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Abstract

Protonation states of ionizable protein residues modulate many essential biological processes. 

For correct modeling and understanding of these processes, it is crucial to accurately determine 

their pKa values. Here, we present four tree-based machine learning models for protein pKa 

prediction. The four models, Random Forest, Extra Trees, eXtreme Gradient Boosting (XGBoost) 

and Light Gradient Boosting Machine (LightGBM), were trained on three experimental PDB and 

pKa datasets, two of which included a notable portion of internal residues. We observed similar 

performance among the four machine learning algorithms. The best model trained on the largest 

dataset performs 37% better than the widely used empirical pKa prediction tool PROPKA and 

15% better than published result from pKa prediction method DelPhiPKa. The overall RMSE 

for this model is 0.69, with surface and buried RMSE values being 0.56 and 0.78, respectively, 

considering six residue types (Asp, Glu, His, Lys, Cys and Tyr), and 0.63 when considering Asp, 

Glu, His and Lys only. We provide pKa predictions for proteins in human proteome from the 

AlphaFold Protein Structure Database and observed that 1% of Asp/Glu/Lys residues have highly 

shifted pKa values close to the physiological pH.
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INTRODUCTION

Ionizable residues play crucial roles in protein stability, dynamics, aggregation, binding, and 

function1,2. Hence, to correctly model proteins, it is essential to correctly determine the 

protonation states and pKa values of ionizable residues. Many computational methods for 

prediction of protein pKa values have been introduced3–34. They can be categorized into 

continuum electrostatic, empirical, molecular dynamics based, hybrid quantum mechanics/

molecular mechanics based, and machine learning based. We will discuss them in more 

detail later in the Introduction. But pKa calculations are often challenging, due to many 

inherent factors, including the sensitivity of pKa values to local environment, coupling 

between conformational and protonation changes, and interactions among ionizable groups.

It is particularly challenging to determine the pKa values of ionizable residues found in 

protein interiors. These residues are sequestered from water, which, in itself alone, favors a 

pKa shift towards the neutral form. However, internal residues can be exposed to polarity or 

charges from other ionizable residues. Presence of additional ionizable residues in vicinity 

of an ionizable group can shift a pKa value towards both the neutral or charged states, 

depending on the nature of the group and geometric factors. Furthermore, upon change in 

protonation states of internal ionizable groups, proteins can exhibit conformational changes 

which are sometimes small and localized, but sometimes large and global. Conformational 

changes in turn can influence the pKa values, making the determination of pKa values even 

more challenging. This coupling between protonation/deprotonation and conformational 

changes is often exploited for function in many biological processes35–40. Engineered 

internal ionizable residues in variants of Staphylococcal nuclease (SNase) have been 

studied in the past two decades to catalog both structures and pKa values41–49. For such 

residues, conformational rearrangements have been shown to be important for their pKa 

values47,50–55. In addition, these residues were used as targets in the first blind pKa 

prediction contest, pKa Cooperative, and found challenging for many methodologies2,56.

Various computational methods have been developed for this challenging task of calculating 

protein pKa values, mainly in two major categories, macroscopic and microscopic. The 

former ones generally involve less computational cost than the latter ones. Continuum 
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electrostatic (CE) methods, belonging to the class of macroscopic methods, rely on 

descriptions of electrostatic potentials, which could be calculated through Poisson-

Boltzmann equation3,4,15,26,29,57 or generalized Born model30,31. In CE methods, a single 

value of dielectric constant is usually assumed for describing the dielectric response of a 

protein. However, a single dielectric constant may not be sufficient, because the dielectric 

response depends on local polarity and protein flexibility58,59. This is particularly important 

for internal groups, because the potential structural reorganization could lead to a different 

local value of the dielectric constant.

The performance of CE methods depends heavily on the choice of the dielectric constant 

and usually, the value of 4 is invoked for proteins. However, the experimental pKa value 

of a buried residue L38K in SNase could not be reproduced by CE methods unless the 

dielectric constant of protein was chosen to be artificially high47. Additionally, for more 

buried mutant residues of SNase, it was shown that higher than usual dielectric constant 

values improved the pKa prediction accuracy60. This is consistent with molecular dynamics 

simulations, which showed that some variants of SNase with buried residues displayed 

large conformational changes and water penetration could also play a role61–63. Recently 

a Gaussian-based smooth dielectric function has been introduced into Poisson-Boltzmann 

equation in some CE methods64,65. This method is an improvement over traditional Poisson-

Boltzmann-equation-based methods because it treats proteins as inhomogeneous objects 

and assigns low values of the dielectric function in highly packed protein interiors and 

high values in protein cavities and protein surfaces66,67. However, the hyperparameters of 

the smooth dielectric function, reference dielectric constant for protein and the Gaussian 

variance, still need to be optimized. CE methods usually utilize only a single protein 

structure and do not consider conformational changes. A variant of CE, multi-conformation 

continuum electrostatic (MCCE) method addresses this issue by simultaneously calculating 

the protonation states and conformation for side chains60,68–71. While MCCE method 

embraces side chain rotamers, it still cannot deal with the possible structural reorganization 

of the protein backbone.

Another class of macroscopic methods, empirical methods, are based on energy functions 

parametrized against protein residues with known experimental pKa values5,6,32–34. Among 

these empirical methods, PROPKA is the most widely used one5,6, owing to its high speed 

and good accuracy. However, the residues used for parameterization are mainly near the 

protein surface and have pKa values close to the model compound values56. Therefore, 

empirical methods are unlikely to predict large pKa shifts and thus may be only good at 

residues with small perturbation but not in extreme cases56. However, PROPKA showed 

the same quality of predictions as the other non-empirical methods in the pKa Cooperative 

contest where the pKa values of buried engineered residues were predicted2,56.

Microscopic methods model proteins in great details, e.g., by molecular dynamics (MD) 

simulations with classical force fields7–14,16–20 or hybrid quantum mechanics/molecular 

mechanics (QM/MM) simulations21–25. QM/MM simulations describe electrostatic energies 

more accurately, which is important for predicting pKa values. However, they are 

computationally much more expensive, and thus sampling is a problem. Consequently, 

classical MD simulations are more widely employed for protein pKa calculations. Free 
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energy perturbation method7,8 calculates free energy difference between two protonation 

states of a single residue, and the pKa value of this residue is derived from the difference. 

Constant-pH MD methods9–14,16–20 simulate systems at constant pH and allow changing 

of protonation states of multiple groups during conformational evolution. Solvents can be 

modeled implicitly9,16,72–74, explicitly13,17,75–80 or in a hybrid manner19,81. The benefit of 

MD based methods is that they incorporate conformational changes coupled to protonation 

states. However, accurate sampling of conformational relaxation in response to changes 

in protonation state is in some cases challenging, when conformational changes occur on 

timescale of milliseconds, as is the case for some SNase variants11,12,20,81–91.

In recent years, machine learning (ML) techniques have been applied to many scientific 

topics, including predictions of pKa values for non-protein molecules92–98 and of protein-

ligand binding affinity99–103. These topics are similar to pKa predictions because they both 

rely on predictions of free energy differences. Cai and coworkers reported a deep learning 

based pKa predictor, DeepKa, trained on data generated by constant pH simulations27. 

Reis and coworkers also reported a deep learning based pKa predictor, pKAI, which was 

trained on pKa values calculated by a continuum electrostatics method104. Another protein 

pKa prediction paper from Gokcan and Isayev introduced a new empirical scheme based 

on deep representation learning that was trained on experimental pKa data28. We chose 

to use the prevalent tree-based ML models in this work, because of their robustness and 

well-known good performance on various tasks. We noticed that support vector machine and 

cascade deep forest could perform well on small datasets105,106. However, we chose not to 

use support vector machine, because it can only perform classification but not regression 

and thus are not suitable for the task of predicting continuous pKa values. We did not use 

cascade deep forest because it was not available in the package we used (scikit-learn)107, 

and it is a relatively lesser-known model than XGBoost and LightGBM. In addition, the 

method has been mainly used for classification.

Here, we present four tree-based ML models trained with the PKAD database containing 

experimental pKa values108 and additional pKa data on SNase from Dr. Bertrand Garcia-

Moreno’s lab42,43,49. The latter dataset comprises engineered internal ionizable residues 

with highly shifted pKa values which are usually harder to predict computationally. To 

assess the performance of our models rigorously, we test our models and report their 

performances on large test sets, each of which comprises more than 200 residues with 

diverse residue types, burial extent, and proteins. To gain physical insights from the ML 

models, we evaluate feature importance and determine the features causing large pKa shifts. 

We also apply one of our best models to residues in the selectivity filter of a sodium channel 

exhibiting highly shifted pKa values, and to all ionizable residues in proteins from human 

proteome category of the AlphaFold Protein Structure Database.

METHODS

Dataset

We used the PKAD database containing the experimental protein pKa measurements108. 

PKAD includes pKa values for 1350 residues in 157 wildtype proteins and for 232 residues 

in 45 mutant proteins. Nine of the mutants, however, do not have their own PDB structures 

Chen et al. Page 4

J Chem Theory Comput. Author manuscript; available in PMC 2023 September 20.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



reported, and were thus not used as our input. Some entries in PKAD were not included 

in our datasets, because of one or more of the following reasons: the protein does not 

have existing PDB structure (as mentioned above); the residue is not captured in the PDB 

structure, so that structural features cannot be obtained; the pKa value is not a number, but 

a range, e.g., “<5”; we only consider the ionizable sidechains of Asp, Glu, His, Lys, Cys 

and Tyr residues (note that, there are no pKa entries for Arg residues in PKAD). Finally, 

1189 entries for wildtype proteins and 79 entries for mutant proteins were included in our 

datasets.

In addition to PKAD, 23 pKa entries for SNase variants (13 for Asp and 10 for Glu) with 

existing PDB structures were included42,43,49. These residues all have a relative solvent 

accessible surface area (%SASA) less than 10. Note that, 68 out of a total of 79 entries in 

the PKAD mutant part are also for SNase variants. Among the 68 entries, 58 of them have a 

%SASA value less than 50, and 29 of them have a %SASA value less than 10.

We organized three datasets from this data: entries from PKAD wildtype proteins (1189 

entries, denoted as “WT” in the following text), entries from PKAD wildtype and mutant 

proteins (1268 entries, denoted as “WT+MT” in the following text), and all entries (PKAD 

and additional SNase data, 1291 entries, denoted as “WT+MT+aSN” in the following text).

Three datasets were separately split into training and test sets with a ratio of 80:20 

(also 4:1). The random splitting was performed by the train_test_split method of 

sklearn.model_selection. The distributions of pKa values in each of the three training 

sets are shown in Figure S1. After splitting, we removed from each of the test sets a 

few entries which were measured for residues also included in the corresponding training 

set, or which are duplicates of other entries in the same test set. Specifically, 1 His 

residue was removed from the test set of “WT” dataset, 1 Glu and 3 His residues 

were removed from “WT+MT” test set, and 1 Glu, 2 His and 1 Tyr residues were 

removed from “WT+MT+aSN” test set. The resulted test sets contain 237, 250 and 255 

entries, respectively, for “WT”, “WT+MT” and “WT+MT+aSN” datasets. All datasets are 

attached in Supporting Information and available at https://github.com/adajhu/Protein-pKa-

prediction-by-tree-based-machine-learning to facilitate the re-usage by the community.

Features

The target values to predict are the experimental pKa values taken from PKAD or additional 

SNase data. For each residue, a total of 47 features were generated for trainings, including 

residue name, B factor, %SASA, numbers of hydrogen bonds, numbers of polar or nonpolar 

heavy atoms within certain distances of the target residue, and numbers of likely positively 

or negatively charged or likely neutral ionizable residues within certain distances of the 

target residue. Definitions of the two types of distances are explained further below. The 

residue name was encoded by a one-hot encoding scheme. As there are six ionizable 

amino acid residue types, i.e., Asp, Glu, His, Lys, Cys and Tyr, the residue name was thus 

represented as a six-dimensional one-hot encoding vector. The B factor of the beta carbon 

(CB) atom of each target residue was taken from its PDB file. Except for residue name and 

B factor, the other features were calculated based on the PDB structures.
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Before calculating these features, PDB structures were sanitized using PDBFixer109 by 

adding missing atoms and replacing non-standard residues with their standard equivalents. 

Also, there are two proteins (PDB ID: 1EH6 and 1NFN), each of which has a missing 

segment near the target residues. We modeled the missing parts for them by CHARMM-

GUI. Based on these sanitized PDB structures, we calculated the following features. We 

calculated %SASA for each residue by NACCESS110. The %SASA is defined to be the 

percentage ratio of SASA of that residue in the protein versus SASA in an ALA-X-ALA 

tripeptide, so in some cases the %SASA values are greater than 100. We counted the 

numbers of hydrogen bonds involving sidechains and backbones separately, using two 

methods, PROPKA5 (called “method 1” in Table 1) and the method “baker_hubbard” in 

Python package MDTraj111 (called “method 2” in Table 1). This provided us with 4 features 

related to hydrogen bond numbers.

The next 20 features are the numbers of heavy atoms, polar or nonpolar, within a series 

of distances (2 Å, 4 Å, …, 20 Å) of the CB atom of a target residue, counted by Python 

scripts utilizing the Biopython package112. The last 15 features are the numbers of ionizable 

residues (likely positively charged, likely negatively charged or likely neutral), within certain 

distances (4 Å, 6 Å, …, 12 Å) of the target residue. The distance is defined to be the distance 

between centers of the charge. We categorized ionizable residues according to their most 

likely charge states at physiological pH based on their model compound pKa values. The 

center of charge was defined to be atom CZ for Arg, atom CG for Asp, atom SG for Cys, 

atom CD for Glu, atom CE1 for His, atom NZ for Lys and atom OH for Tyr. All features are 

summarized in Table 1.

Model setup

We trained four tree-based regressors: Random Forest (RF), Extra Trees (ExTr), eXtreme 

Gradient Boosting (XGBoost) and Light Gradient Boosting Machine (LightGBM). We 

used the RF and ExTr regressors implementations of the scikit-learn library107. We 

used the LightGBM and XGBoost regressors adopted from the LightGBM113 and 

XGBoost114 package, respectively. All following calculations/operations were performed 

with random_state=209 to be reproducible. The hyperparameter tuning was performed using 

Optuna115 on the training set (80% of the whole dataset). The hyperparameters being tuned 

and their ranges are listed in Table S1. During the tuning, the average of root mean squared 

error (RMSE) from 5-fold cross validation was minimized, and the regressors were always 

instantiated with a random state of 209 to be reproducible. We use the RMSE of test set to 

assess the quality of models. The workflow of this study is shown in Figure 1.

RESULTS

Model performance

All four ML models we trained outperform the null model and PROPKA in terms of 

predicting pKa values of all, exposed, and buried residues regardless of the dataset 

used (Figure 2A and Table 2A). The four ML models are showing similar prediction 

accuracy. Their overall RMSEs’ standard deviation is only 4%, 5% and 3% of the average, 

respectively with the “WT”, “WT+MT” and “WT+MT+aSN” datasets. Thus, we believe 
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that there is no significant difference in performance between the four ML models for pKa 

prediction.

When the average RMSE values of the four ML models are compared with PROPKA’s 

RMSEs, the ML models exhibit a large performance boost compared to PROPKA. The 

overall RMSE decreases by 41%, 32% and 35% respectively for the three datasets. It is 

remarkable that the ML models have largely enhanced performance for the buried groups 

(%SASA < 50), while not sacrificing and even improving the performance for the surface 

groups (%SASA > 50). The RMSE of buried residues decreased by 42%, 35% and 41% 

respectively for the three datasets than that of PROPKA.

It is also noticeable that, PROPKA failed to improve the null model for the “WT” and 

“WT+MT” datasets. After a closer examination, we noticed that PROPKA yields highly 

inaccurate predictions for buried Cys and Tyr residues. Thus, we show the RMSEs only for 

the Asp, Glu, His and Lys (denoted as DEHK RMSEs in the following text) in Figure 2B 

and Table 2B. PROPKA shows more accurate predictions than the null model for Asp, Glu, 

His and Lys. When only these four ionizable residues are considered, the overall RMSEs 

and the RMSEs for buried residues of our ML models are again both largely decreased by 

more than or equal to 30% than those of PROPKA. The RMSEs for surface residues are also 

decreased by 22% on average.

Table 2A is showing that the best ML model among the ones trained on the largest dataset 

(“WT+MT+aSN”) is XGBoost. We will denote this model as XGB-WMa model in the 

following text. We compare the RMSEs for individual residue type of this model with those 

of the null model and PROPKA in Table 3. We will also show the applications of the 

XGB-WMa model to proteins outside of our datasets in the following sections of Results. 

Table 3 shows that the XGB-WMa model largely outperforms the null model and PROPKA 

for Asp, Glu, His, Lys and Cys residues separately. For Tyr residues, the XGB-WMa model 

performs very similarly to PROPKA, but worse than the null model. Note that, sample sizes 

of Cys and Tyr residues are too small to draw meaningful conclusions.

Feature importance ranking

The feature importance is illustrated in Figure 3 and Figure S2. Figure 3 shows that the 

feature importance rankings of RF, ExTr and XGBoost are more or less similar to each other. 

In contrast, LightGBM has a very different pattern. We will discuss possible reasons for this 

in the Discussions section.

For RF, ExTr and XGBoost models, “Negative_4” is identified as the most important feature 

corresponding to the number of negatively charged ionizable residues within 4 Å of the 

target residue. The “Positive_4”, the number of positively charged ionizable residues within 

4 Å of the target residue, is also ranked as the top 4 feature. The high importance of 

“Negative_4” and “Positive_4” demonstrates that the presence of other ionizable groups 

nearby have large influence on the pKa values of the target residue. The other three features 

in the top 5 are “Polar_4”, “NonPolar_4” and “NonPolar_12” corresponding to the number 

of polar/non-polar/non-polar atoms within 4/4/12 Å of the target residue, respectively.
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LightGBM model identified a different set of important features. The top 1 feature for the 

other three models, “Negative_4”, is only ranked 37 in LightGBM out of 41 non-residue-

type features, whereas the most important feature for LightGBM is %SASA. The second 

most important feature for LightGBM is B factor (shown in Figure S2), which describes 

the uncertainty of the atomic positions. However, the other three models rank B factor only 

31 on average. Interestingly, despite the difference in the ranking of the features, the four 

models have similar performances.

Application of the XGB-WMa model to an ion channel

The pKa value of Glu residues in the selectivity filter of a bacterial voltage-gated sodium 

channel, NavMs, has been determined by us through free energy simulations to be 6.4116. 

The pKa value for a structurally similar sodium channel, NaChBac, was estimated to be 

7.6 based on experiments117. This NavMs channel is a tetramer with four repeating chains. 

Each chain includes a Glu residue sitting in the selectivity filter, as shown in Figure 4. These 

Glu residues are deeply buried (%SASA = 4.4) and very close to each other, with 7.5 Å 

between the Cδ atoms of the two Glu residues in adjacent chains. The large extent of burial 

and the electrostatic interaction between the Glu residues are likely the reasons why their 

calculated pKa values are much higher than Glu’s normal pKa in water. We note that our 

previous simulations118 also showed a dependence of pKa values on the number of ions in 

the selectivity filter, but in equilibrated simulations the number of ions is between 1 and 2. 

Below we wish to demonstrate the ability of the XGB-WMa model to reproduce the highly 

shifted pKa value, and potential pitfalls of these sort of predictions.

First, we used the raw PDB file of 5HVX, including only one chain, and input it into the 

XGB-WMa model. The pKa value was predicted to be 4.1, far away from the pKa calculated 

from explicit solvent simulations, and from experiments on similar proteins. This is likely 

because the Glu will be exposed to water and not surrounded by other ionizable groups (the 

other three Glu residues) with only one chain (shown as magenta in Figure 4). Because of 

this incorrect information on the Glu’s local environment, the ML model predicts unshifted 

pKa value. Later, we predicted the pKa values with the manually assembled functional form 

of the sodium channel, i.e., a tetramer (shown in Figure 4). The predicted pKa value was 

then 6.2, showing a large shift from the Glu’s usual pKa value, which is also very close to 

the previous value (6.4) calculated by free energy methods. This example demonstrates a 

potential pitfall when applying pKa predictions on many structures. In addition to adding the 

missing atoms or residues, namely the structures of multimers need to be constructed from 

the PDBs containing single subunits.

In this model, membrane lipids are not included, which may cause errors of pKa predictions 

for ionizable groups that are in contact with lipids. However, there are few ionizable groups 

pointing to lipid tails because of their hydrophobic environment. Regarding ionizable groups 

close to lipid heads, errors of predicted pKa values will exist. We plan to address this in our 

future work.
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Application of the XGB-WMa model to AlphaFold structures

AlphaFold is a deep learning system which predicts a protein structure based on its 

amino acid sequence119. It has shown its great accuracy comparable to experiments119. 

Recently, DeepMind released the AlphaFold-predicted protein structures120. We performed 

pKa predictions using the XGB-WMa model on all the released structures from the human 

proteome. These results can be viewed as predictions which could be tested by future 

experiments. Our model is capable of making predictions for six ionizable residue types, 

Asp, Glu, His, Lys, Cys and Tyr. However, we cannot predict pKa values for Arg, because 

there is no experimental pKa data for Arg in the pKa database we used. The results of 

the pKa predictions are attached in Supporting Information and also available at https://

github.com/adajhu/Protein-pKa-prediction-by-tree-based-machine-learning.

Figure 5 is showing the distributions of the predicted pKa values for Asp, Glu, His and Lys. 

26% of Asp residues and 39% of Glu residues are predicted to have pKa values higher than 

their model compound pKa values, 4.0 and 4.3, respectively. For His and Lys residues, 57% 

and 45% are predicted to have lower pKa values than their model compound pKa values, 6.4 

and 10.5, respectively. All four residue types show a notable portion with largely shifted pKa 

values. Specifically, 1% of Asp and Glu residues have pKa greater than 6, and 8% of His 

residues have pKa less than 5, and 1% of Lys residues have pKa less than 8.

To understand which factors are driving the pKa shifts, we plot feature distributions for all 

residues and the residues with large pKa shifts in Figure S3. We notice that the residues with 

shifted pKa values are all buried, as evidenced by low %SASA. To demonstrate this clearer, 

we show the %SASA panels also in Figure 6 in addition to Figure S3. For Asp, Glu and Lys 

residues, the residues with shifted pKa values also have large B factors and large numbers of 

polar/non-polar atoms within a greater-than-6 radius of the target residue. Predictions using 

the LightGBM model exhibit similar distributions of pKa values and features, despite the 

large difference in feature importance.

Here, we examine one randomly chosen protein example for each of the shifted Asp, 

Glu, His and Lys residue types. In all four examples, the target residues are all buried 

and surrounded by other ionizable residues. Figure 7A shows D445 in chain A from 

AF-Q96PB7-F1-model_v1.pdb, which is a structure of protein Noelin-3, a neuronal 

olfactomedin. D445 is highly buried (%SASA = 8.5) and surrounded by two other 

carboxylic groups, D348 and E396. Its pKa value is shifted to 6.5. Low %SASA and 

presence of additional carboxylic residues next to a carboxylic residue can shift up the pKa 

value of a carboxylic group. Figure 7B shows residue E82 in chain A from AF-Q9Y6E0-

F1-model_v1.pdb which is a structure of serine/threonine-protein kinase 24. E82 is buried 

with a %SASA value of 5.5. It is surrounded by two ionizable residues, K65 and D174. 

Its pKa value was predicted to be 7.1. Figure 7C shows H114 in chain A from AF-Q99675-

F1-model_v1.pdb, which is a structure of “cell growth regulator with RING finger domain 

protein 1”. H114 is also highly buried (%SASA = 0.0), which might be the major reason 

of having a decreased pKa value of 4.5. In addition, the positively charged R119 is close 

to it, which could also contribute to the pKa decrease. Figure 7D shows K88 residue in 

chain A from AF-M5A8F1-F1-model_v1.pdb (a structure of protein suppressyn), which also 

has a large pKa shift (pKa = 7.4). Like the above residues, K88 is also deeply buried with 
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%SASA being 4.7 and surrounded by other titratable residues. It has two glutamic acids 

(E46 and E77) and four cysteine residues (C44, C79, C47 and C111) around it. One pair of 

cysteines is likely involved in a disulfide bond, while that is likely not the case for the other 

pair. At physiological pH, according to the predicted pKa values of the cysteines, two of the 

cysteines could protonate/deprotonate, and this could affect the pKa value of K88.

DISCUSSION

In this work, we utilize four tree-based ML models trained on three datasets separately to 

predict pKa values of protein ionizable residues. All four ML models show similar RMSE 

values and largely outperform the null model and PROPKA with the same test dataset. 

Specifically, the XGB-WMa model shows the best test set RMSE of 0.69 among models 

trained on the largest dataset. Evaluated on the same test set, the RMSE values for the null 

model and PROPKA are 1.25 and 1.10, respectively. Thus, our XGB-WMa model performs 

45% and 37% better than these two methods, respectively. In terms of RMSEs for individual 

residue types, the XGB-WMa model again largely outperforms the null model and PROPKA 

for Asp, Glu, His and Lys residues, while sample sizes for Cys and Tyr residues are too 

small to draw any meaningful conclusions.

The RMSE values are summarized in Table 4, which also shows RMSE values for five other 

pKa predictors: DelPhiPKa, a popular continuum electrostatic pKa prediction method122; 

PypKa, a python module calculating pKa values by continuum electrostatic method57; 

DeepKa, a deep learning based pKa predictor trained on pKa values derived from continuous 

constant pH simulations27; pKAI, a deep learning model trained on pKa values calculated 

by PypKa104; and a pKa predictor based on deep representation learning and trained on 

experimental pKa values, which we will refer to as DRL28. Because DelPhiPKa and DeepKa 

only predict the pKa values of Asp, Glu, His and Lys (DEHK) residues, and PypKa and 

DRL only predict for Asp, Glu, His, Lys and Tyr (DEHK+Y) residues, we also show 

DEHK and “DEHK+Y” RMSE values in Table 4. The DEHK RMSE of the XGB-WMa 

model is 0.63. Considering DEHK RMSEs, similarly to overall RMSEs, our XGB-WMa 

model performs 48% and 36% better than the null model and PROPKA, respectively. This 

surpassing is also true in terms of “DEHK+Y” RMSE values. Our XGB-WMa model 

also performs better than the other five pKa predictors: its DEHK RMSE is lower than 

DelPhiPKa’s and DeepKa’s by 15% and 40%, respectively; its “DEHK+Y” RMSE is lower 

than PypKa’s and DRL’s by 21% and 19%, respectively; and its all-residue RMSE is lower 

than pKAI’s by 30%. The RMSE values for the last five methods were evaluated on their 

own test sets, which are different from the test set used for XGB-WMa. A comparison of 

RMSE values evaluated on different test sets may be less significant. We compare our results 

to DelPhiPKa published results122, obtained for the subsets of our datasets where predictions 

were available in the reference. Even though DelPhiPKa predictions are overall better than 

PROPKA, we compare our model with PROPKA throughout this paper, because there was 

complete availability of PROPKA predictions for our test sets.

We have shown in the Results section that our models have greatly enhanced performance 

for buried residues while also improving the performance for surface groups. Table 5 is 

showing DEHK RMSE values separately for surface and buried residues, for our XGB-
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WMa model, the null model, PROPKA and DelPhiPKa. Our XGB-WMa model outperforms 

the null model by 23% and 55% in terms of surface and buried RMSEs, respectively. 

Similarly, the XGB-WMa model outperforms PROPKA by 15% and 43% on surface and 

buried RMSEs, respectively. While the surface RMSEs are very similar between XGB-WMa 

and DelPhiPKa, the buried RMSE of XGB-WMa is again much smaller, 26%, than that of 

DelPhiPKa. Comparisons to these three models clearly demonstrate that the boost in overall 

performance is mainly coming from the big improvement for buried groups, whose pKa 

values are often lacking in experimental datasets. This stresses the importance of generating 

more experimental pKa data on internal residues.

We show that the feature ranking pattern of LightGBM is very different from those of 

the other three models (Figure 3). RF, ExTr and XGBoost all identified “Negative_4” as 

the most important feature. However, this feature ranks only 37 out of 41 in LightGBM. 

In addition, the top two features of LightGBM, “%SASA” and “B_factor”, have average 

rankings of only 11 and 31, respectively, in the other three models.

We speculate that this big difference of feature ranking may be caused by the different tree 

growth strategies adopted, which is one of the major differences between LightGBM and 

the other three models. LightGBM grows trees leaf-wise, while the other three models grow 

trees level-wise. In level-wise tree growth strategy, every node in the same level gets split 

into child nodes in the additional lower level, so trees are always symmetric. In contrast, 

leaf-wise strategy grows asymmetric trees, because it only splits the leaf with maximum loss 

reduction and does not split the other leaves. A leaf-wise strategy tends to overfit for small 

datasets, but excel in large datasets. In this work, the datasets are rather small, but there is no 

significant difference between the performances of the level-wise and leaf-wise models.

The low importance of B-factor is perhaps surprising, and the reasons are not clear. This 

warrants further work, along with exploring protein flexibility. One possibility is that the 

effect of B-factor is already accounted in other more important features. Another possibility 

is that the choice of using the B-factors of CB atoms is suboptimal.

As shown in the pKa prediction results for the ion channel, our XGB-WMa model could 

give incorrect predictions when the input structure is not a biological assembly and thus 

does not reflect the real local environment for residues on chain-to-chain interfaces, but 

XGB-WMa model works better when applied to a functional and correct form of the 

protein. Thus, users need to input the correct biological assembly into our models to 

obtain the most accurate pKa predictions. Unfortunately, the current protein structures from 

AlphaFold are all monomers. Consequently, the predicted pKa values for the residues on 

chain-to-chain interfaces are likely to be less accurate. DeepMind posted a preprint recently 

about predicting structures for protein multimers123. In the future, we will re-investigate the 

pKa predictions when they release the predicted structures for multimers.

We have shown that, in AlphaFold human proteome proteins, 1% of Asp and Glu residues 

exhibit pKa values greater than 6, 8% of His residues smaller than 5, and 1% of Lys residues 

smaller than 8. These residues are all buried, with average %SASA being 3, 4, 4 and 6, 

respectively, for Asp, Glu, His and Lys residues. These residues with shifted pKa values may 
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play important functional roles in proteins. This is particularly true for residues with pKa 

values close to the physiological pH of 7.4. This implies that such residues can easily change 

their protonation states at the physiological pH, which may further lead to conformational 

changes of the protein. Changes in both the protonation state and conformations can be 

harnessed for function, e.g., during proton transfer, like in cytochrome c oxidase, a Na+/H+ 

antiporter and a CLC transporter exchanging Cl−/H+ 124–126, or during electron transfer, like 

in an iron-containing superoxide dismutase127.

To validate our pKa predictions on AlphaFold structures, we compared our predictions with 

experimental pKa measurements for NUPR1128 which does not have available experimental 

structures. Our pKa predictions based on the protein’s AlphaFold structure (AF-O60356-F1-

model_v1.pdb) exhibit a RMSE of 0.33 with respect to experimental values.

One potential disadvantage of our models is that only a single static structure is considered 

for pKa prediction. Especially for internal residues, their protonation and deprotonation 

can be coupled with protein’s conformational changes. Thus, it would be beneficial to 

incorporate the structural reorganization of protein into the prediction. However, that is far 

from simple because conformational changes of these residues can in some cases occur on 

millisecond timescale52, which is still inaccessible to technique such as MD simulations, 

and particularly constant pH calculations. However, on the other hand, it is possible that 

potential conformational changes may already be encoded implicitly into the parameters of 

ML models, especially when properly trained.

Some of SNase variants have shown large pKa value shifts, as well as conformational 

changes in response to ionization of internal groups, and have already been used as a 

challenging test set in the blind prediction for pKa Cooperative. To test how our methods 

performed on predicting just the SNase variants pKa values, we tested how our models 

trained on “WT” and “WT+MT” training sets performed on a test set containing only 

the 23 additional entries for SNase variants (“aSN” dataset). Our results show that the 

models trained on “WT” training set display an average RMSE of 2.75, while the models 

trained on “WT+MT” training set, which includes some SNase variants pKa entries, show 

a markedly improved average RMSE of 1.72 (Table S2). In comparison, some methods 

in the pKa Cooperative contest in 2011 reported the following RMSE values: 4.10 for 

a method based on Poisson–Boltzmann solver129, 4.3 and 3.14 for two hybrid methods 

utilizing MCCE130,131. A constant pH method using implicit solvent displayed an average 

unsigned error of 1.510. Later in 2015, DelPhi reported a RMSE of about 1.6 for the pKa 

Cooperative dataset, while using a Gaussian variance optimized for this dataset60. However, 

results of the pKa Cooperative cannot be directly compared to our results, since the dataset 

used in the pKa Cooperative included only 66% of residues which are greater than 50% 

buried60, while in our test set (“aSN”) 100% of residues have %SASA less than 10. The 

pKa values of those highly buried residues are the hardest to predict, thus our results are 

quite good for such a challenging dataset. The fact that our models trained on “WT+MT” 

dataset performed much better than those trained on “WT” dataset underscores the need for 

generating more experimental data on highly buried residues, which can then be used for 

more accurate pKa predictions.
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Though ML models presented here already achieve great performance compared to other 

pKa predictors, there are still some improvements we can carry out in the future. First, there 

are only about one thousand experimental pKa values with available protein 3D structures. 

The small number of data points limits the possibility of employing neural networks, as 

such techniques could easily overfit. More pKa measurements and/or protein structure 

determinations would largely accelerate the development of pKa prediction. Second, more 

features could be added, especially more detailed features, e.g., graph representation 

describing atomic information of the target residue and its adjacent residues. Also, more ML 

algorithms could be explored, e.g., graph neural networks132 or 3D point cloud models133, 

and comparisons to the tree-based models could be made. Lastly, after DeepMind releases 

the multimer structures in the future, we could apply our models to the multimers, which 

should lead to more accurate pKa predictions for the residues on interfaces between chains.

SUMMARY

Protonation states of ionizable protein residues modulate many essential biological 

processes. For correct modeling and understanding of these processes, it is crucial to 

accurately determine their pKa values. In this work, we report four types of tree-based 

machine learning pKa predictors trained on experimental pKa values and protein PDB 

structures. We show that our models outperform all the protein pKa predictors the authors 

are currently aware of, in terms of both all-residue RMSE and RMSE values of Asp, Glu, 

His and Lys. Particularly, our best model trained on the largest dataset, XGB-WMa, exhibits 

an all-residue RMSE 37% smaller than that of PROPKA, while evaluated on an identical test 

set.

We also show that, the boost in our performance mainly arises from the large enhancement 

of prediction for buried residues. Application of the XGB-WMa model to residues with 

highly shifted pKa values in the selectivity filter of a sodium channel shows a great match 

with our previous pKa calculation by free energy perturbation, but only when the protein is 

properly modeled as a multimer. We also applied the XGB-WMa model to proteins in the 

human proteome from the AlphaFold Protein Structure Database and observed 1% of Asp 

and Glu residues with pKa values greater than 6, and 1% of Lys residues with pKa values 

less than 8. This suggests that 1% of Asp/Glu/Lys residues may be possibly functionally 

important, because of potential protonation state changes at physiological pH.
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Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Workflow of this study.
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Figure 2. 
Comparison of different models’ performance which is evaluated on (A) all ionizable 

residue types (Asp, Glu, His, Lys, Cys and Tyr) or (B) DEHK types (Asp, Glu, His and Lys). 

Surface groups are those with %SASA greater than 50, and buried groups have %SASA less 

than 50.
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Figure 3. 
Feature importance ranking excluding the ones representing residue type, averaged over the 

three datasets. The top 20 most important features for RF, ExTr and XGBoost are shown 

here, and the rest of features are shown in Figure S2. The features are sorted by the average 

ranking averaged only over RF, ExTr and XGBoost models. The number in each cell is the 

ranking, and the darker the cell color is, the more important the feature is.
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Figure 4. 
Structure of the sodium channel (PDB: 5HVX), shown in (A) top view and (B) side view. 

One of the chains is colored magenta, and the other three are colored grey. The sidechain 

heavy atoms of Glu residues being predicted are shown in spheres.
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Figure 5. 
Distributions of pKa values of Asp, Glu, His and Lys residues in proteins in human 

proteome from the AlphaFold Protein Structure Database. A log scale is used for the y-axes.
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Figure 6. 
Distributions of %SASA of Asp, Glu, His and Lys residues in proteins in human proteome 

from the AlphaFold Protein Structure Database. Grey shaded area represents distributions 

for all residues, and red for residues with large pKa shifts (Asp: pKa > 6, Glu: pKa > 6, His: 

pKa < 5, Lys: pKa < 8). A log scale is used for the y-axes.
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Figure 7. 
Four example residues with large pKa shifts. In each panel, the right figure shows the 

residue’s location within the protein, and the left shows its local environment. In left figures 

of each panel, ionizable residues are colorful while the others are grey; the target residues 

are shown by VMD’s “VDW” drawing method (atoms as spheres) and the surrounding 

residues are shown by VMD’s “Licorice” drawing method (atoms as spheres and bonds as 

cylinders)121.
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Table 1.

Features used and their descriptions.

Feature Name Description of Feature

ResName_XXX “XXX” will be the three-letter code for each residue type, e.g., ASP; this feature contains a value of 0 or 1, meaning “not 
this type” or “is this type”, respectively

B_factor B factor of CB atom of the target residue

%SASA Percentage ratio of SASA in the protein to that in an ALA-X-ALA tripeptide

#_HB_SC_m1
#_HB_BB_m1
#_HB_SC_m2
#_HB_BB_m2

Number of hydrogen bonds (HB) involving sidechains (SC) or backbones (BB), measured by method 1 (m1) or method 2 
(m2)

Polar_2
Polar_4
:
:
Polar_20

Number of polar heavy atoms within a radius of the target residue’s CB atom. The radius used is shown after the 
underscore symbol and ranges from 2 Å to 20 Å with a spacing of 2 Å.

NonPolar_2
NonPolar_4
:
:
NonPolar_20

Number of non-polar heavy atoms within a radius of the target residue’s CB atom. The radius used is shown after the 
underscore symbol and ranges from 2 Å to 20 Å with a spacing of 2 Å.

Positive_4
Positive_6
:
:
Positive_12

Number of likely positively charged ionizable residues (Arg, His, Lys) within a radius of the target residue, based on 
distance between centers of charge. The radius used is shown after the underscore symbol and ranges from 4 Å to 12 Å 
with a spacing of 2 Å.

Negative_4
Negative_6
:
:
Negative_12

Number of likely negatively charged ionizable residues (Asp, Glu) within a radius of the target residue, based on distance 
between centers of charge. The radius used is shown after the underscore symbol and ranges from 4 Å to 12 Å with a 
spacing of 2 Å.

Neutral_4
Neutral_6
:
:
Neutral_12

Number of likely neutral ionizable residues (Cys, Tyr) within a radius of the target residue, based on distance between 
centers of charge. The radius used is shown after the underscore symbol and ranges from 4 Å to 12 Å with a spacing of 2 
Å.
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Table 2.

RMSEs evaluated on test set.

  A. All residue types

Dataset Residue
Type

Null
Model PROPKA* Random

Forest
Extra
Trees XGBoost LightGBM Avg†

1 - Avg/
PROPKA

[%]

WT

All 1.10 1.17 0.73 0.69 0.69 0.67 0.70 41

Surface 0.72 0.67 0.47 0.43 0.44 0.43 0.44 34

Buried 1.36 1.50 0.92 0.88 0.86 0.84 0.88 42

WT
+MT

All 1.24 1.25 0.89 0.81 0.81 0.88 0.85 32

Surface 0.75 0.64 0.54 0.51 0.51 0.53 0.52 18

Buried 1.54 1.60 1.11 0.99 0.99 1.09 1.05 35

WT
+MT
+aSN

All 1.25 1.10 0.72 0.71 0.69 0.74 0.72 35

Surface 0.71 0.66 0.57 0.61 0.56 0.56 0.58 13

Buried 1.58 1.37 0.83 0.78 0.78 0.86 0.81 41

  B. Asp, Glu, His and Lys

Dataset Residue 
Type

Null 
Model PROPKA* Random 

Forest
Extra 
Trees XGBoost LightGBM Avg† 1 - Avg/

PROPKA [%]

WT

All 0.98 0.91 0.66 0.61 0.63 0.59 0.62 32

Surface 0.72 0.67 0.47 0.43 0.44 0.43 0.44 34

Buried 1.18 1.10 0.81 0.75 0.78 0.71 0.76 31

WT
+MT

All 1.12 0.94 0.66 0.69 0.64 0.64 0.66 30

Surface 0.75 0.62 0.51 0.49 0.50 0.50 0.50 19

Buried 1.37 1.15 0.77 0.84 0.75 0.75 0.78 32

WT
+MT
+aSN

All 1.21 0.98 0.67 0.69 0.63 0.69 0.67 32

Surface 0.71 0.65 0.56 0.60 0.55 0.56 0.57 13

Buried 1.52 1.21 0.76 0.76 0.69 0.79 0.75 38

Surface groups are those with %SASA greater than 50, and buried groups have %SASA less than 50.

*
PROPKA is not capable of processing several residues in test sets: in “WT”, 3 Asp, 1 Glu, 1 Lys and 1 Cys residues, out of a total of 237 residues; 

in “WT+MT”, one of each of Asp, Glu, Lys and Cys residues, out of a total of 250 residues; in “WT+MT+aSN”, 2 Asp, 1 Glu, 1 Lys and 1 Cys 
residues, out of a total of 255 residues.

†
“Avg” means the average over the four ML models.
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Table 3.

RMSE for each residue type evaluated on the test set of the “WT+MT+aSN” dataset.

Asp Glu His Lys Cys Tyr

Number of residues in training set 317 373 185 125 17 15

Number of residues in test set 86 78 51 31 2 7

RMSE

Null Model 1.24 0.88 1.29 1.63 4.25 0.86

PROPKA* 0.81 0.82 1.41 0.95 7.74 1.06

XGB-WMa 0.61 0.5 0.74 0.76 2.79 1.07

Percentage difference between PROPKA and XGB-WMa −25% −39% −48% −20% −64% 1%

*
PROPKA is not capable of processing several residues in this test set: 2 Asp, 1 Glu, 1 Lys and 1 Cys residues, out of a total of 255 residues.
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Table 4.

Test set RMSE values for several pKa predictors.

Method
RMSE 

for all

RMSE 
for DEHK+Y residues

RMSE 
for DEHK residues

XGB-WMa 0.69 0.65 0.63

Null Model† 1.25 1.20 1.21

PROPKA† 1.10 0.98 0.98

DelPhiPKa* \ \ 0.74

PypKa* \ 0.82 \

DeepKa* \ \ 1.05

pKAI* 0.98 \ \

DRL* \ 0.80 0.79

†
Evaluated on the test set of “WT+MT+aSN” dataset.

*
Evaluated on their own test sets containing experimental pKa data, different from the test set used in this work.
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Table 5.

DEHK RMSE values for surface and buried residues.

All Surface Buried

XGB-WMa 0.63 0.55 0.69

Null Model† 1.21 0.71 1.52

PROPKA† 0.98 0.65 1.21

DelPhiPKa* 0.74 0.53 0.93

†
Evaluated on the test set of “WT+MT+aSN” dataset.

*
Evaluated on its own test set, different from the test set used in this work.
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