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Abstract
Tubulinopathies encompass neurodevelopmental disorders caused by mutations in genes encoding for different isotypes of 
α- and β-tubulins, the structural components of microtubules. Less frequently, mutations in tubulins may underlie neurode-
generative disorders. In the present study, we report two families, one with 11 affected individuals and the other with a single 
patient, carrying a novel, likely pathogenic, variant (p. Glu415Lys) in the TUBA4A gene (NM_006000). The phenotype, not 
previously described, is that of spastic ataxia. Our findings widen the phenotypic and genetic manifestations of TUBA4A 
variants and add a new type of spastic ataxia to be taken into consideration in the differential diagnosis.
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Introduction

Tubulinopathies encompass a wide overlapping range of 
brain malformations caused by pathogenic variants of 
genes encoding for different isotypes of tubulin. Alpha- and 
β-tubulins are the major components of microtubules, key 
cytoskeletal components of neurons, where they are essential 
for cell division, polarity, and intracellular trafficking [1]. 
Mutations in genes encoding for tubulin subunits (TUBA1A, 
TUBB2B, TUBB3, TUBB2A, TUBB5, and TUBG1) have 
been associated with a broad spectrum of neurodevelop-
mental disorders, usually transmitted in an autosomal domi-
nant manner and mostly characterized by non-progressive 

complex brain malformations. More than 95% of patients 
diagnosed with a tubulinopathy have a de novo pathogenic 
variant [2]. Although tubulinopathies usually include neu-
rodevelopmental disorders, mutations in TUBB2A [3] and 
TUBA4A [4] may also underlie neurodegenerative disorders.

TUBA4A encodes for α-tubulin, which polymerizes with 
β-tubulin to form the microtubule cytoskeleton. Twelve non-
synonymous variants in TUBA4A and four changes leading 
to premature truncation were identified in about 1% of famil-
ial amyotrophic lateral sclerosis (ALS), and 0.4% of sporadic 
ALS patients [4–6]. Since there is no evidence of TUBA4A 
variants co-segregating with ALS in the affected families, 
a causal effect of TUBA4A in the disease is insufficiently 
demonstrated, according to Nguyen [7]. Although ALS is 
the predominant phenotype in TUBA4A mutation carriers, a 
few cases were diagnosed with cognitive problems or fron-
totemporal dementia (FTD) with or without ALS [4; 6; 8–9], 
and one case showed nigropathy with parkinsonism without 
ALS [10].

In this paper, we present a multigenerational family with 
11 affected individuals and an unrelated sporadic case, all 
with an unreported phenotype characterized by cerebel-
lar and pyramidal signs associated with a novel missense 
mutation falling in the C-terminal domain of the α-tubulin 
subunit.
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Patients and methods

Family 1 (F1) is from southern Italy and belongs to a 
series of 116 families with dominant ataxias present in the 
University of Naples “Federico II” Ataxia Center database. 
Family 2 (F2) is from a European research project inves-
tigating 340 kindreds with hereditary ataxias and spas-
tic paraplegias by WES/WGS, collected from the IRCCS 
Stella Maris in Pisa. F1 includes 11 affected members in 
three generations, while a single patient is present in F2 
(Fig. 1A). AF examined all patients from F1, and IR exam-
ined the F2 patient. All patients were evaluated according 
to the Scale for Assessment and Rating of Ataxia (SARA: 
score 0 = normal; 40 = most severe ataxia) [11]. Stages 
were defined according to the Inherited Ataxia Progres-
sion Scale (IAPS: Stage 1, asymptomatic patient; Stage 2, 
independent walking; Stage 3, loss of independent walk-
ing; Stage 4, wheelchair bound) [12].

Brain MRI was performed in all patients belonging to 
generation II and III, and in four patients in generation IV 
in F1 (IV-1; IV-3; IV-4; IV-5), and in the patient from F2. 
Electromyography (EMG; F1: II-2; IV-4; F2: II-1), periph-
eral nerve conduction study (PNCS; F1: II-2; III-2; III-4; 
IV-4; IV-5; F2: II-1), motor evoked potentials (MEP; F1: 
II-2; III-2; III-4; IV-4; IV-5; F2: II-1), somatosensory evoked 
potentials (SSEP; F1: II-2; III-2; III-4; III-6; IV-5), brain-
stem auditory evoked potentials (BAEP; F1: II-3; III-2; III3; 
III-6) and visual evoked potentials (VEP F1: II-3; III-2; III3; 
III-6) were performed in selected patients. Cognitive func-
tion was evaluated clinically in all individuals and using the 
mini-mental state examination (MMSE) in four patients (F1: 
III-4; III-6; IV-4; IV-5).

Molecular analyses

Blood samples were obtained after informed consent 
from all affected individuals in both families, from three 
unaffected individuals in F1 (II-3; II-4; IV-2), and from 

Fig. 1  A Pedigrees of Families 1 and 2. B In silico evaluations of 
the missense variant p.Glu415Lys identified in the two families. 
Data suggest that the mutation is harmful to normal protein func-
tion. TUBA4A protein modeling of the novel mutation was carried 
out using the HOPE webserver (https:// www3. cmbi. umcn. nl/ hope/), 
which analyzes structural effects of missense mutations retrieving 
information related to the amino acid sequence and a calculation of 
the three-dimensional protein structure (using modeling webtools as 
in [21]). The side chains of wild-type and mutated residues are in 

dark gray and are also represented as sticks alongside the surrounding 
residues, which are involved in any type of interaction. Calculation of 
differential stabilizing energy using the AlphaFold Protein Structure 
Database (https:// alpha fold. ebi. ac. uk) shows that the replacement of 
lysine for glutamic acid at residue 415 likely leads to a destabilizing 
effect. C Patient IV.5, age 29 years: Coronal T2-weighted MRI show-
ing hyperintensity of the dentate (white arrow) and possible enlarge-
ment of the interfolial spaces in the crus I–II

https://www3.cmbi.umcn.nl/hope/
https://alphafold.ebi.ac.uk
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the unaffected parents of the proband in F2. Pathological 
expansions of CAG repeats in SCA1-3, SCA6-7, SCA12, 
and SCA17, of ATTCT in SCA10, and of GAA in SCA27B 
genes were excluded in index cases of the two families.

Family 1

Affected members from F1 (II-2; III-2; III-4; IV-4; IV-5; 
IV-6; IV-7; IV-8) were analyzed by whole exome sequencing 
(WES). For library preparation of single samples, we used 
SureSelect QXT Clinical Research exome v2 and Human 
All Exon V7 kits compatible with Illumina platform version 
F0, August 2020 (Agilent Technologies, Santa Clara, CA, 
USA) following the manufacturer’s instructions. Enriched 
DNA was validated and quantified using a High Sensitiv-
ity DNA kit and TapeStation Analysis Software v3.2 (Agi-
lent Technologies). The libraries were sequenced using a 
NovaSeq6000 system (Illumina, San Diego, CA, USA) by 
performing paired-end runs covering at least 2X150 nt. The 
generated sequences were analyzed using an in-house pipe-
line designed to automate the analysis workflow, as previ-
ously described [13]. Variant filtering was carried out by 
selecting from the database non-synonymous single nucleo-
tide variations (SNVs) and insertions-deletions (indels), with 
a minor allele frequency (MAF) < 1%. Successive variant 
filtering was performed based on the absence of selected 
SNVs and indels in unrelated database samples and on the 
conservation of both types of variations, leading to a final 
selection of rare, possibly causative, variations. The tran-
script NM_006000 (TUBA4A) was used for variant annota-
tion. Other routinely used in silico tools such as Varsome 30, 
PolyPhen-2 31, and SIFT 32 were also exploited to classify 
the variants. GnomAD and dbSNPs databases were used to 
assess population frequency.

Sanger sequencing

Direct Sanger sequencing using specific primers was per-
formed with a BigDye v3.1 sequencing kit (Applied Biosys-
tems, Waltham, MA, USA) on a 3500xl Genetic Analyzer 
(Applied Biosystems).

The sequence primers used to validate the TUBA4A vari-
ant in family 1 were TUBA4A_ E415K: Forward 5’- GAG 
ATC ACC AAT GCC TGC TTTG -3’, TUBA4A_ E415K; 
Reverse 5’-ACT CAG AGG GAA CAA GAA ACCG-3’.

Family 2

An NGS panel including 285 genes responsible for ataxia 
and another panel of 142 genes associated with ALS and 
spastic paraplegia had been run, prior to this study, in 
F2:II-1 as described elsewhere [14]. Family trios and Sanger 

sequencing segregation studies were performed as previ-
ously described [15].

Results

Family 1

The mean age at onset ± SD was 21.6 ± 6.5 years (11–30). 
The mean disease duration was 13.0 ± 11.8 (0–34). One 
patient was wheelchair bound at the age of 54 years after 
29 years of disease. Three further patients needed support 
at a mean age of 40.0 ± 3.0 after 12.0 ± 2.6 years of dis-
ease. The remaining patients walked independently. The 
mean SARA score was 9.4 ± 8.3, and SARA progression 
(defined as the difference between SARA last  visit-SARA 
first visit/years of  follow-up) was 0.7 ± 0.3 (in nine patients, 
for whom follow-up was available). The median IAPS stage 
was 2 (1–4).

Gait disturbance was a constant sign at the onset. Nystag-
mus, saccadic smooth pursuit, increased knee jerks, lower 
limb tonus, and Babinski signs were constant. Dysmetria, 
lower limb weakness, and bladder disturbances were fre-
quent. Decreased vibration sense was present in some 
patients. Cognition and behavior were always normal. Dys-
phagia, fasciculations, cramps, and extrapyramidal features 
were absent, although tremor was present in one individ-
ual (Table 1). Four tested patients had mean ± SD MMSE 
29.2 ± 0.5. Brain MRI showed slight cerebellar atrophy in 
seven cases and was normal in one with a short disease 
duration. Dentate nuclei hyperintensities in T2-weighted 
sequences were present in the five patients belonging to 
generations III and IV that were available for re-evaluation 
(Fig. 1C). EMG, performed in two patients from F1 with 
disease duration of 11 and 33 years, was normal. PNCS, 
performed in five patients, showed slight sensory and motor 
abnormalities in two (IV-4; IV-5). MEP and SSEP were 
always abnormal with higher involvement at lower limbs. 
In contrast, VEP and BAEP were always normal.

Family 2

The patient is a 45 year-old woman born to healthy, non-
consanguineous parents. Family history was negative for 
neurological disorders. Motor development was delayed 
with independent walking achieved at 24 months; she was 
always clumsy. The patient graduated from high school 
and attended one year of postgraduate school (14 years 
of education). Spasticity became evident at 15  years. 
She lost independent walking by the age of 30 years. She 
was treated with botulin toxin and underwent elonga-
tion of Achilles’ tendons. The neurological examination 
is reported in Table 1. The cognitive assessment showed 
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marked dysexecutive syndrome. Brain MRI showed 
questionable upper vermis atrophy. PNCS, performed at 
40 years, showed an axonal sensory-motor neuropathy and 
EMG signs of chronic denervation without signs of acute 
denervation at the lower limbs. MEP were abnormal in the 
upper and lower limbs.

Molecular analyses

Family 1

WES, variant analysis, and prioritization were performed 
on eight affected members in F1. Variants predicted to 

Table 1  Clinical features

SARA  (Scale for Assessment and Rating Ataxia [11]) progression:SARA last visit-SARA first visit/ follow-up yrs; IAPS (Inherited Ataxia Pro-
gression Scale [12]); DD disease duration; DMD delayed motor development; BSP broken smooth pursuit; DYS dysexecutive syndrome; NP  not 
performed; NA  not assessable;–  absent/normal; severity =  + to +++ ; tendon reflexes ++  = clonus; bladder symptoms +++  = incontinence; 
PNCS  peripheral nerve conduction study; EMG electromyography; MEP motor evoked potentials; SSEP somatosensory evoked potentials; BAEP 
brainstem evoked potentials; VEP visual evoked potentials

Family 1 Family 2

Patient II-2 III-2 III-4 III-6 IV-1 IV-3 IV-4 IV-5 IV-6 IV-7 IV-8 II-1

Sex F F F F M M M M M M M F
Age at onset (years) 26 30 26 28 22 15 11 12 25 24 19 DMD
DD (years) 34 12 29 18 6 7 21 17 0 0 0 NA
IAPS stage 4 3 3,5 3,5 2 2 2 2 1 1 1 3
SARA score 24 13 21 18 5 2 6 7 5 2 0 19
SARA progression 0,7 1,0 0,7 1 0,8 0,3 0,3 0,4 NA NA NA 0.5
DD to walking aids (years) NA 10 11 15 – – – – – – – 15
DD to wheelchair (years) 29 – – – – – – – – – – –
Gait  +++  ++  ++  ++  +  +  +  +  +  +  +  ++ 
Nystagmus  +  +  +  +  +  +  +  +  +  +  +  + 
BSP  +  +  +  +  +  +  +  +  +  +  +  + 
Slow saccades  + – – – – – – – – – – –
Dysarthria  +  +  +  +  + –  +  +  +  + –  + 
Dysmetria  +  +  +  +  + – – –  + – –  ± 
Dysphagia – – – – – – – – – – –  ± 
Brisk knee jerks  +  +  +  +  ++  ++  ++  ++  +  +  +  + 
Ankle clonus  +  +  +  +  + –  +  ++ –  ++  ++ –
Upper limb increased tonus – – – – – – – – –  + – –
Lower limb increased tonus  +  +  +  +  +  +  +  +  +  +  +  + 
Lower limb weakness  +  +  +  + – – –  + – – –  + 
Babinski signs  +  +  +  +  +  +  +  +  +  +  +  + 
Fasciculations/cramps – – – – – – – – – – – –
Decreased vibration  ±  + – – – – – –  + – –  + 
Bladder  +++  +  +  ++ – – –  + – – – –
Cognitive – – – – – – – – – – – DYS
Behav/psy – – – – – – – – – – – –
MMSE NP 29 29 NP NP 30 29 NP NP NP NP
Cerebellar atrophy at MRI  ±  +  +  +  + -  ±  ± NP NP NP  + 
PNCS  ± – – NP NP NP  ±  ± NP NP NP  + 
EMG – NP NP NP NP NP – NP NP NP NP  + 
MEP NP  +  +  + NP NP  +  + NP NP NP  + 
SSEP  +  +  +  +  + NP NP  +  + NP NP NP NP
BAEP – – – – NP NP NP NP NP NP NP NP
VEP – – – – NP NP NP NP NP NP NP NP
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be deleterious were prioritized based on the functional 
relevance of genes, taking into account X-linked, auto-
somal dominant, and autosomal recessive inheritance 
models, allowing the identification of a missense variant 
(c.1243G > A; p.Glu415Lys) in TUBA4A as the only strong 
candidate. Sanger sequencing validated this variant in all 
the WES patients and in three further affected individuals. 
The three unaffected family members available for analysis 
did not carry the variant. The novel p.Glu415Lys variant is 
not present in gnomAD database and is classified as likely 
pathogenic according to the American College of Medical 
Genetics (ACMG) guidelines [16]. The mutation is delete-
rious (CADD PHRED score 24.4; Revel score 0.82) and 
involved a residue highly conserved through evolution from 
human to zebrafish localized in the conserved tubulin C-ter-
minal protein domain (IPR023123). Using freely available 
tools to assess the impact of missense variants in protein 
stability and assembly [17], we showed that the p.Glu415Lys 
variant had a likely destabilizing effect (ΔΔG − 0.61) on 
α-tubulin stability (Fig. 1B).

Family 2

Trio-WES showed a heterozygous variant (c.1243G > A; 
p.Glu415Lys) in TUBA4A in the index patient. Analysis 
of parental DNA showed that the variant is de novo. False 
paternity was excluded by WES (data not shown).

Discussion

In the present study, we report two families carrying a 
novel heterozygous missense mutation, p.Glu415Lys, in 
the TUBA4A gene, resulting in a previously unreported 
progressive neurological disorder characterized by signs of 
impairment of upper motor neuron and cerebellum. Brain 
MRI showed slight or absent cerebellar atrophy. The clinical 
picture is different from previous phenotypes associated with 
TUBA4A mutations that encompass motor neuron disease 
with signs of first and second motor neurons (ALS-like), 
FTD or non-specific dementia with or without ALS, and 
parkinsonism without ALS in one case [4–6, 8–10]. The 
p.Glu415Lys mutation caused clinical and laboratory signs 
of impairment only of the upper motor neuron in F1. The 
signs of isolated chronic denervation at EMG (not typical for 
ALS), the delayed motor development (suggesting an earlier 
onset), and the marked dysexecutive syndrome differenti-
ate the F2 patient from F1 affected members. Notably, the 
presence of cerebellar impairment has not been previously 
associated with TUBA4A variants. Cerebellar involvement 
appears to be modest at an early stage and mainly consists 
of abnormal ocular movements (nystagmus, broken smooth 
pursuit), and sometimes dysarthria.

A correlation between genotype and phenotype has 
been proposed with mutations localized in C-terminus 
being linked to ALS phenotype and variants localized in 
N-terminus associated with FTD [8]. In our case, the novel 
mutation localized in the C-terminus domain is associated 
with a spastic ataxia phenotype. The mechanism by which 
p.Glu415Lys leads to these clinical manifestations is unclear. 
It might be related to the inability of mutant TUBA4A to 
form microtubules by impacting on α/β-tubulin dimeriza-
tion. Alternatively, mutant TUBA4A could affect motor kine-
sin domains. A similar mechanism has been proposed for 
the p.Asp417Asn variant in the neuron-specific β-tubulin 
TUBB2A, also leading to spastic ataxia [3]. However, we 
cannot exclude that additional and as yet unidentified vari-
ants in inherited ataxia or spastic paraplegia genes may 
modify the clinical presentation.

Thus, the p.Glu415Lys variant in TUBA4A extends the 
list of spastic ataxias that encompass both dominant (polyQ 
and non-polyQ spinocerebellar ataxias; SCAs) or recessive 
forms (Table 2) [18, 19]. In polyQ SCAs, the presence of a 
pyramidal syndrome is linked to the size of the CAG repeat 
expansion [20]. This frequent co-occurrence of ataxia and 
spasticity may be driven by the shared vulnerability of cor-
ticospinal tracts and cerebellar circuits.
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