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Abstract

The human auditory system displays a robust capacity to adapt to sudden changes 

in background noise, allowing for continuous speech comprehension despite changes in 

background environments. However, despite comprehensive studies characterizing this ability, 

the computations that underly this process are not well understood The first step towards 

understanding a complex system is to propose a suitable model, but the classical and easily 

interpreted model for the auditory system, the spectro-temporal receptive field (STRF), cannot 

match the nonlinear neural dynamics involved in noise adaptation. Here, we utilize a deep neural 

network (DNN) to mode neural adaptation to noise, illustrating its effectiveness at reproducing 

the complex dynamics at the levels of both individual electrodes and the cortical population. 

By closely inspecting the model’s STRF-like computations over time, we find that the model 

alters both the gain and shape of its receptive field when adapting to a sudden noise change. We 

show that the DNN model’s gain changes allow it to perform adaptive gain control, while the 

spectro-temporal change creates noise filtering by altering the inhibitory region of the model’s 

receptive field Further, we find that models of electrodes in nonprimary auditory cortex also 

exhibit noise filtering changes in their excitatory regions, suggesting differences in noise filtering 

mechanisms along the cortical hierarchy. These findings demonstrate the capability of deep neural 

networks to model complex neural adaptation and offer new hypotheses about the computations 
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the auditory cortex performs to enable noise-robust speech perception in real-world, dynamic 

environments.
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1. Introduction

Humans have a remarkable ability to understand speech despite the many sources of 

background noise that are constantly present in real-world environments. In complex 

acoustic scenes, the statistics of the background noise may suddenly change, such as when a 

speaker and listener walk from a busy street into a restaurant which requires rapid adaptation 

to varying noise properties. Studies have identified noise-robust representations of sound 

in the auditory cortex of humans (Ding and Simon, 2013 ; Kell and McDermott, 2019 ; 

Kell and McDermott, 2017) and model animals (Mesgarani et al., 2014; Moore et al., 

2013; Narayan et al., 2007; Rabinowitz et al., 2013; Schneider and Woolley, 2013), as 

well as in subcortical regions (Dean et al., 2005; Finlayson and Adam, 1997; Ingham and 

McAlpine, 2004 ; Wen et al., 2009). Recently, intracranial recording in humans showed that 

neural sites in the auditory cortex exhibit rapid adaptation in response to sudden changes in 

background noise, which allows them to recover the momentarily disturbed speech features 

(Khalighinejad et al., 2019). However, the computational mechanism which enables this 

adaptation is still not well understood.

Adaptation to sensory context is a critical ability of sensory neurons to optimally encode 

sensory inputs in a dynamic environment (Fairhall et al., 2001; Ulanovsky et al., 2004). 

Past research has identified adaptive gain control mechanisms, including adaptation to 

the spectro-temporal contrast (Cooke et al., 2018; Rabinowitz et al., 2011; Willmore et 

al., 2014), dynamic range (Herrmann et al., 2014; Wen et al., 2009, 2012), and intensity 

(Watkins and Barbour, 2008) of an auditory stimulus. These mechanisms have been found 

to facilitate adaptation at a small scale to synthetic stimuli, permitting a more efficient and 

consistent encoding of varying inputs (David, 2018; Lohse et al., 2020). However, given 

the complexity of real-world auditory environments where listeners attend to speech while 

background noises vary, it is still unclear if simple mechanisms such as adaptive gain control 

are enough to fully explain auditory cortical adaptation, or how it mani-fests alongside 

other adaptive computations. Understanding the overall filtering being performed to adapt to 

sudden noise changes will provide useful insights into the capacity of noise-robust speech 

representations in the human auditory cortex.

Rather than directly searching for such an all-encompassing mechanism, we took a data-

driven modeling approach to learn and understand nonlinear transformations. The classical 

model for the auditory cortex is the spectro-temporal receptive field (STRF) (Aertsen et 

al., 1981; Klein et al., 2006; Theunissen et al., 2000), which uses a linear transformation 

to predict neural responses from spectro-temporal input. As a linear model, the STRF is 

easily inspected and understood. However, it is severely underpowered in modeling complex 
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dynamics (Keshishian et al., 2020), such as the nonlinear adaptation that arises from sudden 

noise changes. Because of this, many attempts have been made to extend the STRF to model 

adaptation (see David, 2018 for a review). One of the most common is the linear-nonlinear 

(LN) STRF, which includes a static nonlinearity, such as a sigmoid, after the linear STRF 

is applied, inspired by the nonlinear activation thresholds of neurons (Calabrese et al., 

2011; David et al., 2009). Others have added a gain normalization mechanism to a STRF 

model to allow it to deal with changing spectro-temporal contrast (Rabinowitz et al., 2012). 

The recent short-term plasticity (STP) model also incorporates short-term depression into 

the linear model, whereby stimulation of the model causes a momentary decrease in its 

output strength for subsequent stimuli (David et al., 2009; David and Shamma, 2013; 

Espejo et al., 2019). All of these models incorporate specific changes or additions to the 

STRF formulation which allow them to better predict neural responses. However, they are 

typically more difficult to interpret than a linear STRF (Keshishian et al., 2020), and each 

extension’s parameterization was designed to allow the model to fit a specific type of 

response pattern, embedding a bias in the model in the form of the neural responses that it 

was designed to mimic. Thus, our understanding of the complex computations that give rise 

to auditory cortical adaptation is still incomplete since no model has been proposed which 

could explain a wide array of adaptation properties simultaneously, a prerequisite for any 

model generalizing to real-world acoustic conditions.

An alternative data-driven modeling framework that can alleviate the limitations of previous 

neural adaptation models is a deep neural network (DNN). These models have a high 

capacity to learn complex nonlinear transformations directly from the data without the need 

to speculate the exact type of nonlinearities that occur in neural adaptation. They have also 

been used to study a wide variety of neural systems in the auditory cortex, from highly 

specialized architectures that simulate firing patterns of individual neurons (Kudela et al., 

2018) to general architectures that model the auditory cortical hierarchy (Kell et al., 2018). 

When used as auditory encoding models, DNNs have been able to consistently outperform 

other linear or nonlinear encoding models while capturing a wide set of computations 

throughout the auditory cortex (Keshishian et al., 2020; Pennington and David, 2022). It has 

been shown that the computations of a certain class of DNN can be visualized at each point 

in time as a dynamic STRF (dSTRF) (Keshishian et al., 2020), reducing the complexity of 

analysis that typically comes with nonlinear encoding models.

In this work, we investigated the use of DNNs to model auditory cortical responses to speech 

in noise and adaptation to sudden noise changes. We trained DNN models to predict the 

neural responses of neurosurgical patients implanted with depth and surface intracranial 

electrodes (iEEG) who listened to speech in the presence of changing background noise, a 

task which requires a high degree of nonlinear adaptation (Khalighinejad et al., 2019). We 

first show that DNNs significantly outperform linear STRF and STP models at predicting 

neural responses in individual electrodes in modeling neural adaptation. Furthermore, the 

models are still highly interpretable through their dSTRFs, and we identify noise-dependent 

gain and spectro-temporal changes in their filtering immediately following noise changes. 

We show that these dynamics are related to well-studied neural mechanisms of noise 

adaptation, and we provide evidence that these dynamics are involved in the DNN’s 

improved modeling of nonlinear adaptation. Furthermore, we identify two classes of 
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electrodes separated by neural response properties and anatomical location whose models 

show distinct adaptive dynamics. These modeling results present promising directions for 

the identification of the precise computations underlying noise-robust encoding in the 

human auditory cortex.

2. Results

We recorded iEEG from 6 subjects (native speakers of American English) who were 

undergoing clinical evaluation before epilepsy surgery. Electrode coverage varied by subject 

according to clinical placement, but only speech responsive electrodes were kept for 

analysis, as determined by a paired t-test between each electrode’s response to speech vs 

silence (FDR corrected (Holm, 1979), p < 0.01), depicted in Fig. 1 A. These electrodes were 

located in Heschl’s gyrus (HG), superior temporal gyrus (STG), transverse temporal sulcus, 

planum temporale, and middle temporal gyrus (MTG). Subjects listened to continuous 

speech from male and female speakers reading a story in which the background noise 

changed every 3 or 6 s between bar noise, city noise, jet noise or no noise (clean speech), 

creating a large set of 3/6 s windows of stimuli and transition-aligned neural responses. 

These three noise types were used because they sample a diverse range of frequency content, 

stationarity, and speech similarity (Khalighinejad et al., 2019), potentially requiring a model 

to operate differently in each noise case. Additional description of the stimulus design and 

rationale can be found in a previous work (Khalighinejad et al., 2019). To make sure subjects 

were focused on the task, the stimulus was paused at random points throughout the task and 

the subject was asked to repeat the last sentence they heard. All subjects were engaged in the 

task and could repeat the most recent sentences. Here we define the neural responses as the 

envelope of the high-gamma band (70–150 Hz) of the neural recordings.

We then trained both STRF and DNN models to predict the neural responses from the 

stimulus spectrogram at a sampling rate of 100 Hz. In order to identify robust properties 

of the DNN models, they were trained in a cross-validated jackknifing procedure where 

multiple models were trained using different portions of the training data to predict the 

same withheld test data. The DNN model was a convolutional neural network (CNN) with 

a receptive field containing the last 650 ms window of the stimulus, illustrated in Fig. 1 A. 

This window size was chosen to give the model sufficient ability to reproduce the adaptation 

effects which can last as long as 700 ms for some electrodes (Khalighinejad et al., 2019), 

while allowing for a simple model architecture with fixed kernel size (see Materials and 

methods). Longer receptive fields and different model architectures had no significant effect 

on model performance, as shown in Fig. S1. To provide a fair comparison, the STRF models 

were trained and tested in the same manner as the DNN models.

2.1. DNN outperforms linear STRF and STP in adaptation modeling

We first sought to confirm that the DNN was a sufficiently good model of neural adaptation 

by comparing the neural response predictions by each class of model. As seen in Fig. 

1B, predicted responses around noise changes are qualitatively much better from DNNs 

than from STRFs, maintaining the baseline response level and tracking the neural response 

very well, which the STRF does not achieve. We computed the correlation between each 
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model’s predictions and the true neural response over the full task and found that the 

DNN significantly outperformed the STRF (subject-controlled paired t-test, p < 0.001), as 

shown in Fig. 1C, with a median improvement in correlation of 0.095. Next, we wanted to 

ensure that this improvement in correlation was not primarily due to improvements in the 

predictions after adaptation had taken effect, but that the model was doing significantly 

better than the STRF during the critical adaptation period that we wished to study. 

Therefore, we computed the correlation for each electrode and noise type for two different 

sections of the response: the adaptation period of the first 650 ms after a noise transition, 

where the noise type changes inside the model’s receptive field, and the remaining time 

where the noise type is constant within the model’s receptive field. As shown in Fig. 

1D, the DNN demonstrated a greater improvement over the STRF during the adaptation 

period compared to afterward for bar, city, and clean conditions (subject-controlled paired 

t-test, all p < 0.001). We also compared the DNN’s performance to that of a short-term 

plasticity model (STP) (David et al., 2009; David and Shamma, 2013; Espejo et al., 2019). 

The DNN achieved a significant correlation improvement over the STP model as well 

(subject-controlled t-test, p < 0.001), which is shown in supplemental Fig. S2A. As we 

did for the STRF comparison, we also divided the correlations between the first 650 ms 

and the remainder after transitions. Supplemental Fig. S2B shows the distributions of these 

correlation improvements. We found that the DNN performed significantly better than the 

STP model for both stimulus periods (subject-controlled paired t-test, p < 0.001 for the 

first 650 ms and p < 0.001 for the remainder), but there was no significant difference in 

improvement between the during- and after-adaptation periods (subject-controlled paired 

t -test, p > 0.05). Additionally, a separate STRF trained in each noise condition did not 

improve performance compared to the baseline STRF model, and in fact performed slightly 

worse on average (subject-controlled paired t-test, p < 0.05) and performed significantly 

worse than the DNN model in all noise conditions (subject-controlled paired t -test, p < 

0.001).

2.2. DNN is interpretable through its dSTRF which adapts to noise changes

Having confirmed that the DNN was performing well in predicting neural adaptation, 

we next studied the DNN model’s computations to understand how it achieved its high 

performance. To do this, we extracted the model’s dSTRF over the course of the stimulus. 

The dSTRF is a DNN’s equivalent piecewise linear model which allows us to interpret the 

DNN’s operation at each instant as a spectro-temporal filter similar to a STRF (Keshishian 

et al., 2020). In a feedforward neural network with rectified linear unit activations (ReLU), 

for a given stimulus input, certain nodes will be active, and thus can be replaced by a 

unity function, while any inactive nodes can be removed. This is illustrated in supplemental 

Fig. S3. Then, the remaining nodes can be multiplied, which entails the multiplication of 

a series of linear weights, leaving a single linear equivalent to the entire network for this 

input instance (see Materials and methods for more details). For a given stimulus input, the 

dSTRF weights perform the exact same computation as the DNN model, and the full DNN 

can be thought of as selecting which linear filter to use depending on the input it is given. 

The dSTRF can be visualized in the same frequency-by-lag manner as a STRF, allowing for 

intuitive interpretation.
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We first visualized the dSTRFs of the models to understand how different neural sites alter 

their filtering after noise transitions. Fig. 2 shows the dSTRFs of several different electrodes 

as they undergo different types of transitions between clean and noisy backgrounds. The 

dSTRFs appear sparse in comparison to the STRFs shown in the left column due to the 

masking method used to keep only significant portions of the dSTRF (see Materials and 

methods). In general, we observed electrodes change both their gain and shape in response 

to new noise. For example, electrode A changes its gain in response to transitioning from 

clean to bar noise, especially increasing the gain of the excitatory region of its receptive 

field in the peak frequency range of both clean speech and bar noise. Electrode B, during a 

transition from clean to jet noise, develops a new excitatory region around this same speech 

spectrum as well as a new inhibitory region of its receptive field at the frequency of the 

jet noise which results in selective inhibition of the jet noise compared to speech. This is 

seen in the rightmost column where the large negative change in the dSTRF matches the 

new increase in high frequency content in the stimulus spectrum. Electrode C illustrates a 

combination of gain and shape changes following the noise transition, developing a large 

inhibitory region in its receptive field and changing the size of the excitatory region. The 

changes exhibited by these dSTRFs have consequences for the neural encoding of speech in 

noise by adaptively filtering out the new noise content, as we further quantify next.

2.3. DNN models exhibit adaptive gain control to account for noise changes

Since some dSTRFs appear to change their gain after noise changes, we investigated 

whether the DNN model showed evidence of adaptive gain control, whereby neurons 

maintain a consistent level of activity by adjusting their gain up or down to account for 

decreases or increases in spectro-temporal contrast in the input stimulus (Cooke et al., 2018; 

Rabinowitz et al., 2011). We computed the spectro-temporal contrast of the stimulus in 

each 3/6 s stimulus window, as well as the average gain of each electrode’s dSTRF in each 

window. Fig. 3A shows average stimulus contrast and dSTRF gain in each of the four noise 

conditions, showing opposite trends of stimulus contrast and dSTRF gain. Furthermore, 

around each noise transition in the stimulus we calculated the change in noise contrast and 

the change in dSTRF gain for each electrode. In Fig. 3B we plot each of these pairs with 

error bars giving an estimate of the distribution over all electrodes’ gain changes for that 

noise transition. The negative correlation (Pearson r = −0.78, p < 0.001) provides further 

evidence that the DNN models increase or decrease their gain to account for a decrease 

or increase in stimulus contrast, respectively, and this pattern is consistent across speech 

responsive electrodes. Finally, to visualize the temporal dynamics of this gain change, we 

plot the dSTRF gain over transitions in Fig. 3C. To maintain a comparable baseline level 

for gain changes, we restrict the transitions to those from clean to noise, or from noisy 

to clean, excluding noise-to-noise transitions. Averaged over electrodes, the gain quickly 

stabilizes after each type of noise change. These gain change findings indicate that the DNN 

models use adaptive gain control when reacting to a background noise change, a mechanism 

that enables them to maintain consistent response levels when the speech content remains 

consistent but noise conditions vary.
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2.4. DNN models change receptive field shape to remove new noise

As suggested by electrode B in Fig. 2, which developed a large inhibitory region of its 

dSTRF upon a transition to jet noise at the frequency where the jet noise had most of its 

energy, we hypothesized that the DNNs may change their receptive field shape to suppress 

the noise spectrum. To test this hypothesis, we computed the correlation between the lag-

averaged dSTRF at a given time point with the spectrum of the new background noise (or 

the average clean speech spectrum in the case of transitions to clean speech). Fig. 3D (left) 

shows these correlations averaged over transitions and electrodes for each transition type. 

The correlation of the dSTRF with jet noise drops after a transition to jet noise (p < 0.001, 

subject-controlled paired t-test between correlations at transition point and 1 s later). This 

change is not consistent across all types of changes to new noise cases, since the correlation 

change also drops for city noise (subject-controlled paired t-test, p < 0.001) but not for bar 

noise or clean background (subject-controlled paired t-test, p > 0.05). To determine if noise 

filtering is a property of the excitatory or inhibitory regions of the dSTRFs specifically, 

we computed the same correlations using only the non-negative or non-positive regions 

of the dSTRFs, respectively, as plotted in Fig. 3 D (middle and right). The excitatory 

region’s behavior is slightly different, since both the bar and city noise correlations increase 

(subject-controlled paired t-test, p < 0.001 and p < 0.01, respectively), indicating that they 

respond even more to the noise. On the other hand, the inhibitory region’s correlation drops 

for all three to-noise transitions, becoming more negative, while the correlation increases for 

transitions from noise to clean (subject-controlled paired t-test, all p < 0.001). For transitions 

to noise, this indicates that the inhibitory region filters out the noise more strongly than 

before the transition. In the case of a transition to clean speech, this shows that the inhibitory 

region gets rid of some of its suppression in spectral areas that are prevalent in speech. 

Taken together, these suggest that the inhibitory region more consistently steers itself away 

from the spectrum of the new noise and may be responsible for a significant amount of the 

model’s ability to filter out a new noise.

2.5. Gain and spectro-temporal changes predict model improvement over linear STRF

To verify that these gain and spectro-temporal change properties had a significant impact on 

the DNN’s ability to outperform a linear STRF in this adaptation task, we sought to predict 

the DNN’s correlation improvement using measurements of the gain and spectro-temporal 

change of each electrode. We used a gain change index to quantify an electrode’s gain 

change for each of the noise transition types, with the sign of the index indicating the 

direction of the gain change and the magnitude indicating the size of the gain change. 

A similar noise filtering index was used to capture the change in the noise spectrum 

correlation, with a positive index indicating that the dSTRF steered away from the noise 

spectrum. Since the dSTRF’s inhibitory region exhibited the most significant noise filtering, 

we used the inhibitory region’s correlation with the noise spectrum to compute the noise 

filtering index. Both indices were the test statistic from a paired t -test between the relevant 

time-course values in the half second before a transition and a half second starting 650 

ms after a transition, with the time-course being the gain around a transition type and the 

correlation with the new noise around a transition type for each index, respectively. The 

distribution of these indices over electrodes for each noise condition are plotted in Fig. 4 

A, showing a diversity of indices across electrodes, but also that transitions to clean tend 
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to have negative gain change and noise filtering indices, while transitions to noise tend to 

have positive indices. We hypothesized that gain and noise filtering shape changes would be 

used by the models in different ways to adapt to different types of noise. Therefore, from 

these indices within each noise condition, we fit a linear mixed effects model to predict 

an electrode’s correlation improvement over the linear STRF from its indices in each noise 

condition. Each model used subject identity as a random effect to control for the impact 

of varying electrode coverage by subject. Fig. 4B plots the fixed effects from these models 

capturing the significance of each feature for each noise type. The fixed effect plots show 

that more positive gain changes in the to-bar and to-city noise transitions, along with greater 

noise filtering in the to-city, to-bar, and to-jet transitions predicted greater improvement in 

modeling neural adaptation response patterns. In transitions to clean speech, more negative 

gain changes and more negative noise filtering, meaning steering toward the spectrum of 

the speech instead of away from it, predicted better improvement. These findings provide 

evidence that these nonlinear properties of the DNN enable the adaptive noise suppression in 

the auditory cortex that the model is capturing.

2.6. Noise filtering reveals distinct noise suppression methods along processing 
pathway

While the previous plots of dSTRF correlation with noise spectrum suggest that the 

dSTRF’s inhibitory region is primarily responsible for noise filtering when averaging over 

all electrodes, we also investigated whether this held true across all electrodes. We computed 

the same noise filtering index for the dSTRF’s excitatory region in each noise condition, to 

add to those from its inhibitory region. This resulted in eight indices for each electrode. We 

then performed hierarchical clustering (minimum variance algorithm, Euclidean distance) 

over these eight features, and two main groups of electrodes emerged, shown in Fig. 5. 

While nearly all electrodes exhibit positive noise filtering indices for the three clean-to-

noise transitions in their inhibitory regions, a subset of electrodes (group 1) also displays 

this trend in their excitatory regions, whereas the other subset (group 2) displays mostly 

negative excitatory noise filter indices for the bar and city transitions. This means that 

group 1 electrodes use both their excitatory and inhibitory receptive fields to suppress new 

noise conditions, not just the inhibitory regions, potentially altering their noise suppression 

abilities.

To understand the effect of this adaptation difference and to confirm that this finding was 

truly indicative of neural site properties and not simply caused by the models randomly 

learning one of two potential noise filtering methods, we looked for other differences 

between the two groups of neural sites. The adaptation index (Khalighinejad et al., 2019) 

quantifies the magnitude of the transient deviation and subsequent return to baseline 

immediately following a noise change, with a larger index indicating a larger deviation 

and return. We compared the average adaptation indices of the electrodes in each group, 

whose distributions are plotted in Fig. 6 A, and found that group 2 had significantly higher 

adaptation indices than group 1 (Wilcoxon ranksum test, p < 0.001). This suggests that 

neural sites in group 2 exhibit larger transient responses around noise transitions. This was 

confirmed by comparing the average neural response to a noise change for each group, 

as seen in Fig. 6B, where we show that the transient response by group 2 electrodes is 
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significantly higher from 110 ms to 260 ms after the transition (Wilcoxon ranksum test, 

p < 0.05). Next, we examined whether the two groups of neural sites corresponded to 

different stages of the auditory processing pathway. As a metric for proximity to primary 

auditory cortex (upstream processing), we computed the distance of each electrode from 

posteromedial HG (TE1.1) (Baumann et al., 2013; Norman-Haignere and McDermott, 

2018). We found that group 1 electrodes are significantly farther than the group 2 electrodes 

(Wilcoxon ranksum test, p < 0.001), shown in Fig. 6C. We confirmed this finding visually 

by plotting the surface-mapped electrode locations on the average FreeSurfer brain (Fischl 

et al., 2004), shown in Fig. 6D for the left and right hemispheres. The plots illustrate a clear 

anatomical division where group 2 electrodes are clustered near primary auditory cortex and 

group 1 electrodes are spread throughout nonprimary areas, including STG and MTG in 

the left hemisphere. All together, these findings indicate that the different noise suppression 

methods used by each group of neural sites influence differences in neural response patterns 

and adaptation between the groups. The anatomical separation between groups suggests 

that there are differences in noise filtering mechanisms between primary and nonprimary 

auditory cortical regions.

3. Discussion and conclusion

We used DNNs as a model for the nonlinear adaptation of auditory cortex to changing 

background noise. We found that DNNs can model the dynamic response patterns 

seen in auditory cortex, and they significantly outperform the linear STRF and STP 

models, especially in the period immediately after noise changes during neural adaptation 

(Khalighinejad et al., 2019). This indicates that the DNNs were not simply better at 

modeling neural dynamics in steady noise conditions but were also significantly better at 

modeling the dynamics during the period of noise adaptation. The architecture we used for 

the DNN models was a CNN with a receptive field of the past 650 ms. Prior research has 

shown that extracting an auditory object from a temporally dynamic background requires 

integration over time (Chait et al., 2005; Teki et al., 2011). Although a recurrent network 

architecture may be naturally suited for integrating temporal information, as may be useful 

for extracting speech from dynamic noise, our model’s results indicate that a finite-length 

window is sufficient to reproduce cortical response adaptation to background noise for the 

noise classes we examined. This supports the choice of a CNN to model the dynamics of 

neural adaptation.

Despite their nonlinearity, the DNN models we trained were still highly interpretable 

through their dSTRFs, a key finding which has recently enabled their use as a powerful 

yet transparent encoding model (Keshishian et al., 2020). Although training a linear STRF 

model within each noise condition separately might allow for analysis of the basic receptive 

field changes between the conditions, it suffers from training with a fraction of the total 

dataset and from being unable to analyze the rapid temporal changes that occur to the 

receptive field within individual noise windows, and the DNN model allows us to analyze 

this. Our inspection of these dSTRFs yielded several new insights into the computations 

which may underlie neural adaptation in auditory cortex. While nonlinear mechanisms 

such as gain normalization have been theorized to underly neural adaptation to changing 

background noise (Khalighinejad et al., 2019; Mesgarani et al., 2014; Rabinowitz et al., 
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2013; Willmore et al., 2014), we demonstrated that models trained to mimic auditory 

cortical response patterns indeed utilize similar mechanisms when presented with noise 

changes. The electrode dSTRFs shown in Fig. 2 demonstrate nonlinearities including 

gain changes, spectro-temporal changes, and combinations of the two, extending previous 

findings by illustrating the precise dynamics of the filter changes that occur in human 

auditory cortex in response to changing background noise.

We first investigated the gain changes to see if the model used adaptive gain control to 

adjust to noise changes. It has been shown that auditory neurons adjust their firing rates to 

account for stimulus statistics (Dean et al., 2005). One such adjustment is through contrast 

gain control, a well-studied mechanism displayed by neurons in the cortex and subcortical 

regions whereby neurons decrease or increase their gain when the spectro-temporal contrast 

of the auditory stimulus is high or low, respectively (Cooke et al., 2018; Lohse et al., 

2020; Rabinowitz et al., 2011; Robinson and McAlpine, 2009). However, prior work on 

adaptive gain control has investigated its neurophysiological responses in animal models 

and with simple stimuli, such as mouse auditory cortex. Given the specialization of the 

human auditory cortex for speech processing (Belin et al., 2000), less is known about 

how gain control operates in human auditory cortex during naturalistic speech listening. 

We showed that the models do exhibit adaptive gain control by reducing their gain when 

entering a new noise condition with higher contrast and increasing their gain when entering 

a noise condition with lower contrast. This effect was highly consistent across areas and 

noise transition types. The existence of gain control in our DNN models constitutes an 

important result since the computations they learn are entirely data-driven, in contrast to 

those in previous work which assumed a specific model and investigated gain control and 

noise-robust encoding (Espejo et al., 2019; Mesgarani et al., 2014; Pennington and David, 

2020; Rabinowitz et al., 2012). These results advance our understanding of adaptive gain 

control by demonstrating how it arises in human auditory cortex during real-world rapid 

noise changes.

We next examined the spectro-temporal changes that the dSTRFs undergo in response to 

noise changes. Since auditory cortical responses have been shown to selectively encode 

vocalizations over background noises in constant or changing background conditions 

(Khalighinejad et al., 2019; Mesgarani et al., 2014; Moore et al., 2013; Narayan et al., 

2007; Rabinowitz et al., 2013; Schneider and Woolley, 2013), we hypothesized that the 

spectro-temporal change during the adaptation period constituted the model attempting 

to find a new filter that would remove the new background and keep the speech signal. 

We confirmed this by finding that the dSTRF’s inhibitory region changes to become 

anticorrelated with the new noise spectrum. Prior work has shown that A1 neuron STRFs 

exhibit different patterns which maximize target detection when animals are engaged in 

sound discrimination compared to baseline (Atiani et al., 2009; Fritz et al., 2003). While 

the reported changes in those studies were induced by a change in the behavioral state 

of the animal, our study shows the utility of similar computations when the task remains 

the same, but the background changes, requiring a new computation for maintaining the 

optimal representation that supports speech perception. As such, we can interpret the 

rapid spectro-temporal changes in our models as neural sites adapting to a new sensory 

context (David, 2018), where the behavioral goal of maintaining enhanced responses to 
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the target stimuli (speech) in the presence of a realistic background noise largely remained 

constant. The continued focus on speech content may still be related to top-down at-tentional 

modulation of ascending auditory processing. A future extension of this work may also 

consider behavioral context, such as task engagement or attention changes (Atiani et al., 

2014; Fritz et al., 2003, 2005; Fritz et al., 2007; Mesgarani and Chang, 2012) and perceptual 

learning (Ohl et al., 2001; Ohl and Scheich, 1997; Polley et al., 2006), as an input to 

the neural network model which could learn a joint nonlinear encoding of stimulus and 

behavioral context. Our results also go beyond the previous characterization of receptive 

field plasticity (Atiani et al., 2009; Fritz et al., 2003, 2005) by showing that the dynamic 

changes in the inhibitory regions of the receptive field may be crucial to real-world noise 

adaptation. This provides new evidence of the precise computations that the human auditory 

cortex may use to suppress background noise in a dynamic acoustic environment.

After characterizing the model’s gain and spectro-temporal change abilities, we confirmed 

that they played a significant role in the DNN’s modeling ability by using each DNN’s 

nonlinear properties to predict the model’s correlation improvement over a STRF and 

adaptive models such as STP. These models revealed that gain change was most important in 

transitions to bar noise, city noise, and clean speech, but not for jet noise. On the other hand, 

noise filtering was important for all types of transitions but did not have as big of a fixed 

effect in bar transitions as gain changes. These differences can be explained by the more 

similar spectrum of bar noise to that of speech, while jet noise is the most different from 

speech. So, a change in spectro-temporal receptive field shape which removes jet noise can 

benefit noise suppression without degrading speech responses, but any receptive field shape 

change which removes bar noise will degrade speech responses as well, given their similar 

spectro-temporal profile (Chi et al., 2005). Thus, when the environment changes from clean 

speech to bar noise in the background, auditory cortical sites might need to rely more on 

gain changes than spectro-temporal changes to continue encoding speech content properly. 

Prior research has identified energetic and informational masking, when a distractor or noise 

signal partially masks a target signal through overlapping spectro-temporal content, as an 

important aspect of noisy tone detection and speech comprehension (Brungart et al., 2001; 

Kidd et al., 2002). When testing tone detection in noise, it has been shown that behavioral 

detection is worse when maskers overlap the signal more (Neff and Green, 1987; Oh and 

Lutfi, 1998; Woods et al., 1994). Our results provide a neural correlate of this behavioral 

finding and show that, for naturalistic sounds, changes to receptive field gain and shapes 

operate independently depending on noise spectra to enable auditory cortical regions to 

quickly adapt to new masking conditions.

We further identified two distinct groups of neural sites based on noise filtering in their 

receptive fields. A subset of the models steered both the excitatory and inhibitory regions of 

their receptive fields away from new noise spectrums, while other sites only used changes in 

their inhibitory receptive fields to reduce noise responses. These differences also highlighted 

interesting neural and anatomical properties of these populations. We found that the neural 

sites in these groups had very different transient responses to noise changes, as measured 

by the adaptation index. The group of sites whose models also used their excitatory regions 

to filter out new noise had lower adaptation indices and correspondingly smaller transient 

responses to noise transitions, suggesting that these sites’ models utilize both excitatory 
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and inhibitory adaptive changes in order to reduce the transient response to a noise change. 

Additionally, the neural sites in this group were located throughout non-primary auditory 

cortex and further cortical regions, while the other group of neural sites was clustered 

in and around primary auditory cortex. Prior work has demonstrated differences in STRF 

tuning changes by neural sites with best frequencies near or far from a target tone when 

task difficulty is altered (Atiani et al., 2009). However, auditory cortical neurons can be 

described by several different tuning dimensions beyond frequency, such as temporal and 

spectral modulations (Walker et al., 2011), and with complex stimuli like speech, there is 

likely more involved than just best frequency tuning. Our findings unveil a portion of this 

added complexity by identifying differences in the nonlinear computations being performed 

to filter out background noise as an acoustic representation moves down the auditory 

processing pathway. It has been shown that noise-robustness increases down the auditory 

pathway (Las et al., 2005; Rabinowitz et al., 2013; Schneider and Woolley, 2013), and more 

specifically nonprimary auditory cortical representations are more robust to real-world noise 

than primary auditory cortex (Kell and McDermott, 2019; Kell and McDermott, 2017), and 

our models provide a potential computational explanation.

Previous work has shown that spectro-temporal tuning and response selectivity in higher 

order auditory cortex is modulated by task demands and attention (Atiani et al., 2014; Fritz 

et al., 2007; Petkov et al., 2004; Puvvada and Simon, 2017), so the DNN’s anatomically-

grouped noise filtering properties could be an indication that the model is mimicking 

attention-related tuning to the speech stimuli. On the other hand, it was shown that 

auditory cortical neural responses to changing background noise are not significantly 

different with and without attention (Khalighinejad et al., 2019). Thus, while the function 

of the model’s noise suppressive tuning changes is apparent, it is difficult to determine 

its origin. Comparing the same sort of data-driven models which are instead trained to 

predict responses from subjects with and without attention to the task may illuminate greater 

differences in the response patterns and the underlying computations that drive them than an 

analysis of the responses alone.

Overall, we used DNN models to reveal multiple nonlinear computations that can explain 

and predict neural adaptation to changing background noises in human auditory cortex. Our 

inspection of these models showed that they reproduce cortical computations which have 

been previously identified and propose potential new mechanisms towards fully accounting 

for the underlying computations that give rise to the invariant cortical representation of 

speech and robust speech perception in adverse acoustic environments.

4. Materials and methods

4.1. Human subject intracranial recording

Six subjects participated in the study as they were undergoing clinical evaluation for drug-

resistant epilepsy at North Shore University Hospital. Electrodes were implanted according 

to the clinical goal of identifying epileptogenic foci for later surgical removal, and any 

electrodes which were identified by an epileptologist as showing any sign of epileptiform 

discharges were removed from the pool of electrodes for analysis here. All iEEG recordings 

were manually inspected to ensure they were free of interictal spikes. All subjects gave 
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written informed consent to participate in this research before implantation of electrodes, 

and the research protocol was approved by the Feinstein Institute for Medical Research 

institutional review board. Subjects listened to a total of approximately 20 min of stimuli 

(described below) while recordings were taken. All recordings were acquired at 3 kHz 

sampling rate with a data acquisition module (Tucker-Davis Technologies, Alachua, FL, 

USA). The envelope of the high-gamma response was extracted with the Hilbert transform 

(Edwards et al., 2009). This was then downsampled to 100 Hz. To identify responsive 

electrodes, we performed a t-test between each electrode’s response time-point-wise over 

0.5 to 0 s immediately preceding the first speech onset compared to 0 to 0.5 s immediately 

following the first speech onset. Across all subjects, a total of 193 electrodes were identified 

for analysis, with each subject contributing at least 23 and no more than 41. Electrode 

responses were normalized based on the mean and variance of the response in a 2 min silent 

interval taken before the task.

4.2. Subject-controlled statistical tests

Since the electrodes come from 6 underlying subjects, we modified our statistical tests to 

account for this grouping factor, when applicable. For one-sample and relative t-tests which 

tested the distribution of all electrodes, we used a subject-controlled t-test under a linear 

model framework. To do this, we added one-hot-encoded subject identity features to the 

typical design matrix used to compute the t-test statistics and p-values, thus removing the 

potential effect of subject identity from distribution shifts.

4.3. Acoustic stimulus and model input spectrogram

The stimuli used in this study consisted of approximately 20 min of speech from 2 male 

and 2 female voice actors reading short stories, which was added to background noise that 

changed between four main classes: bar noise, city noise, jet noise, and a clean (empty) 

background. Noises from the same class were unique sound segments added at a 6 dB 

signal-to-noise ratio, a level chosen to ensure speech intelligibility (Bradley et al., 1999). 

These noise classes contain a diversity of spectra which allows for the analysis of adaptation 

to noises which are both very similar to (bar) and different from (jet) speech. Stimuli were 

presented from a Bose SoundLink Mini 2 speaker placed in front of the participant. The 

volume was adjusted to a comfortable listening level for the subject. The stimuli were 

segmented into 18 blocks of approximately equal length, and after each block, the subject 

was asked to repeat the last sentence they heard to check their attentiveness.

We transformed the acoustic stimuli into 23-channel Mel spectrograms at 100 Hz for 

input into both the DNN and STRF models. The Mel spectrogram was chosen because 

it produced consistently smooth STRFs for all electrodes, compared to other time-frequency 

representations, and the small number of frequency bands restricted the number of channels 

to enable a more manageable and interpretable analysis of dSTRFs.

4.4. Model training

STRF models were trained with normalized reverse correlation using STRFLab (Theunissen 

et al., 2001). We set the tolerance and sparseness parameters using cross-validation, with 

tolerance values swept between 0.01 and 0.1 and sparseness between 0 and 2.
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The DNN models were 5-layer 1D convolutional neural network (CNN) models with ReLU 

activations and a final linear projection layer. All layers used 128 kernels with a kernel size 

of 5, a stride of 1, and no padding. Only the final linear projection layer had a bias. The 

first two convolutional layers had a dilation of 1, and the remaining three layers had dilations 

of 2, 4, and 8, respectively. This produced a model with a receptive field of 65 samples, 

or 650 ms. All layers were shared across all electrodes with the final layer predicting 

all electrodes’ responses at the same time. The objective function during training was the 

mean-squared error of the predictions, averaged across electrodes. We used the RAdam 

optimizer, an exponential learning rate scheduler with a decay rate of 0.996, and weight 

decay regularization of 0.03. DNN models were trained with PyTorch (Paszke et al., 2019).

STRF and DNN models both had a receptive field of the previous 650 ms of the stimulus 

spectrogram. All models were trained using a cross-validated jackknifing procedure across 

the 18 natural division blocks (approximately 1 min each) in the auditory stimulus. Keeping 

a given division as held-out test data, the remaining 17 divisions were used as the training 

set for a jackknifing procedure where one division was withheld and a model was trained 

on the remaining 16 divisions, leading to 17 models being trained for the same test data. To 

compute the predictions for the held-out test data, the predictions of these 17 models were 

averaged.

4.5. STP model comparison

The STP model consisted of a linear-nonlinear (LN) model, followed by a short-term 

plasticity module. The LN portion we used was a 650 ms finite impulse response (FIR) 

filter followed by a double exponential static nonlinearity. The STP portion is parameterized 

by the twoparameter Tsodyks-Markram model (Espejo et al., 2019; Tsodyks et al., 1998). 

STP models were fit using the Neural Encoding Model System (David, 2018). Due to the 

extensive training time for the STP model, a single train-test split was used to compute 

correlation scores and it was compared to the DNN scores for retrained DNN models for the 

same train split. The scores for this split were representative of overall scores since the DNN 

scores were highly correlated with the cross-validated DNN scores used elsewhere in this 

paper (Pearson r = 0.94, p < 0.001).

4.6. dSTRF calculation

The dSTRF can be computed easily from a neural network with rectified linear unit 

nodes (ReLU) since these networks implement piecewise linear functions. To compute the 

dSTRF for a CNN, we begin by converting the CNN into a multilayer perceptron (MLP) 

(Keshishian et al., 2020), since it is simpler to calculate the dSTRF for an MLP. If the MLP 

uses ReLU activations and does not contain bias in its intermediate layers, the dSTRF is 

equivalent to the gradient of the output with respect to the network’s input vector (Nagamine 

and Mesgarani, 2017), which is defined as follows:

dSTRF xt = ∂yt
∂xt

= ∂yt

∂zt
l

∂zt
l

∂ℎt
l − 1

∂ℎt
l − 1

∂zt
l − 1

∂zt
l − 1

∂ℎt
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1

∂zt
1

∂zt
1
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Above, zt
l represents the weighted sum of inputs to layer l for the input xt, and ℎt

1 indicates 

the output from layer l. The weights from layer l − 1 to l is denoted by W l − 1
l . The gradient 

is simply the product of the gradients of each layer, each of which contain a weight matrix 

and node activation function. Since the network only uses ReLU activations at the nodes, the 

gradient of the activations reduces to the following:

∂ℎ( ⋅ )
∂z( ⋅ ) = 1 if z > 0

0 if z < 0

Thus, the product of the activation gradient ∂ℎ( ⋅ )
∂z( ⋅ )  and the weight matrix W l − 1

l  can be 

rewritten based on when the output is nonzero, using the indices m and n corresponding to 

nodes in layers l and l − 1, respectively:

W l − 1
l xt [m, n] = W l − 1

l [m, n] if ℎt
l[m] > 0

0 otℎerwise

And therefore, the dSTRF is simply the product of these rewritten weight matrices:

dSTRF xt = W l − 1
l W l − 2

l − 1…W Input
1

Rather than converting each CNN into an MLP and calculating this gradient manually, we 

used the automatic differentiation functionality of PyTorch (Paszke et al., 2019) to compute 

the dSTRF directly from the CNN.

In order to produce robust dSTRFs, the dSTRF for the held-out test division was computed 

by averaging over the 17 dSTRFs of the models trained in the jackknifing procedure. To 

further remove noise from the dSTRFs due to DNN training stochasticity, an additional 

sign-consistency filtering was applied so that for a given time-frequency bin at a given time 

point, if the values did not agree in sign for at least 15 of the 17 trained models, the average 

was set to zero.

4.7. Computing stimulus contrast and dSTRF gain

Stimulus contrast was defined as the standard deviation of all bins in the time-frequency 

representation of the noisy stimulus within a given 3-or 6 s segment of stimulus. These 

values were then converted to log-scale to plot in decibels.

To compute gain, dSTRFs were aligned to the start of a new noise and grouped by 

background noise condition. In order to standardize the baseline levels for dSTRF changes 

around noise transitions in Fig. 3C, only transitions to a specific type of noise which came 

from a clean background were analyzed, while transitions to clean background include 

those coming from any noise type. Gain at a single time point was defined as the standard 

deviation of the dSTRF lag-frequency filter. The gain of the excitatory region was defined as 

the standard deviation of the dSTRF filter when all negative bins were set to zero, and the 

same was done for the gain of the inhibitory region with positive bins set to zero.
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4.8. Computing dSTRF noise filtering

dSTRFs were aligned to the start of a new noise in the same way as for gain changes, 

also only including transitions between clean and noisy backgrounds, not noise-to-noise 

transitions. For each of the 3 noisy backgrounds, the average spectrum was computed 

using the Mel-spectrogram of the noise audio alone and averaging over time. For the 

clean background, the average spectrum was computed in the same way using the full task 

stimulus without any additive noise. To compute the dSTRF’s correlation with one of these 

spectrums at a given time, the dSTRF lag-frequency filter was averaged over lags and the 

Pearson correlation between this frequency spectrum and the spectrum of the new noise after 

a given transition was calculated. For the excitatory-or inhibitory-specific correlations, the 

average over lags was taken after first zeroing out all negative or positive lag-frequency bins 

in the dSTRF, respectively.

4.9. Gain change and noise filtering indices

To capture the gain change by each dSTRF in a single index, we used the test statistic from 

a paired t -test between the gain values (computed above) 0.5 to 0 s before a given transition 

and 0.65 to 1.15 s after the transition, the first time-window following the adaptation period. 

A positive test statistic indicated an increase in the gain values. Rather than measuring the 

magnitude change from pre-transition to post-adaptation, we used a test statistic from a t-test 

because it favors electrodes which adapt their receptive fields and maintain a consistent new 

gain with low gain variability. A metric like the average gain change would instead favor 

the raw magnitude of a gain change without considering the variance around the gain on 

either side of the transition, which would be more prone to noisy gain fluctuations and 

would create inherently larger gain change indices around different types of noise changes 

(clean-to-jet compared to clean-to-bar) simply depending on the stimulus gain change, not 

on the model’s concerted adaptation to it. Similarly, the noise filtering index was computed 

with the same t-test procedure but using the noise spectrum correlations instead of gain 

values. Additionally, a positive test statistic indicated the correlation decreased, meaning the 

dSTRF steered away from the new noise spectrum.

4.10. Calculating adaptation indices

The adaptation index (Khalighinejad et al., 2019) for each electrode was computed as the 

test statistic from a paired t-test between the electrode’s neural response 0–0.7 s and 2–2.7 s 

after a noise transition, with a more positive index signifying a larger drop back to baseline. 

The mean adaptation index over the 4 noise conditions for each electrode was used as its 

single average adaptation index.

4.11. Electrode localization, distance, and visualization

Electrode positions were mapped to the subject’s brain anatomy by co-registration between 

pre- and post-implant MRI using iELVis (Groppe et al., 2017), and they were identified on 

the post-implant CT scan with BioImage Suite (Papademetris et al., 2022). These electrode 

locations were then mapped to the FreeSurfer average brain (Fischl et al., 2004) and their 

3-dimensional Euclidean distance from the centroid of posteromedial HG (TE1.1) (Morosan 

et al., 2001) in this average brain was computed, since TE1.1 is a common landmark 
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for primary auditory cortex (Baumann et al., 2013; Norman-Haignere et al., 2022; Norman-

Haignere and McDermott, 2018). To visualize electrodes, electrode locations were mapped 

to the average FreeSurfer brain template, subdural electrodes were snapped to the closest 

point on the surface, and all electrodes were plotted on the inflated brain.
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Fig. 1. 
DNN modeling paradigm and performance improvement. (A) Illustration of the DNN 

modeling paradigm. Speech embedded in background noise which regularly changed was 

played to subjects while iEEG was recorded. The time-frequency representation of the 

stimulus was fed to a DNN model with a receptive field of the past 650 ms to predict 

each electrode’s neural response. T-value for responsive electrodes in both hemispheres. (B) 

Neural responses of each electrode, and those predicted by the DNN and STRF models, 

averaged over all transitions to bar noise. The bottom plot shows the average of each of 

these three models over electrodes. Responses are z-scored for the purposes of maintaining 

a consistent color scale and range for this figure. (C) Predicted response correlation of each 

electrode by the DNN compared to the STRF over the full task, colored by subject identity. 
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(D) Correlation improvement of the DNN over the STRF, computed in each noise condition 

individually. For each noise condition, improvement is further divided into the time period 

during adaptation, which is the first 650 ms after any noise change, and the remainder of 

each noise condition. Stars indicate significance level from a subject-controlled paired t-test 

showing greater improvement in the adaptation period than the remainder. (*p < 0.05, **p < 

0.01, ***p < 0.001, ****p < 0.0001).
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Fig. 2. 
Representative dSTRF frames. dSTRF frames from four electrode models responding to a 

noise transition: clean-to-bar, clean-to-jet, and clean-to-city, in order from top to bottom. 

For each electrode, its linear STRF is shown on the left. Then, the spectrum of the noise 

before the transition is plotted, followed by the dSTRF frame immediately before the change 

(where the leading lag is a single step before the new noise onset), the spectrum of the 

new noise after this transition, and the dSTRF 1 s after the noise change. The dSTRF at 

time T seconds relative to the transition is derived by inputting the stimulus spectrogram 

from time T-0.65 to T to the DNN model. The rightmost column shows the change in the 

stimulus spectrum (the difference between the new and old noise spectrums) and the change 

(from before to 1s after) in the lag-averaged dSTRFs for the given noise transition. Each 

spectrum magnitude difference is rescaled to have unit maximum absolute value so that they 

are visually comparable.
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Fig. 3. 
dSTRF gain control and spectro-temporal filter changes around noise changes. (A) (Top) 

Mean stimulus contrast across all 3/6 s segments of each noise condition type. (Bottom) 

Average dSTRF gain in each stimulus segment for each noise condition type, illustrating an 

inverse relationship with stimulus contrast. Bar heights and error bars indicate average and 

standard error over electrodes. (B) Change in dSTRF gain as a function of stimulus contrast 

change over a noise transition. Each point shows standard error bars over all electrodes 

as they undergo a given transition, colored by the noise type after the transition. (C) 

dSTRF gain over all electrodes over the time course of a transition, restricted to transitions 

from clean to noise or noise to clean (not noise to noise) in order to ensure a consistent 

baseline gain value across different to-noise transition types. Any further differences in 

pre-transition baseline values are attributable to the variability of the clean speech stimuli 

before the transition. (D) Noise filtering by dSTRFs, measured by the correlation between 

the lag-averaged dSTRF and the noise spectrum after a transition, averaged over electrodes 

and transitions but restricted to transitions from clean to noise or noise to clean (not noise 

to noise). Shaded regions indicate standard error over electrodes. Left plot shows dSTRF 

correlation with the spectrum of the new noise (or clean speech in the case of noise-to-clean 

transitions) after the transition, middle plot shows the correlation of only the excitatory 

region of the dSTRF, and right plot shows the same for only the inhibitory region.
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Fig. 4. 
Fixed effects of gain and noise filtering indices on DNN performance improvement. 

(A) Distribution of gain change and noise filtering indices over electrodes within each 

background noise class. (B) Fixed effect is shown with confidence intervals from a linear 

mixed effects model (with subject label as the random effect) predicting an electrode’s 

DNN correlation improvement over a STRF from gain change and noise filtering indices 

for each type of noise transition, along with the Pearson correlation to measure the model’s 

prediction strength in a given noise condition. Red and blue indicate positive and negative 

effects, respectively. Gray effects were not statistically significant.
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Fig. 5. 
Electrode clustering from noise filtering indices. Hierarchical clustering of electrodes based 

on noise filtering indices of excitatory and inhibitory regions to each type of noise transition, 

grouped into two main clusters. Bottom displays the noise filtering indices for each dSTRF 

region and noise condition.
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Fig. 6. 
Differences between clustered neural site groups. (A) Histogram and kernel density 

estimate over electrodes of average adaptation index across all noise transition types, with 

group 2 electrodes exhibiting significantly higher adaptation indices, with stars indicating 

significance level. (B) Average neural response to a change in background noise by each 

group of electrodes. Gray line at the top indicates the temporal region where the responses 

are significantly different (Wilcoxon ranksum test, p < 0.05). Responses from all electrodes 

are normalized to 0 on average during baseline activity (2–3 s after transition) to ensure 

the ranksum test compares only the transient responses. Shaded region indicates standard 

error over electrodes. (C) Histogram and kernel density estimate of electrode distances 

from posteromedial HG (TE1.1), with group 2 electrodes located significantly closer than 

group 1 electrodes, with stars indicating significance level. (D) Surface-mapped electrode 

locations on the inflated FreeSurfer average brain in both left and right lateral views. Most 

group 2 electrodes are clustered tightly near primary auditory cortex, especially in the left 

hemisphere, while group 1 electrodes are much more prevalent in nonprimary regions of the 

left hemisphere.
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