ACSMedicinal
Chemistry Letters)

pubs.acs.org/acsmedchemlett

Development of lodinated Indocyanine Green Analogs as a Strategy
for Targeted Therapy of Liver Cancer

Sierra C. Marker,” Andres F. Espinoza,V A. Paden King, Sarah E. Woodfield, Roma H. Patel,
Kwamena Baidoo, Meredith N. Nix, Larissa Miasiro Ciaramicoli, Young-Tae Chang,*
Freddy E. Escorcia,* Sanjeev A. Vasudevan,™ and Martin J. Schnermann™

Cite This: ACS Med. Chem. Lett. 2023, 14, 1208-1215

I: I Read Online

ACCESS |

[l Metrics & More |

Article Recommendations |

e Supporting Information

ABSTRACT: Liver cancer is one of the leading causes of cancer-
related deaths, with a significant increase in incidence worldwide.
Novel therapies are needed to address this unmet clinical need.
Indocyanine green (ICG) is a broadly used fluorescence-guided
surgery (FGS) agent for liver tumor resection and has significant
potential for conversion to a targeted therapy. Here, we report the
design, synthesis, and investigation of a series of iodinated ICG
analogs (I-ICG), which can be used to develop ICG-based targeted
radiopharmaceutical therapy. We applied a CRISPR-based screen
to identify the solute carrier transporter, OATP1B3, as a likely
mechanism for ICG uptake. Our lead I-ICG compound specifically
localizes to tumors in mice bearing liver cancer xenografts. This
study introduces the chemistry needed to incorporate iodine onto
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the ICG scaffold and defines the impact of these modifications on key properties, including targeting liver cancer in vitro and in vivo.
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iver cancer is the fourth leading cause of cancer-related
deaths around the world, with >1 million people
estimated to be affected by 2025." Hepatocellular carcinoma
(HCC) makes up 90% of adult liver cancer cases, while
hepatoblastoma (HB) is the most common liver malignancy in
children, typically occurring between the ages of 6 months and
3 years. HCC, which has five-year survival rates of less than
20%, can also affect teena.gers.l’3 Curative treatment options
for early stage HB and HCC include surgical resection, liver
transplantation, and local ablation.”> However, most HCC is
not detected until advanced stages due to the asymptomatic
nature of the disease. For HB, around 60—80% of children
have unresectable tumors upon diagnosis, which require
treatment with aggressive neoadjuvant chemotherapy regi-
mens.® Despite these advances, the lack of an effective targeted
therapy for HB and HCC has left physicians subjecting
patients to aggressive therapies with deleterious side effects.
Thus, there is a significant need for further understanding of
ways to create targeted medical therapies toward liver cancer.
Although HB and HCC are unique in their pathophysiology,
they both exhibit selective indocyanine green (ICG) uptake,
which has proven to be useful for guiding surgical resection.
The last two decades have seen significant progress in the
development of fluorescence-guided surgery (FGS) approaches
for cancer resection.””” The most broadly used FGS probe in
the clinic is the near-infrared (NIR)-emitting dye, ICG."’ ICG
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was initially used for angiographic imaging for blood flow"'

and then found applications in assessing liver function due to
its selective hepatobiliary excretion.'” Subsequently, it was
found that ICG also exhibits remarkably high uptake and
retention in liver tumors, as well as other solid tumors.">™"*
ICG is now used broadly to facilitate the resection of HCC
tumors in adults and, in recent years, has also been successfully
used intraoperatively in HB.'® Approximately 90% of children
with HB exhibit highly ICG-positive tumors, making surgical
resection possible in many cases.'” Due to the dramatic uptake
of ICG in both HB and HCC primary and metastatic lesions,
an appealing strategy is to repurpose the tumor-targeting
property of ICG to selectively deliver a therapeutic agent. Prior
efforts have sought to identify ICG derivatives with similar
uptake by various types of liver cancer, though these remain in
preclinical testing.'®'? A number of reports demonstrate the
potential for ICG small-molecule conjugates for therapy in
various cancer types.”’">” While these reports have illustrated
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Figure 1. (A) Synthesis of IICG compounds. (B) ICG and I-ICG compounds and their corresponding absorbances and emission. The properties

shown include synthetic yield (%), absorbance maxima (4,,,, nm)/emission maxima (4,,,, nm), extinction coefficient (¢, M~

''em™), and quantum

yield (®g, %) as measured in water. Reaction yields are indicated in parentheses.

that ICG’s core structure can be modified, it is reasonable to
presume that large changes to the structure would alter ICG’s
inherent tumor-targeting capability.”® We hypothesize that a
lower molecular weight iodine modification might better retain
ICG’s properties and open new avenues for its conversion into
a radiopharmaceutical therapy or imaging agent.

The current uptake mechanism of ICG is only partially
understood and is thought to be driven by solute carrier
transporters (SLCs). These transporters are membrane-bound
and are responsible for trafficking a wide range of small
molecules into the cell.”” One subset of SLCs is the organic
anion transporter polypeptides (OATPs), which traffic organic
anionic drugs and xenobiotics.>”*" These include OATP1B],
OATP1B3, and OATP2B1 isoforms, which are expressed in
the basolateral membrane of human hepatocytes, both healthy
and cancerous, and have been proposed to play a role in ICG
liver trafficking.”"** Previous experimental approaches in this
area include the use of OATP inhibitors, which led to the
suggestion that these transporters are involved in ICG hepatic
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clearance and the excretion of ICG.*>™** The selectivity and

retention of ICG in liver tumors may also be driven by
decreased expression of multidrug resistance proteins, like
MDR2, and/or disruption of cell polau‘it}r.33’36

Here, we design, synthesize, and test a series of iodinated
ICG (IICG) analogs. To explore the tumor-targeting
capability of these I-ICG analogs, we performed flow
cytometry using commercial and patient-derived HCC and
HB cancer cell lines. Additionally, we examined the molecular
basis of ICG uptake via a CRISPR/dCas9 screen. We identify
the putative ICG transporter OATP1B3, which was confirmed
through the development of an overexpression cell line. This
cell line was used to evaluate whether our I-ICG analogs could
serve as substrates for this transporter. The lead compound
from these studies was tested in mice bearing Hep3B and Huh-
7 HCC tumor xenografts and patient-derived (PDX) HB
xenografts to evaluate its biodistribution and clearance. This
study presents a novel approach of placing iodine within the
ICG scaffold and illustrates the effect that it has on the
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Figure 2. Identification of putative ICG transporters using a SLC-CRISPRa screen. (A) Increase of the ICG (10 M) fluorescence intensity after
SLC-CRISPRa pool enrichment. The top 3% brightest population was sorted every week until the sorted population up to the Sth round achieved
99.99% enhancement. (B) Pie chart demonstrating the proportion of highly enriched sgRNAs in the unsorted SLC-CRISPRa pool and the Sth
round enriched population. NGS count results are presented as percentages for the top five targets. (C) Gene expression patterns of the top five
SLC genes in the Sth round enriched population. The fold change was normalized to the SLC-CRISPRa pool. Clones exhibited high ICG uptake,
as demonstrated through (D) microscopy and (E) flow cytometry. Scale bar represents 200 ym.

photophysical properties and biological uptake of heptame-
thine cyanines. Additionally, this study provides valuable
information about alternative ICG structures that could be
utilized for tumor-targeted radiopharmaceutical therapeutics
and diagnostics or theranostics through the development of
radioiodine ICG variants. Given that radiotherapy (e.g, *°Y
microsphere radioembolization and stereotactic radiotherapy)
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is often used for these cancers as part of standard-of-care,
targeted radiopharmaceuticals could allow for accurate
detection and post-treatment surveillance and expand our
therapeutic repertoire.

In designing our I-ICG library, we focused on synthesizing
compounds that not only incorporated small structural
modifications to ICG’s core but could potentially be

https://doi.org/10.1021/acsmedchemlett.3c00213
ACS Med. Chem. Lett. 2023, 14, 1208—1215
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transformed into a radiotherapeutic in subsequent studies.
Iodine-131 is routinely used alone or conjugated to tumor-
selective molecules as a radiopharmaceutical therapy
agent,””™*" and iodine-124 can be used for positron emission
tomography (PET) imaging."” Therefore, we synthesized
iodine-containing ICG (I-ICG) analogs (Figure 1) using a
synthetic methodology recently reported from our group
(Figure 1A).*> We focused on exploring whether installing
iodine within the cyanine structure could improve the in vivo
pharmacokinetic and liver tumor targeting properties of ICG.

After purification and characterization of all I-ICG
derivatives, we explored their photophysical properties in
water (Figure 1B) and phosphate-buffered saline (PBS) at pH
7.2 containing 10 mg/mL bovine serum albumin (BSA). The
I-ICG analogs generally had more blue-shifted absorbance and
emission maxima in both water and BSA/PBS in comparison
to ICG (Figures 1B and S1—SS, Table S1). These results
correlate with previous observations and are consistent with
the fact that ICG has an extended z-system from the
naphthalene groups, leading to a bathochromic shift in the
absorbance maxima.***> All compounds had higher extinction
coefficients in water than BSA/PBS. All I-ICG compounds,
including ICG, had moderate emission quantum yields ranging
from 2—12% in water and 3—11% in BSA/PBS. The placement
of the iodine on the indole ring had a strong effect on the
emission quantum yields, with the 4-position exhibiting the
greatest emission in water (12.3%). This enhanced quantum
yield in comparison to ICG may indicate an improved
fluorescence signal for in vivo imaging. Additionally, we
evaluated the cLogP values of the compounds and found
that the I-ICG compounds have values comparable to that of
ICG and that the position of the iodine on the aryl ring does
not affect the cLogP value (Table S1). These results could
provide valuable information about the importance of iodine
placement on the cyanine for potential photodynamic
therapeutic (PDT) agents, which utilize a photosensitizing
agent typically bearing heavy atoms like iodine to produce
therapeutic singlet oxygen.*’

We chose to examine ICG’s cellular uptake in an unbiased
manner by performing a systematic transporter screen using a
CRISPRa activation library.”” We examined 380 protein-
encoded SLCs using a dCas9-VPR overexpression strategy.
After five cycles of enrichment of the brightest ICG cell
population using flow cytometry, six gene pools representing
>80% of the total gene population were identified (Figure 2A—
C). Of the six selected gene pools, SCL25A1S, SLCO1B3, and
SLC4AL11 were shown to have the greatest fold change in gene
expression after ICG treatment (Figure 2D and E). These
SLCs are expressed in various tissues including the liver,
kidneys, brain, heart, lungs, and intestines (Table S2). Of these
genes, SLCO1B3 or OATP1B3 is most likely to play a role in
ICG hepatic clearance or liver cancer uptake, as it is the only
one expressed on the plasma membrane of liver cells and liver
malignancies (Table S2). Furthermore, while not upregulated
in liver cancer compared to healthy liver tissue, the high
expression in all hepatocytes makes it a reasonable candidate
for uptake in liver cancer cells.””

We then aimed to validate this target in vitro and test if
OATP1B3 expression enhances the uptake of ICG and its
analogs. We generated a stable OATP1B3 (SLCO1B3)-
overexpressing cell line. This cell line was derived from
HEK-293T kidney cells through transfection with the lentivirus
SLCO1B3 OATPI1cl.vl with multiplicity of infection (MOI)
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ranging from 1—10. As a negative control, we also generated a
cell line overexpressing SLC OATPIlcl.vl, which was not
implicated in ICG uptake in the CRISPRa screen. We validated
the expression of OATPI1B3 in this cell line through Western
blot analysis and confirmed that there is an increased
expression in the transfected HEK-293T cell lines in
comparison to the lentiviral control and parent HEK-293T
cell lines (Figure 3A). The uptake of ICG in our parent HEK-
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Figure 3. (A) Western blot depicting the expression of the protein
OATP1B3 or f-actin in HEK-293T cells, HEK-293T cells infected
with the lentivirus OATP1cl.vl (—, Lenti control, MOI 10), or HEK-
293T cells infected with an OATP1B3 lentivirus (MOI 1-10). (B)
Confocal fluorescence microscope images of cells incubated with a
primary anti-OATP1B3 antibody overnight (4 °C) and then for 1 h
with an AlexaFluor-488-goat-antimouse IgG (H+L) at room temper-
ature. Cells were stained with DAPI and imaged in Hank’s buffered
saline solution (HBSS) with a 63X oil-immersed lens. The full image
is shown in Figure S6. (C) Flow cytometry of cells incubated with
ICG (10 uM) for 1 h (at least three replicates per sample). Error bars
represent the standard error of the mean. For statistical analysis, one-
way ANOVA and Tukey’s multiple comparisons were performed (n =
3 or 4, Fy;; = 7389, ****p < 0.0001). (D) Mean fluorescence
intensity of cells treated with 10 yuM ICG or I-ICG compounds for 1
h.

293T, OATP1B3 (MOI 10) HEK-293T, and the two liver
cancer cell lines Hep3B and HepG2 was confirmed by confocal
fluorescence microscopy (Figures 3B and S6) and flow
cytometry (Figures 3C and $7—S10). Both methods confirmed
that ICG uptake was greater in our OATP1B3 HEK-293T cells
in comparison to the parent cell line and the other liver cancer
cell lines. These results illustrate that OATP1B3 can mediate
the uptake of ICG in vitro, and increased expression levels of
this transporter result in greater ICG accumulation.

To confirm the cell-type selectivity and mechanism of the I-
ICG compounds, we treated OATP1B3 HEK-293T (MOI 10),
HEK-293T, Hep3B (pediatric HCC), HepG2 (pediatric HB),
and Huh-7 (adult HCC) cell lines with 10 uM of each
compound for 1 h and then analyzed for fluorescence uptake
via flow cytometry. We found that the greatest uptake for all I-

https://doi.org/10.1021/acsmedchemlett.3c00213
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Figure 4. (A) Fluorescent in vivo images of Hep3B-tumor-bearing mice treated with 4-I-ICG (2 mg/kg) and ICG (2 mg/kg) at 4, 24, and 48 h
postinjection. Tumors are highlighted in red circles. (B) Ex vivo analysis of tumors (black) and livers (red) of Hep3B-tumor-bearing mice treated
with 4-I-ICG (2 mg/kg) and ICG (2 mg/kg) at 48 h postinjection. Background is determined by the fluorescence signal from the neck. (C) Ex vivo
tumor-to-liver ratios (TLRs) of Hep3B-tumor-bearing mice treated with 4-I-ICG and ICG at 48 h postinjection. (D) Fluorescent ex vivo images of
tumors, livers, and lungs of HBS2-, HB66-, or non-tumor-bearing mice treated with 4-I-ICG (10 mg/kg) at 72 h postinjection. (E) Ex vivo analysis
of lungs, liver, and tumor of HBS2-, HB66-, or non-tumor-bearing mice treated with 4-I-ICG (10 mg/kg) at 72 h postinjection, n = 1. Data points
are displayed as mean + SD, and the p-values were evaluated by the Student’s ¢ test. *p < 0.0S, ***p < 0.001, ns is nonsignificant.

ICG analogs was observed in the OATP1B3 and Huh-7 cell
lines. Additionally, the general trend was observed for all cell
lines, 4-I-ICG > 4-mono-I-ICG = 5-I-ICG = 6-I- ICG > ICG
(Figure 3D and S11—S1S5). These results illustrate the
importance of the placement of iodine on the indole for
facilitating uptake and confirm that the I-ICG compounds can
act as substrates for the OATP1B3 transporter.

Given that 4-I-ICG had the greatest and most selective
uptake in a variety of liver cancer cells, we selected this
compound for further validation in vitro with HB17 (pediatric
HB patient-derived cell line). HepG2, HB17, and SH-SYSY
(neuroblastoma cell line with low ICG uptake) were exposed
to 4-I-ICG or ICG for 1 h. The cells were then incubated with
fresh media for 96 h and then analyzed for fluorescence uptake
via flow cytometry (Figures S16—S19) or fluorescence
microscopy (Figure $20). HepG2 and HB17 cells exhibit
strong fluorescent signal with ICG or 4-I-ICG, while SH-SYSY
cells showed no fluorescence signal, confirming the liver
cancer-cell selectivity of these compounds.

To test the tumor selectivity of 4-I-ICG in vivo, we
performed optical imaging in two different HCC mouse
models. Female athymic nude mice bearing either Hep3B or
Huh-7 tumors were injected intravenously with 2 mg/kg 4-I-
ICG or ICG and then the mice were imaged at 4, 24, and 48 h
using an in vivo imaging system (IVIS). We observed tumor-to-
background ratios (TBRs) of S and 2 for 4-I-ICG and ICG,
respectively, in the Hep3B model (Figures 4A and S21).
Comparable TBRs of ~2 were observed in the Huh-7 model
for both compounds (Figures S22 and S23). While the 4-I-
ICG tumor signal was generally higher than that of ICG, the
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iodine compound also exhibited a higher liver signal,
producing similar tumor-to-liver ratios (TLRs) in both tumor
models (Figure $23). Ex vivo imaging at 48 h of the tumors
and livers of each mouse confirmed that ICG and 4-I-ICG had
comparable TLRs of around 2 or 3 for the Huh-7 and Hep3B
models, respectively (Figures 4B/C and $24—S526). Overall, we
saw lower fluorescence signals in the Huh-7 model for both
ICG and 4-I-ICG than in the Hep3B model, indicating that the
tumor model plays a role in the uptake of these dyes.

To test the selectivity of this analogue in vivo for HB, we
performed optical imaging (IVIS) in two different orthotopic
HB PDX models, HBS2 and HB66. The sizes of the tumors
were monitored using magnetic resonance imaging (MRI)
until they reached 1 mm® The mice were injected intra-
venously with 10 mg/kg of 4-I-ICG and then imaged at 24, 48,
and 72 h using IVIS (Figure S27). We observed in vivo
clearance of 4-I-ICG in non-tumor-bearing mice at 48 h
postinfusion. At 72 h, we appreciated in vivo clearance of one
of the HB PDX models, HB66, while the signal was still
present in the other model, HBS2. Ex vivo analysis of both
PDX models at 72 h postinjection showed strong signal in the
tumor and minimal or no fluorescence in the liver (Figure 4D
and E). Of note, the non-tumor-bearing mouse was shown to
have nonspecific signal in the lungs at 72 h (Figure 4D and E).
In both model systems, we observe selective uptake in the liver,
with minimal uptake in other organs such as the kidneys, which
is desirable given that kidney retention of current radio-
pharmaceutical agents is responsible for dose-limiting
toxicity.*” Given that the liver is a fairly radiotherapy-tolerant
organ, as indicated by the current clinical use of *°Y
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radioembolization and external radiotherapy for therapy of
HCC, we do not anticipate large adverse side effects with the
radioiodine compound.”® These in vivo studies highlight the
ability of 4-I-ICG to target subcutaneous HCC and orthotopic
HB tumors with high specificity.

Overall, we generated four new iodine containing ICG
analogs that exhibited comparable photophysical and biological
properties to the FGS agent ICG. We identified a likely uptake
transporter for ICG, OATP1B3, through an unbiased CRISP-
Ra screen, which may be responsible for the selectivity of ICG
for liver tumors. Additionally, we concluded that our I-ICG
analogs can also act as substrates for this transporter, indicating
that we can retain the selectivity of these compounds through
small structural modifications. This aspect could also be highly
effective for targeting other tumor types with OATP1B3
overexpression, such as breast, prostate, or lung.51 Future
studies are still needed to address additional details of the
export mechanism and the role of its potential disruption in
solid tumor ICG retention. Out of the 4 new I-ICG
compounds synthesized, we identified 4-I-ICG as the lead
compound, as suggested by improved brightness and higher
uptake in various liver cancer cell lines. This compound was
tested in mice bearing Hep3B and Huh-7 HCC tumors as well
as two orthotopic HB PDX tumor models, HBS2 and HB66. In
vivo and ex vivo analyses indicated that 4-I-ICG had better or
comparable tumor uptake to ICG at the same dosing
concentrations. These studies provide new ICG analogs for
optical imaging/treatment purposes, as well as compounds
with the potential to be developed as radiopharmaceutical
theranostics. Such efforts may offer new, much needed,
therapeutic and diagnostic options for patients with either
HCC or HB.
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