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ABSTRACT: Combinatorial pathway optimization is an important tool in
metabolic flux optimization. Simultaneous optimization of a large number of
pathway genes often leads to combinatorial explosions. Strain optimization is
therefore often performed using iterative design−build−test−learn (DBTL)
cycles. The aim of these cycles is to develop a product strain iteratively, every
time incorporating learning from the previous cycle. Machine learning
methods provide a potentially powerful tool to learn from data and propose
new designs for the next DBTL cycle. However, due to the lack of a
framework for consistently testing the performance of machine learning methods over multiple DBTL cycles, evaluating the
effectiveness of these methods remains a challenge. In this work, we propose a mechanistic kinetic model-based framework to test
and optimize machine learning for iterative combinatorial pathway optimization. Using this framework, we show that gradient
boosting and random forest models outperform the other tested methods in the low-data regime. We demonstrate that these
methods are robust for training set biases and experimental noise. Finally, we introduce an algorithm for recommending new designs
using machine learning model predictions. We show that when the number of strains to be built is limited, starting with a large initial
DBTL cycle is favorable over building the same number of strains for every cycle.
KEYWORDS: combinatorial pathway optimization, machine learning, DBTL cycles, metabolic engineering, automated recommendation

■ INTRODUCTION
Metabolic engineering focuses on optimizing microorganisms
through genetic interventions in metabolic pathways, intending
to increase the flux toward a product of interest.1,2 Classically,
metabolic engineering applies sequential debottlenecking of
rate-limiting steps in a pathway of interest.3,4 While this
method has shown success in many metabolic engineering
problems, fundamental limitations to this procedure exist.
Despite the vast work on characterizing metabolic networks,
there is still a substantial lack of knowledge about many
metabolic pathways, especially the regulation of individual
pathway elements and cell physiology. As a result, purely
rational engineering of pathways remains challenging.5−7 On
top of that, sequential optimization of pathways potentially
misses the global optimum configuration of pathway elements
(e.g., enzyme concentrations) that maximize the product flux.8

Recent progress in synthetic biology, genome engineering,
and high-throughput building and screening of microbial
strains now allows for targeting multiple pathway components
simultaneously, paving the way for combinatorial pathway
optimization.8 The major advantage of this approach is that
there is a reduced chance of missing the optimum pathway
configuration, and many successes have been reported for
increasing the titer/yield/rate (TYR) values of products using
this strategy.9−13 In combinatorial pathway optimization, strain

designs are constructed from a large DNA library consisting of
promoters, ribosomal binding sites, coding sequences, and
other DNA components that have an effect on enzyme
properties or concentrations. These designs are assembled and
introduced into a microorganism.14 Due to the large set of
library components, a combinatorial explosion of the design
space often occurs, making it experimentally infeasible to test
every design. Combinatorial pathway optimization is therefore
often performed in an iterative fashion using design−build−
test−learn (DBTL) cycles (Figure 1).11 The idea is to build an
initial set of strain designs and use the generated data from the
test phase to learn important characteristics of the pathway.
This information is then used to guide engineering in the next
cycle. DBTL cycles for microbial strain development are widely
adopted. Nevertheless, developing an economically feasible
bioprocess is still considered very costly and time-consuming.
Strategies on how to find the best-producing strain with as
little experimental effort as necessary remain an open question.
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Furthermore, the limited availability of public data for multiple
DBTL cycles is complicating a systematic comparison of
different strategies for their performance.15

Machine learning has been increasingly used for guiding
engineering.1 For metabolic flux optimization, this ranges from
identifying the targets for engineering through unsupervised
learning16 to predicting metabolite concentrations from
proteomics data using supervised learning.17 Another potential
application of machine learning is for recommending new
strain designs for the next DBTL cycle by learning from a small
set of experimentally probed input designs, which would allow
(semi)-automated iterative metabolic engineering.18−21 One
example is the automated recommendation tool, which uses an
ensemble of machine learning models to create a predictive
distribution, from which it samples new designs for the next
DBTL cycle given a user-specified exploration/exploitation
parameter.20 While the automated recommendation tool was
successfully applied to optimize the production of dodecanol
and tryptophan, instances where the method did not perform
well were also reported.20 This might be attributed to the
complexity of the pathways and the lack of data from more
than two DBTL cycles.20,22 More fundamentally, a framework
for the comparison of machine learning methods and
optimization strategies of the integrated DBTL workflow
over multiple iterations is lacking.
Much effort has been put into understanding and modeling

cellular metabolism.23−25 We propose to use a mechanistic
kinetic model-based framework for the optimization and
application of machine learning methods in iterative metabolic
engineering. In kinetic modeling, changes in intracellular
metabolite concentrations over time are described by ordinary
differential equations (ODEs). Each reaction flux is described
by a kinetic mechanism that can, in principle, be derived from
the laws of mass action, so that kinetic parameters can directly
be interpreted as biologically relevant quantities. This property
of kinetic models allows for in silico changes in the properties
of a pathway element, such as increasing the enzyme
concentration or changing the catalytic properties of an
enzyme.23,26,27 The ODE model is used to simulate data for
comparing the performance of machine learning methods. We
start by addressing which machine learning algorithms are
favored for this particular use case and test the effect of training

set biases and measurement noise on the predictive perform-
ance. Building on these results, a recommendation algorithm is
introduced to automate DBTL cycles. We demonstrate how
our framework can be used to optimize strain development
workflows over multiple DBTL cycles for different DBTL cycle
strategies.

■ RESULTS AND DISCUSSION
Publicly available data sets of multiple cycles are scarce due to
the costly and time-consuming nature of these experi-
ments.18,20,22,28 This complicates the validation and compar-
ison of machine learning methods as well as the comparison of
DBTL cycle strategies. For example, the validation of
recommendation algorithms requires that separate DBTL
cycles are performed for the same metabolic pathway problem.
Similarly, testing multiple DBTL cycle strategies for the same
metabolic pathway would realistically never be performed due
to the costly nature of these experiments. Simulated data offer
an advantage over real-world data as many of these practical
limitations are overcome. We will first explain how the kinetic
model-based framework was developed to represent a
metabolic pathway embedded in a model of cell physiology.

Representation of a Metabolic Pathway Using a
Kinetic Modeling Approach. To test different metabolic
pathway topologies with distinct thermodynamic properties,
we integrate a synthetic pathway into a previously established
Escherichia coli core kinetic model that was implemented in the
symbolic kinetic models in Python (SKiMpy) package.29,30

The aim of this study is not necessarily to build the best
possible kinetic model of a specific pathway. Instead, we aim to
provide a generic representation of a hypothetical pathway that
captures pathway behavior (e.g., enzyme kinetics, topology, and
rate-limiting steps) and is embedded in a physiologically
relevant cell and bioprocess model.10,20,28

A schematic representation of the pathway is shown in
Figure 2A. A degradation reaction was added as a boundary
condition, and the optimization objective is to maximize the
production of compound G. The response of the product flux
G to perturbations of the enzyme concentrations are shown as
panels along the pathway (Figure 2A). Despite the pathway
being almost linear, the influence of enzyme concentrations on
this flux is nonintuitive. For example, perturbations of enzyme

Figure 1. Design−build−test−learn (DBTL) cycle in metabolic engineering. In combinatorial pathway optimization, designs are chosen from a
large DNA library with pathway elements: promoters, RBSs, CDSs, and other elements that might influence a protein concentration or catalysis
rate. Due to the combinatorial explosion of the design space, only a small subset of these designs is built and tested experimentally (filter step).
From these experiments, important properties for engineering are ideally learned and used to design a new set of strains to be built. By iterating this
process, the pathway is optimized until the strain is industrially relevant.
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A do not lead to differences in its respective reaction flux but
do lead to a 1.5-fold increase in the product flux (Figure 2A,
lower left panel). Another example is the response to local
perturbations in enzyme B. Here, a decreasing reaction flux is
observed due to depletion of the substrate. However, no
significant effect is observed on the product flux (Figure 2A,
upper left panel). Another observation is that lowering the
enzyme concentration in the last step (reaction G) of the
pathway leads to an increase in net production (Figure 2A,
lower right panel). Thus, increasing enzyme concentrations of

the individual reactions do not lead to higher fluxes but instead
lead to a decrease in flux due to depletion of reaction
substrates. These observations stress the importance of
combinatorial optimization of pathways as sequential opti-
mization strategies might have nonintuitive outcomes.8,17,31 To
illustrate this, the combinatorial optimization of reactions A
and B is shown (Figure 2B). Note that increasing both enzyme
concentrations leads to higher product flux compared to their
individual local perturbations. We therefore conclude that the

Figure 2. Local enzyme concentration perturbations result in changes in flux. (A) Simplified schematic of the integrated pathway. The pathway is
coupled to the core metabolism through the substrates erythrose-4-phosphate (e4p) and phosphoenolpyruvate (pep), as well as the cofactors
nadph and atp. For each reaction, response in the steady-state flux through reaction G and its respective reaction is shown, where local enzyme
perturbations are performed on the range [0.125,8]. Perturbations are defined with respect to the enzyme concentrations of the initial strain (i.e.,

J E
J E

( )
( )initial

[ ]
[ ]

). (B) Example of a combinatorial design space for reactions A and B. Note that the behavior of perturbing enzymes A and B is not obvious

from the local perturbation shown in A. (C) Batch bioprocess of the initial (heterologous) strain with the implemented pathway. Although this
model was constructed for intracellular metabolism, a simple batch bioprocess can be modeled, with depletion of glucose, biomass growth, and
product formation.
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dynamics of the pathway captures the features of a typical
pathway subject to metabolic engineering well (Figure 2B).
On top of being able to represent a metabolic pathway, the

cell model should be embedded in a basic bioprocess model.
Figure 2C shows the modeling of a 1 L batch reactor
bioprocess, inoculated with 1 g of initial biomass.30 Glucose is
consumed until it is depleted and an exponential biomass
growth phase is observed. Furthermore, a product is formed in
the process. After depletion of glucose, no more biomass is
formed and the growth rate is zero. We show that this kinetic
model captures important characteristics of a batch bioprocess.
This could be extended to model other types of bioprocesses,
such as fed-batch fermentation.32 While the implemented
pathway considered here has no metabolic burden on the host,
these types of effects could be captured by explicitly modeling
the inhibitory effects of pathway intermediates on the biomass
equation (see Figure S10).7 When including these types of
interactions, as well as other types of pathways into the kinetic
model using ORACLE sampling, the physiological relevance of
the kinetic parameter sets can be easily verified.30,33

Combinatorial Pathway Optimization Strategies Can
Be Simulated and Used for Benchmarking Machine
Learning Models. Although machine learning is increasingly
being explored for combinatorial pathway optimization, it
remains unclear how to optimize the approach over multiple
DBTL cycles.1,18,20,21 For example, questions on the amount of
strains that need to be built for effective learning, the effect of
biases in the DNA library distributions on predictive
performance, and how the DBTL cycle strategy should be
set up over multiple cycles remain unsettled.
Figure 3A shows an example of a simulated metabolic

engineering scenario for 50 designs, where enzyme levels are

varied with respect to the enzyme level of the initial strain. The
effect of adjusting enzyme levels was implemented in the
model by changing the Vmax parameters (see Methods). We
assume here that the enzyme level change can be achieved with
a set of DNA elements (e.g., promoters or ribosomal binding
sites) from a predefined DNA library. Considerable effort has
been put into experimentally quantifying the promoter
strength of promoter sequences,34−36 as well as predictive
tools that guide promoter sequence engineering to achieve
desirable enzyme expression levels.37−40 While in this study,
five different enzyme levels were considered, this might not
always be attainable in real-world metabolic engineering, due
to the lack of promoters for a particular enzyme or not being
able to achieve the up-/downregulation levels considered here.
This challenge could be overcome in simulation studies by
considering lower enzyme levels or considering enzyme levels
closer to levels of the initial strain.
It can be observed from the strain designs that the highest-

producing strains have a bias in low promoter strengths for
enzyme G and tends to have upregulation of enzyme A (Figure
3A). In combinatorial pathway optimization, it generally occurs
that some pathway steps are more important to increase
product flux than others, while some have limited sensitivity.
We therefore showcase that the simulated data captures key
features of combinatorial optimization in real-world data.10,41

While in this work, only changes in enzyme levels were
considered, other enzyme properties (e.g., catalytic properties
of the reaction) could be assembled in a similar fashion. This is
especially important when the cost of expressing enzymes of a
nonnative pathway needs to be considered.
The encoded designs along with the simulated product flux

can then be used to train a model and compare based on two

Figure 3. Example of the simulation of large strain libraries. (A) Example of 50 simulated combinatorial designs, where each enzyme level was
chosen with equal probability. These levels could be achieved with a promoter from the DNA library. The distribution of the enzyme levels of each
strain design is shown below the response curve of the metabolic flux through enzyme G. (B) The design space along with the relative flux increase
can be used to train a predictive model. (C) Predicted versus simulated relative fluxes for a multiple linear regression model and a GBR, with R2

values of 0.33 and 0.68, respectively. (D) Venn diagrams of the performance of predicting the top 100 designs for the full combinatorial design
space compared to the simulated combinatorial space (279.936 designs).
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metrics (Figure 3B). These designs will be used to train
different types of models. As an example, a multiple linear
model and a nonlinear gradient-boosting regressor (GBR) are
evaluated using two metrics. The Pearson correlation (R2)
between the predicted versus simulated product flux gives a
general impression of the predictive performance of both
methods (Figure 3C). We use the intersection between the
predicted top 100 and the simulated top 100 designs as an
additional performance metric. This metric captures how well
the model has learned the best-performing strains (Figure 3D).
Together, these metrics will be used to consistently evaluate
the effect of training set sizes, sampling scenarios, and noise
models on the predictive performance of machine learning
models. Here, the predictive performance of models is only
evaluated on the flux through reaction G. When considering
other objectives, such as biomass growth or reduction of toxic
intermediate concentration in a pathway, models could also be
compared for their performance as a multi-objective
optimization problem.42 This can, for example, be done by

defining the target variables as a weighted function of the
objectives (see Figures S9, S10).

Ensemble Methods Excel in the Low-Data Regime.
Due to a large number of existing machine learning models, we
sought to filter out the best-performing algorithms from an
initial search using default parameters. Eight machine learning
models are compared for different training set sizes, where
each enzyme level was chosen with equal probability (see
Methods). The product flux was predicted for the full
combinatorial design space (Figure 4A,B).
Figure 4A shows the general performance of the machine

learning models for increasing the number of data points in the
training set. Overall, the nonlinear methods outperformed the
linear methods for all training set sizes. This could be
attributed to the observed nonlinear behavior of the pathway
(Figure 2A, all panels). The ensemble methods of random
forest and gradient-boosting trees outperform the other
methods, specifically in the regime where training set sizes
are small. This finding is consistent with a previous report that
suggests that XGBoost (a regularized gradient-boosting

Figure 4. Influence of training set size on predictive performance. Seven machine learning algorithms (two linear and five nonlinear) were tested
for their performance on two metrics: a general prediction on the combinatorial design space (R2 value), and the performance in pointing out the
top 100 best-performing strains (predicted vs simulated). (A) R2 value over the full design space for the seven algorithms with increasing training
set size (20 runs per training set size). (B) Intersection value between predicted vs simulated top 100 (averaged predictions, 20 runs per training set
size).
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algorithm) performs well when data are scarce.21 When
training sets are larger, neural networks also tend to perform
well. Due to the nature of the metabolic engineering
experiments, methods that perform well and are stable on
small training sets are preferred.
Results on the top 100 prediction metrics further support

the view that ensemble methods and neural networks
outperform other methods (Figure 4B). Neural networks
here even outperform the ensemble methods. Interestingly,
while the linear support vector machine regressor performs
poorly on the general prediction task, prediction of the top 100
designs seems to be similar to, if not better than, the ensemble
models (Figure 4B). We observed that predicting the top 100
best producers with the linear support vector machine indeed
outperformed the ensemble methods, but plateaus in its
predictive performance for very large training set sizes (see
Supporting Information Figure S1). Based on these results, we
concluded that the ensemble methods of gradient boosting and
random forest, along with linear support vector machine and
neural networks should be further investigated for their
performance.

Machine Learning Models Are Robust to Training Set
Biases and Noise. An important aspect for ensuring good
generalization of predictions to other unseen designs is that the
initially built strains are a proper representation of the
combinatorial design space. In many combinatorial pathway
optimization procedures, these first strains are often built using
a design-of-experiment approach, such as full factorial or
fractional-factorial design setups.10,43−45 Alternative to design-
of-experiment approaches, designs can be assembled in a
probabilistic fashion through the use of DNA libraries.22 Even
though this might not lead to an optimal set of designs (see
Figure S7), it allows for building many strains in a one-pot
transformation approach. However, this method potentially
introduces biases in the distribution of the assembled designs.
To understand the effect of enzyme-level distribution biases of
designs on the model performance, we determined three
scenarios: a bias for higher enzyme expression levels (strong
effect bias), a bias that has enzyme expression levels closer to
the initial strain values (mild effect bias), and a scenario where
all enzyme levels are equally represented (equal sampling)
(Figure 5A).

Figure 5. Effect of sampling biases on the predictive performance: (A) Three different sampling scenarios are defined (see Methods). The equal
sampling scenario is unbiased, while the strong effect bias and mild effect bias are biased toward certain enzyme levels. (B,C) R2 for the four best-
performing algorithms trained on 50 and 200 samples, respectively. (D,E) Top 100 prediction performance for the four best-performing algorithms
trained on 50 and 200 samples, respectively. A slightly better performance is observed for the strong effect bias sampling scenario, which can be
attributed to the fact that the strong enzyme levels with respect to the wild-type are overrepresented in the simulated top 100.
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The general prediction performance (R2) and the top 100
predictions after Bayesian hyperparameter optimization are
shown for two different training set sizes (N = 50 and N =
200) (Figure 4B−E). For the general prediction task, we do
not observe a significant difference in performance between the
three scenarios, indicating that there is only a marginal effect of
the sampling distribution on how well the design space is
learned for all algorithms (Figure 4B,C). For the top 100
prediction task, a difference is observed, as the scenario with
biases toward stronger enzyme levels tends to have higher
predictive performance (Figure 4C,D). This effect can largely
be attributed to the optimization problem that is considered
here. The top 100 simulated strains mostly consist of enzyme
levels that have a strong perturbation effect with respect to the
initial strain, which leads to a slightly better performance of the
strong ef fect bias distribution. Due to the marginal effect of the
enzyme-level distributions on the R2, we expect that this does
not generalize to other pathways.
In addition to testing the influence of enzyme-level

distribution biases, we also tested the influence of noise on

the predictive performance. A homoscedastic and hetero-
scedastic noise model was used on the measured product flux
for two different noise percentages (4 and 15%), but no
significant effect was found for the four models considered
above (Figure S2 and Tables S3 and S4).

DBTL Cycle Simulations Reveal Experimental Design
Principles That May Guide Real-World Metabolic
Engineering Experiments. While in certain cases, the
optimal design can immediately be predicted from the initial
sampling (i.e., the first DBTL cycle), other cases require
multiple DBTL cycles to increase product fluxes to a desirable
level. The challenge of effectively suggesting new strain designs
for the next DBTL cycle using machine learning remains
challenging. Several recommendation algorithms have been
introduced in the literature,19−21 among which the automated
recommendation tool (ART) stands out as a notable
example.20 While a rigorous benchmark of the different
recommendation algorithms is outside the scope of this
study, an example of how simulated DBTL cycles can be used

Figure 6. Recommending new designs based on the learned combinatorial space. For each enzyme, the frequency of each enzyme level is calculated
(promoter strength) as a function of the threshold. Then, we take the AUC of all enzyme levels and normalize. (A,C) Example of the frequency for
enzyme A when a model is trained on 200 samples. Higher enzyme levels are more frequent than the lower levels for increasing predicted
production of a strain. When taking the AUC, this is also observed in the sampling distribution of promoters for the next round. (B,C) Example of a
feature that is not considered important for the optimization problem. As the threshold increases, we do not see a certain enzyme level (promoter
strength) being favored, which can also be observed from the sampling distribution.
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for this purpose is reported in the Supporting Information (see
Figure S8).
To test the behavior of ML algorithms over multiple DBTL

cycles, we introduce a fast and model-free recommendation
algorithm to the automated recommendation. Learned from an
initial sampling scenario using any machine learning algorithm,
the predicted design space is used to generate a sampling
distribution of the enzyme levels for each enzyme (see
Methods). In short, frequencies of enzyme levels for each
enzyme are counted above a certain flux threshold (J ≥ λ*).
The frequencies of the enzyme levels in the subspace can then
be followed as a function of the threshold λ* (Figure 6). To go
from this threshold plot to a sampling distribution, the area
under the curve (AUC) is taken and normalized for the
enzyme level of the respective enzyme.
Two enzymes are shown as an example of how the sampling

distribution is generated from the learned combinatorial design
space. The GBR is trained on 200 training samples, but we
note that this recommendation algorithm is independent of the
used model. We observe from the threshold frequency plots
that enzyme A has a bias toward higher enzyme levels in the
space where the flux is high. After taking the AUC, it is
observed that the new sampling distribution captures this bias,
which means that in the next DBTL cycle, it is more likely that
the higher enzyme levels are chosen (Figure 6A,C). In
contrast, enzyme D does not seem to have any bias toward
certain enzyme levels as a function of the threshold, with the

frequencies being close to equiprobability even in the higher
flux range. This leads to an almost equal sampling distribution
for enzyme D in the next DBTL cycle (Figure 6B,C). From an
experimental perspective, the biased enzyme-level distributions
can be achieved by adjusting the DNA content in the library
transformation. DNA sequencing can then be used to confirm
whether there was a successful introduction of the intended
bias.46 Using this approach, it is now possible to completely
automate DBTL cycles and use this to test different DBTL
cycle scenarios (see Figures S3−S6).
We utilize the model-free recommendation algorithm to

evaluate the performance of DBTL cycle scenarios under
different settings. These settings may include variations in the
number of samples per round, utilization of different models,
etc. Here, we showcase three distinct DBTL cycle strategies.
For all three scenarios, only 250 strains are allowed to be built
over the course of all DBTL cycle rounds: every round
building a similar number of strains, a large set of strains in the
first cycle and then a decreasing number of strains, and starting
with only a few strains and building many strains in the later
stages (see Methods and Table 3). Every scenario is initialized
by an equal sampling scenario, as described above (see Figure
5).
Table 1 reports the performance of the three DBTL cycle

scenarios for the GBR, as this algorithm was shown to
outperform the other methods (see Table S5). For all
scenarios, we do not observe significant differences in the

Table 1. Performance of Three DBTL Cycle Scenarios for the GBRa

strategy metric cycle 1 cycle 2 cycle 3 cycle 4 cycle 5

(50,50,50,50,50) R2 0.47 ± 0.15 0.74 ± 0.07 0.81 ± 0.05 0.84 ± 0.04 0.87 ± 0.03
top 100 prediction 43.97 62.27 72.7 80.03 82.67

(150,50,25,25) R2 0.75 ± 0.07 0.82 ± 0.05 0.84 ± 0.04 0.84 ± 0.03
top 100 prediction 78.9 82.03 84.3 83.1

(25,25,50,150) R2 0.32 ± 0.19 0.58 ± 0.07 0.78 ± 0.05 0.87 ± 0.03
top 100 prediction 16.6 38.9 59.84 83.9

aFor all five cycles, the predicted top 100 and R2 are reported.

Figure 7. Overview of the pipeline used in this study. A synthetic pathway is integrated into the kinetic model to be used for ODE simulations.
From this space, we test multiple sampling scenarios and train seven models. Two different performance metrics are used for the evaluation. As the
simulation of the full design space is computationally intensive, the intermediate files of the pipeline are saved (shown in red).
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performance of the strategies after all DBTL rounds have been
performed. One interesting observation is that the scenario
with a large initial building phase already performs well on the
top 100 predictions and does not improve drastically over the
rounds. This indicates that for some metabolic engineering
problems, DBTL cycles are not necessarily required to
optimize strains as long as your initial sampling is large. In
these cases, the design of the next DBTL cycle should increase
the size of the design space. This could be extending the range
of the considered enzyme levels (e.g., by considering strong
promoters) or using other pathway elements that were not
included in the initial DNA library transformation.
To conclude, we have developed a framework for a

consistent comparison of machine learning methods over
multiple DBTL cycles. We show that the GBR outperforms
other methods in the low-data regime. After introducing a
recommendation algorithm, we show that for this metabolic
flux optimization problem, multiple DBTL cycles are not
always necessary when the first cycle has many built strains.
The developed framework is not limited to this pathway, but
can also be extended to other pathways with distinct
topologies. Furthermore, strain-building methods other than
the DNA library transformations considered here (e.g., design-
of-experiment approach) could be compared using this
framework, similar to how we tested the effect of training set
biases (Figures 5, S7).10,43−45

■ METHODS
An overview of the simulation pipeline used in this study is
shown (Figure 7). The input kinetic model with the included
synthetic pathway is constructed as described in the next
section. Enzyme names and perturbation values are used to
construct a combinatorial design list to simulate steady-state
flux rates compared with respect to the wild-type. In the first
DBTL cycle round, an initial sampling scenario is chosen to
create training sets. Noise is then added to the target value
(product flux) based on a noise model to mimic experimental/
technical noise. Next, a machine learning model is trained, and
the full combinatorial design space is predicted. The
performance is measured based on two metrics: the general
predictive performance described by the R2 and the perform-
ance in predicting the top 100 designs by comparing it to the
simulated top 100 designs. All steps were performed in Python
3.9 and all codes used in this study are available at https://
github.com/AbeelLab/simulated-dbtl.

Including Synthetic Pathways in an E. coli Core
Kinetic Model. We use a previously published kinetic model
of the core metabolism of E. coli that was reformulated to be
used in the SKiMpy package.29,30 SKiMpy is a recently
developed Python package for semi-automated generation of
kinetic models, along with a variety of tools for downstream
analysis.30 The model consists of 64 metabolites involved in 65
reactions, of which 49 metabolites have an ODE. The other
metabolites are considered constant boundary conditions and
are not directly involved in the pathway that was implemented.
We wish to include a pathway with thermodynamic

properties that is reminiscent of a biological pathway into
the core metabolism of E. coli. With this in mind, we use the
structural thermokinetic modeling framework to generate
kinetic models that are consistent with stoichiometric and
thermodynamic constraints, as well as a biomass optimization
objective often used in constraint-based models.47−49 We start
by adding a pathway to the stoichiometry of the core model

and add thermodynamic information from a provided database
to impose a flux directionality profile.48,50,51 Additional
constraints on the steady-state metabolite concentrations of
the pathway are imposed (see the Supporting Information).
Based on these constraints, the biomass objective that was
provided is optimized, and a sample of fluxes, concentrations,
and equilibrium constants is taken from the feasible solution
space. Next, from the reaction stoichiometry and thermody-
namic properties, the kinetic mechanisms were identified that
are available in SKiMpy.30 Finally, we back-calculate and
sample kinetic parameters from the fluxes, concentrations, and
kinetic mechanisms and check whether they lead to stable
behavior of the ODE system using ORACLE parameter
sampling.52 Additional details on the stoichiometry and
constraints are further provided below and in the Supporting
Information (see Table S1).

Included Synthetic Pathway. A seven-reaction pathway
that was inspired by the shikimate pathway is included, with
phosphoenolpyruvate and erythrose-4-phosphate as substrates
(Table 2).53 Metabolite G is considered as a boundary

condition that is kept constant. The optimization objective is
the maximization of the flux through reaction G. Thermody-
namic information was added from a thermodynamic database
that was included in the pyTFA package.50 Further information
on the kinetic parameters is provided in the Supporting
Information (see Table S2).

Metabolic Engineering Scenarios. The goal is to
generate synthetic metabolomics data from the previously
described kinetic model for scenarios that are realistic in
industrial metabolic engineering.10,11,22 We therefore perturb
the Vmax of a particular enzyme in the pathway, solve the initial
value problem of the ODE system until it reaches a steady
state, and calculate the relative increase/decrease of the target
flux with respect to the wild-type.

Vmax as a Proxy of Enzyme Concentration. To simplify
the combinatorial designs used in this study, the focus is on
changing the concentration of the N pathway enzymes by
changing the Vmax of the enzyme in the kinetic model. For each
enzyme, the maximum flux is given by Vmax = kcat*[E], where
kcat is the turnover rate of the substrate by the respective
enzyme and [E] is the enzyme concentration. As kcat is a

Table 2. Overview of the Properties of the Synthetic
Pathwaya

reaction name
dG (in
kJ/mol)

kinetic
mechanism

pep + e4p → A + pi reaction A −12.03 Irrev. MM
A → B reaction B −16.12 Irrev. MM
B ↔ C reaction C −8.47 Rev. MM
C + nadph ↔ D + nadp reaction D 1.10 Gen. Rev. Hill
D + atp → E + adp reaction E −6.40 Gen. Rev. Hill
pep + E ↔ F + pi reaction F 0.41 Gen. Rev. Hill
F → G + pi reaction G −11.77 Irrev. MM

aNewly included metabolites are capitalized, while the already
modeled metabolites are shown with lowercase letters. Thermody-
namic flux analysis was performed using the pyTFA package to add
additional constraints on the feasible parameter space for sampling
steady-state consistent parameter sets.50,52 The kinetic mechanisms
used are Irreversible Michaelis Menten (Irrev. MM), Reversible
Michaelis Menten (Rev. MM), and Generalized Reversible Hill (Gen.
Rev. Hill). Kinetic parameters for each reaction are reported in the
Supporting Information.
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constant for each gene variant, it follows that modulation of
the enzyme concentration by the relative gene up-/down-
regulation results in a proportional change in the Vmax (eq 1)

V Emax [ ] (1)

Combinatorial Design Scenarios. To model combina-
torial designs, two assumptions are made. First, enzyme levels
can be effectively manipulated using some combinatorial DNA
library in the range of [0.25−4]. Second, the order of strengths
for these DNA elements is known a priori. In real metabolic
engineering, this prior information could, for example, be
predicted using a promoter strength prediction algorithm.40,54

Enzyme levels are represented relative to the enzyme
concentration of the initial strain. For example, when in a
metabolic engineering process, N enzymes of a pathway are
considered, a twofold upregulation in the second enzyme and
twofold downregulation in the fourth enzyme would be
encoded as (eq 2)

Ndesign 1,2,1,0.5,1, ...,= [ ] (2)

From the combinatorial design space containing PN designs,
only a small subset can be experimentally probed. In the equal
sampling scenario, we choose each enzyme level with equal
probability and assemble the design.22 To mimic the effect of
biases in the building of strains (e.g., due to experimental
limitations), we define two alternative sampling scenarios. The
strong effect bias sampling scenario means that stronger
enzyme levels with respect to the initial strain are assigned
higher probabilities to be sampled. Conversely, the weak effect
bias sampling scenario means that we assign a higher
probability to enzyme levels closer to the initial strain enzyme
level.

Machine Learning Methods. All models are trained on
the three scenarios. The features are the enzymes, where values
indicate the enzyme level with respect to the initial strain.
Strain designs are encoded as described in the previous section
and are used as instances. The target variable is the product
flux through enzyme G. For the linear methods, we chose
elastic-net and linear support vector machine (linear SVM)
regressor. For the nonlinear models, we chose a random forest
(RF) regressor, GBR, feed-forward neural network (NN),
support vector regressor, and K-NN regressor.55

Neural networks, RF regressor, and GBR require hyper-
parameter optimization in order to prevent overfitting.
Hyperparameters were chosen by using Bayesian hyper-
parameter optimization through a fivefold cross-validation on
the training set, using 20 iterations. For this, scikit-optimize was
used.56

Model Validation. Model performance was evaluated
based on two metrics: how well machine learning methods
predict unseen designs from the full combinatorial set and the
performance in predicting the top 100 highest-producing
strains. The Pearson correlation coefficient (R2) between the
predicted versus simulated steady-state flux was used to address
the general prediction performance. For the performance in
finding the global optimum, the fluxes are predicted based on
the trained model and the set of the top 100 best-producing
predicted designs are compared to the actual top 100 best-
producing strains from the simulated combinatorial design
space (eq 3)

score top 100 top100predicted simulated= (3)

As the sampling scenarios are probabilistic in nature, we
perform the training set scenario and test set simulation 20
times to estimate the mean and variance R2.

Noise Models. Metabolic networks are inherently
stochastic, and measurement errors in determining metabolite
concentrations and reaction fluxes exist. Two different noise
percentages were chosen for testing the robustness of machine
learning models to noise. Thus, after the mutant is simulated
and compared with respect to the wild-type, noise is added by
drawing a value from a normal distribution for a homoscedastic
case and heteroscedastic case (σ = 0.04 and 0.15).

Design−Build−Test−Learn Cycles. Machine learning
models were trained on a small subset of designs that were
sampled from an initial sampling scenario, as described in the
preceding section. After training, models are used to predict
the product flux of the combinatorial design space. We
developed the following algorithm to recommend designs for
the next round based on the machine learning model
predictions.

Recommending New Designs for the Next Cycle. A
trained model is used to predict all possible combinatorial
designs which, for a pathway with N enzymes and with each
enzyme having, for example, P enzyme levels (that might be
achieved by a set of promoters), results in PN predictions. The
strain designs are sorted in ascending order by their predicted
flux. A threshold λ* is introduced, which is defined between
zero and the maximum predicted flux (0 ≤ λ* ≤ ymax). The
threshold λ* is increased from zero to ymax given a predefined
number of evaluations. At each evaluation, only combinatorial
designs where the predicted flux is higher than λ* are
considered (ypred ≥ λ*). For each enzyme, the frequency of
enzyme levels is counted and normalized by the total number
of designs where ypred ≥ λ*.
When λ* = 0, the frequency of each enzyme level is given by

p = 1/P. This is because all combinatorial strain designs have a
product flux higher than zero, and therefore, each enzyme level
is equiprobable. As λ* is increased, the statistical contribution
of each enzyme level to the remaining part of the
combinatorial design space can be followed. Promoters that
have no significant contribution to higher product flux are
expected to be underrepresented.
To transform the threshold plot to a distribution that can be

used for sampling new strain designs, the AUC for each
enzyme level is determined and normalized. This results in a
probability distribution for each considered enzyme as a
machine learning-guided way to sample new designs. Finally,
we retrain the machine learning model in the next DBTL cycle,
also including data from past cycles.22

DBTL Cycle Strategies. Three DBTL cycle strategies were
compared for the four best-performing machine learning
algorithms. For a fair comparison, at the most, 250 strains
are built over multiple cycles.
The first scenario is one where for each DBTL cycle round,

an equal amount of strains are built. The second scenario
consists of building many strains in the first cycle and then
decreasing for each round. Finally, a reversed scenario is
defined, where we start with building only few strains, and then
increase (Table 3). Each metabolic engineering experiment
consisting of five cycles is initialized by an equal sampling
scenario of enzyme levels. 15% homoscedastic noise is added
to each measurement, and each scenario is performed 30 times.
To assess the performance of the DBTL cycle strategies, the
top 100 prediction scores and R2 are reported to give a general

ACS Synthetic Biology pubs.acs.org/synthbio Research Article

https://doi.org/10.1021/acssynbio.3c00186
ACS Synth. Biol. 2023, 12, 2588−2599

2597

pubs.acs.org/synthbio?ref=pdf
https://doi.org/10.1021/acssynbio.3c00186?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


impression of the performance of each strategy. Additional
performance measures are reported in the Supporting
Information.
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