diomyocyte β-adrenergic receptor (AR) 
membrane density).73 These findings suggest a 
protective role for cardiac RGS4 in reverse 
remodeling and in mitigation of sympathetic 
nervous system hyperactivity induced by gut 
microbiota-derived nutrient metabolites, such as 
propionic and butyric acids.73,77 Of note, ketone 
bodies like β-hydroxybutyrate have been reported 
to antagonize FFAR3,76,80 so it appears that 
RGS4 can mimic (at least some of) the beneficial 
actions of ketone bodies in the heart.

Another signaling mechanism that could poten-
tially endow RGS4 with therapeutic benefit 
potential in human HF is the positive regulation 
of cardiac cAMP levels it may exert courtesy of its 
GAP activity at Gαi subunits (Figure 1). As has 
been suggested for RGS4 in pancreatic beta cells 
and other tissues,81,82 termination of Gαi subunit 
signaling by RGS4 would relieve adenylyl cyclase 
from Gαi inhibition, thereby indirectly promoting 
cAMP synthesis (and PKA activation) by 
Gs-coupled GPCRs, such as the cardiac βARs 
(Figure 1). The fact that the response of the 
RGS4-overexpressing mice to dobutamine post-
aortic banding was normal also argues in favor of 
this scenario.68 This mechanism might be partic-
ularly important in the setting of human HF, 
given that Gαi (but not Gαs or Gαq) is known to 
be selectively upregulated in the failing human 
heart, regardless of the type of failure (acute or 
chronic end-stage) or etiology (ischemic or dilated 
cardiomyopathy)83–88 (Figure 1). This Gαi upreg-
ulation is driven by norepinephrine overstimula-
tion of cardiac β1ARs, which transcriptionally 
upregulate Gαi via the Gs protein/cAMP/PKA 
signaling axis, and thus probably serves as a feed-
back, counter-regulatory mechanism against cat-
echolaminergic overdrive of the failing heart.84,85 
However, increased Gαi activity means that basal 
and hormone-activated adenylyl cyclase activities 
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are suppressed, leading to chronically low cAMP 
levels in the failing human heart (Figure 1). 
Indeed, several lines of evidence point to the fact 
that cAMP levels are low and cAMP synthesis is 
deficient in the failing human heart.89–92 Although 
this might initially serve as an adaptive response 
of the failing myocardium to protect itself from 
excessive norepinephrine stimulation (the devel-
oping sympathetic nervous system overdrive), 
low cAMP levels can become maladaptive over 
time, because cAMP is essential not only for the 
contractile (systolic) function of the heart but 
also for its relaxation (diastolic) function.86,93 In 
addition to inotropy, automaticity, and dromot-
ropy, cAMP increases lusitropy of the myocar-
dium, as well. This is mainly achieved by a 
combination of PKA-dependent phosphoryla-
tions that primarily activate sarco(endo)plasmic 
reticulum calcium adenosine triphosphatase 
(SERCA) in the sarcoplasmic reticulum (SR) 
(via phospholamban phosphorylation) to remove 
Ca2+ from the cytoplasm back into the SR,94 the 
sodium pump in the plasma membrane (via 

phospholemman phosphorylation) to drive 
sodium/calcium exchanger-mediated Ca2+ extru-
sion out of the cardiomyocyte,95 and even acceler-
ate actomyosin filament relaxation (via 
myosin-binding protein-C3 phosphorylation).96,97 
All these actions combined reverse the intracel-
lular free [Ca2+] elevation induced by cAMP dur-
ing contraction and allow for the myocardium to 
relax and fill with blood during diastole.98,99 It is 
thus quite plausible that RGS4 is selectively 
(among all RGS proteins expressed in the human 
heart) upregulated in the failing human heart as a 
compensatory mechanism for the myocardium in 
an effort to counterbalance the Gαi upregulation 
and maintain some basic level of adenylyl cyclase 
activity and cAMP synthesis necessary for proper 
cardiomyocyte homeostasis (Figure 1). In fact, 
one of the first articles reporting the Gαi upregu-
lation in human HF, by Böhm and colleagues in 
1990, concluded with the quote: ‘Inactivation of 
Giα could be a potential target for the medical 
treatment of chronic heart failure’.83 The RGS 
proteins discovered a few years later, specifically 

Figure 1.  Role of cardiomyocyte RGS4 in the context of human HF. Basal and hormone induced (e.g. by 
adenosine A1 and A3 or M2 muscarinic cholinergic receptors) Gαi activity is elevated, so cAMP levels are low in 
human HF. RGS4, by accelerating GTP hydrolysis on Gαi, functionally opposes/terminates Gαi actions, thereby 
(indirectly) promoting AC activation and cAMP synthesis. cAMP exerts multiple effects in the heart crucial for 
cardiomyocyte function, such as contraction followed by relaxation, automaticity, and positive chronotropy and 
dromotropy (conduction). Thus, RGS4 can potentially reverse part of the molecular abnormalities present in 
the failing human myocardium.
A, adenine; AC, adenylyl cyclase; ATP, adenosine triphosphate; cAMP, 3′,5′-adenosine monophosphate; G, guanine; HF, 
heart failure; P, phosphorylation; Pi, inorganic phosphate; RGS, regulator of G protein signaling. See text for more details 
and all other molecular acronym descriptions.
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RGS4, could fill this role perfectly. Nevertheless, 
this RGS4 upregulation is evidently insufficient 
to increase cAMP levels in the failing human 
heart to a substantial extent, given that the cAMP 
levels measured in advanced human HF are still 
low.89,90 Thus, RGS4 upregulation alone does not 
suffice to halt (let alone reverse) the progressive 
deterioration of cardiac function in humans with 
chronic HF. Finally, it is worth noting that the 
fact that Gαi is elevated in the failing human heart 
means that interventions such as GRK2 inhibi-
tion, aimed at increasing βAR-elicited Gs protein 
signaling that is depressed in human HF due to 
elevated GRK2-dependent desensitization,100,101 
would probably be ineffective at sufficiently 
improving cAMP levels and, consequently, car-
diac function.

Cardiac RGS4 and AFib
Apart from its putative roles in regulation of car-
diac inotropy and lusitropy, RGS4 has been doc-
umented to play a crucial role in cardiac 
chronotropy regulation.48 Cholinergic regulation 
of heart rate (HR) is mainly mediated by the Gi/o-
coupled M2 muscarinic cholinergic receptor 
(mAChR).89,102 The underlying mechanism for 
acetylcholine (ACh)-induced bradycardia is acti-
vation of Gi/o-derived free Gβγ subunits, which 
help open atrial G protein-coupled inwardly rec-
tifying K+ (GIRK) channels, resulting in ACh-
induced potassium hyperpolarizing currents 
(IKACh).27,48,102 M2 mAChR-stimulated, as well 
as adenosine receptor-stimulated, Gαi-dependent 
inhibition of adenylyl cyclase also contributes to 
cholinergic (and adenosinergic) slowing of HR 
since cAMP is essential for the operation of 
hyperpolarization-activated cyclic Nucleotide-
gated (HCN)-4 channels, responsible for the gen-
eration of the pacemaker ‘funny’ current (If) in 
SA nodal pacemaker cells.103,104 cAMP also 
enhances depolarizing Ca2+ influx currents in AV 
nodal cells (via PKA-mediated phosphorylation 
and opening of L-type calcium channels and of 
ryanodine receptor 2 channels), which is respon-
sible for propagation of electrical conduction 
throughout the atria, AV node, and over to the 
ventricles (Purkinje fibers and Hiss bun-
dle).26,27,94,105 In other words, cAMP lowering 
reduces automaticity and induces negative 
dromotropy in the heart. RGS4 and RGS6 have 
long been known to function as key regulators of 
cholinergic control of HR.106–108 RGS4 or RGS6 
genetic deletion results in severe bradycardia 

from vagal stimulation in vivo.106–108 However, 
RGS6 may use a different mechanism for slowing 
HR, since, unlike RGS4, RGS6 can directly inter-
act with Gβ5 via its Gγ-like domain and form a 
complex that suppresses IKACh.106 In fact, the 
role of RGS4 in negative regulation of normal, 
basal IKACh currents in the SA node has been 
challenged by several studies.109,110 Indeed, it 
appears that, under normal basal vagal tone con-
ditions, RGS6 and RGS10 are mainly responsible 
for IKACh desensitization.109,111 In conditions 
that enhance vagal tone, however, RGS4 takes 
over and suppresses the excess IKACh currents 
that promote AFib development secondary to 
physical exercise or other AFib-precipitating 
stimuli.108,110 Further supporting a cardioprotec-
tive role for RGS4 against AFib pathogenesis is 
the fact that RGS4 is essential for suppression of 
pro-arrhythmogenic Ca2+ signaling by Gq/11 pro-
tein-coupled receptors, primarily the endothelin 
ETA and angiotensin II AT1 receptors, in the 
heart112 (Figure 2). Indeed, RGS4 knockout atrial 
myocytes developed AFib more frequently and 
exhibited higher endothelin-dependent Ca2+ 
spark frequencies than controls.112 Thus, RGS4 
protects against AFib induced by uncontrolled 
Gq/11-PLCβ/inositol trisphosphate (IP3)/Ca2+ 
signaling, causing abnormal beats/electrical 
events.112 Finally, RGS4 has been shown to sup-
press PLC activity (and subsequent Ca2+ signal-
ing), both basally and upon ET-1 stimulation, in 
human cardiomyocyte membranes.72 In conclu-
sion, RGS4 appears essential for suppression of 
excessive Ca2+ and excessive cholinergic IKACh 
signaling in human atria, both of which are 
arrhythmogenic and can lead to AFib develop-
ment (Figure 2). This strongly suggests that phar-
macological interventions to enhance cardiac 
RGS4 expression and/or activity might have sig-
nificant therapeutic value in AFib treatment and 
prevention, especially since RGS4 does not seem 
to negatively affect normal vagal HR regulation, 
which would be arrhythmogenic on its own and 
also appears to be protective against pathological 
cardiac hypertrophy.113

Conclusions and future perspectives
A lot of progress has been made over the past 
20 years in elucidating the signaling actions and 
biological effects of RGS proteins in the heart, as 
in other organs and organ systems. RGS proteins 
could be attractive therapeutic targets in diseases 
of the heart, the kidneys, the central nervous 
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system, but also in oncology and other disease 
areas. The major question that needs to be 
answered for each disease and each RGS protein 
is whether its inhibition or potentiation is thera-
peutically desirable, which, of course, depends on 
each individual tissue type and disease setting in 
question. RGS protein inhibition generally 
enhances GPCR signaling, which can theoreti-
cally be beneficial for reducing dosage (and side 
effects) of other drugs that act as GPCR agonists 
(e.g. β2-adrenergic agonists in asthma). Moreover, 
by blocking activation of certain effectors by cer-
tain G proteins (e.g. RGS2-mediated blockade of 
adenylyl cyclase activation, RGS4-mediated 
blockade of PLCβ) RGS protein inhibitors fine-
tune GPCR signaling in response to GPCR ago-
nist drugs. On the flip side, RGS protein 
stimulation can be desirable in many pathological 
conditions characterized by aberrant G protein 
signaling and low RGS protein activity or 
expression.

Although a considerable amount of work still 
needs to be done to fully elucidate its function in 
the heart and in other organs, RGS4 already 
emerges as a potential therapeutic target in both 
human AFib and HF. Coupled with its potential 

in treatment of kidney injury/disease,114 can-
cer,115,116 asthma,117 and diabetes,82 not to men-
tion its already substantiated potential as a genetic 
risk factor for psychiatric disorders,118 develop-
ment of a pharmacological ‘magic bullet’ based 
on RGS4 activity augmentation in the future will 
not be surprising.

Interestingly, a number of small molecule inhibi-
tors for RGS4 have been developed over the past 
10–15 years,40 largely for the purpose of delineat-
ing the effects of this protein in vivo, that is, as an 
alternative to RGS4 knockouts (see O’Brien et al.40 
for an excellent recent review on the chemistry and 
pharmacology of RGS protein-targeting com-
pounds). Indeed, in vivo experiments with the 
RGS4 small molecule inhibitor CCG-50014 con-
firmed the crucial role RGS4 plays in modulating 
analgesia, including opioid receptor-mediated pain 
relief, which was significantly enhanced by coad-
ministration of this RGS4 inhibitor.40 However, 
while RGS4 inhibition may be therapeutically 
advantageous in analgesia or in brain disorders, the 
findings from cardiovascular studies discussed 
above strongly argue for RGS4 potentiation being 
advantageous in HF and AFib. Unfortunately, 
design and development of RGS protein 

Figure 2.  Role of (atrial) cardiomyocyte RGS4 in the context of human AFib. RGS4 terminates Gq protein 
signaling induced by AngII and ET-1 receptors, thereby attenuating pro-arrhythmic calcium signaling and 
reducing risk of AFib development.
ACh, acetylcholine; AFib, atrial fibrillation; AngII, angiotensin II; ET-1, endothelin-1; HR, heart rate; IP3, inositol 
1′,4′,5′-trisphosphate; RGS, regulator of G protein signaling. See text for more details and all other molecular acronym 
descriptions.
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enhancers is inherently more difficult than that of 
RGS protein inhibitors. Besides, a Gαi or a Gαq 
inhibitor can (in theory at least) do the same job as 
an RGS4 enhancer. An interesting, alternative 
approach toward augmentation of RGS4 expres-
sion/activity could be protein stabilization, that is, 
inhibition of RGS4 proteasomal degradation via 
ubiquitination.119 Indeed, pharmacological inhibi-
tion of the N-end rule pathway that degrades sev-
eral R4 RGS proteins including RGS440,119 with 
the neurostimulant agent para-chloroampheta-
mine has been shown to increase RGS4 protein 
stability/levels.120 Pharmacological augmentation 
of RGS4 levels/activity is thus feasible.

Admittedly, our present review has several limita-
tions, such as relying on in vitro and animal model 
studies; focusing exclusively on the myocardium 
and on cardiomyocytes without taking into 
account the complex interplay between cardiac 
myocytes, fibroblasts, and endothelial cells, as 
well as, of course, between the heart, blood ves-
sels, and neurons that innervate the myocardium; 
and, finally, focusing specifically on RGS4, while 
it is almost certain that RGS4 works in concert 
with other RGS proteins and G protein-interact-
ing partners to produce its biological effects in the 
heart and in other tissues/organs. Nevertheless, 
we attempted herein to document a case for the 
beneficial effects of RGS4, and hence, for its 
pharmacological potentiation being potentially 
therapeutic, specifically in human HF and AFib. 
The arrival of better isoform-specific small 
organic molecules and of other molecular tools 
that modulate activity or expression or subcellular 
localization of RGS proteins in the near future 
will be instrumental in defining the appropriate 
place of each individual RGS protein, RGS4 
included, on the map of targets for the current 
and future therapeutic arsenals for cardiac hyper-
trophy, HF, AFib, arrhythmias, hypertension, 
and other cardiovascular diseases.
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