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Abstract
Summary  It remains unclear whether the relationship between type 2 diabetes mellitus (T2DM) and bone mineral density 
(BMD) reflects causality in East Asian populations. Herein, a Mendelian randomization study conducted in East Asian 
population enhances the current clinical cognition that T2DM is not associated with reduction in BMD.
Purpose  A Mendelian randomization (MR) approach was utilized to investigate the relationship between type 2 diabetes 
mellitus (T2DM) and bone mineral density (BMD) in East Asian populations.
Methods  Genome-wide association study summary data from BioBank Japan were used to identify genetic variants strongly 
related to T2DM risk (36,614 cases and 155,150 controls) and osteoporosis (7788 cases and 204,665 controls). Heel BMD 
GWAS data of 1260 East Asian people from ieu open gwas project was considered as a second outcome. Inverse variance-
weighted (IVW) analysis was mainly applied; MR-Egger and the weighted median were also used to obtain robust estimates. 
A series of sensitivity analyses including Cochran’s Q test, MR-Egger regression, and leave-one-out analysis were used to 
detect pleiotropy or heterogeneity.
Results  In the main analysis, IVW estimates indicated that T2DM significantly associated with the risk of osteoporosis 
(odds ratio = 0.92, 95% CI: 0.86–0.99, p = 0.016) and with higher BMD (OR: 1.25, 95% CI: 1.06–1.46, p = 6.49 × 10−3). 
Results of comprehensive sensitivity analysis were consistent with the main causality estimate. Horizontal pleiotropy and 
heterogeneity were absent in our MR study.
Conclusions  T2DM is not associated with reduction in BMD in terms of genetic polymorphism in East Asian populations.
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Introduction

Osteoporosis is a metabolic bone disease characterized by 
loss of bone mass, damage to the microstructure of bone tis-
sue, and a decline in bone quality, ultimately giving rise to 
increased bone fragility and the risk of fracture [1]. Approx-
imately 50% of women and 20% of men are expected to 
have an osteoporotic fracture in their lifetime [2]. Owing to 
population aging, osteoporosis has become a serious public 
health problem. Among all osteoporotic fractures, hip frac-
tures consistently account for the highest morbidity, mortal-
ity, and cost. By 2050, it is estimated that approximately 4.5 
million to 6.26 million cases of osteoporotic hip fracture 
will occur worldwide, half of which will occur in Asia [3, 
4]. In Asian, up to one in four patients who sustain a hip 
fracture die within a year and 6–8% of hip fracture patients 
will suffer second fracture within 2 years [5, 6]. Osteoporotic 
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fractures are associated with higher rate of hospitalization 
and disability, decline in physical and cognitive function, 
and significant medical burden—projected to increase to 
47.4 billion in 2030 [7]. Together, these outcomes impose a 
heavy social and economic burden on society.

In recent years, researchers have widely acknowledged the 
link between type 2 diabetes mellitus (T2DM) and osteopo-
rosis. A meta-analysis conducted by Ma. LL et al. included 
15 observational studies (3437 diabetics and 19,139 con-
trols) with conflicting results, and concluded that people 
with T2DM had higher bone mineral density (BMD) than 
those without T2DM, regardless of the measured bone site, 
sex, age, body mass index (BMI), or medication use [8]. 
Observational studies conducted in China have also shown 
that T2DM was associated with the value of BMD [9–11]. 
However, Majima et al. found decreased BMD in the distal 
radius but not in the lumbar spine or femoral neck among 
145 Japanese patients with T2DM [12]. In China, Chen et al. 
found that older men with T2DM are at greater risk of low 
BMD than those without T2DM [13]. These results might 
be owing to limitations such as small study samples, incon-
sistent measurement location of BMD, and confounding 
factors, such as metabolic diseases like hypertension and 
hyperlipidemia.

Mendelian randomization (MR) is a genetic epidemiolog-
ical method that can uncover causal relationships between 
one or more genetic variations related to health outcomes, 
typically single-nucleotide polymorphisms (SNPs) and 
exposure factors [14]. MR studies have advantages over 
traditional observational epidemiological studies. First, 
confounding factors can be mitigated by the random assort-
ment of alleles owing to Mendel’s Second Law [15]. Sec-
ond, reverse causality can be avoided, with alleles randomly 
assigned to offspring and therefore unlikely to be interfered 
with by confounders; genotypes are not affected by dis-
ease, which also avoids reverse causality bias [16]. Third, 
because of the high accuracy of gene variation sequencing, 
regression dilution bias caused by measurement error can 
be avoided [15].

Results of the National Osteoporosis Risk Assessment 
have shown that Asian populations have a significantly 
increased likelihood of osteoporosis compared with white 
populations [17]. Several ethnicity phenotyping studies 
have provided a more detailed understanding of ethnic dis-
tinctions in the pathophysiology, prevalence, and clinical 
and health care system factors of T2DM and osteoporosis 
[18–22]. Ethnic disparities may be related to genetic risk 
factors, but further study is necessary. Ahmad et al. used 
MR to study the effects of T2DM on BMD in the European 
population, but there are no relevant reports in Asian popu-
lations [23]. Initially, we utilized genome-wide association 
study (GWAS) summary data on osteoporosis to investigate 
the relationship between osteoporosis and T2DM. However, 

in the Japanese cohort, the diagnosis of osteoporosis was 
dependent on physicians’ diagnoses at cooperating hospi-
tals, rather than bone mineral density (BMD) measurements. 
Consequently, we attempted to confirm our findings by using 
GWAS data on heel BMD from the East Asian population. 
In this study, we aimed to provide a clinical reference for 
early prevention of osteoporosis and reduction of osteoporo-
tic fracture complications.

Methods

GWAS data sources

We obtained GWAS summary data for both T2DM and 
osteoporosis from BioBank Japan (BBJ). GWAS sum-
mary data of T2DM were obtained from a meta-analysis of 
36,614 cases and 155,150 controls with Japanese ancestry 
[24]. GWAS summary data of osteoporosis were obtained 
for 7788 cases and 204,665 controls with Japanese ancestry 
[25]. As BBJ project registered not only patients with newly 
developed diseases but also patients who were diagnosed 
and treated before starting the project, some participants 
were enrolled several years after disease onset or diagno-
sis. Patients with T2DM or osteoporosis were diagnosed by 
physicians at the cooperating hospitals [26, 27]. We also 
include another GWAS summary data for heel BMD of 
1260 East Asian people from ieu open gwas project (https://​
gwas.​mrcieu.​ac.​uk/) (Dataset: ukb-e-3148_EAS) as a second 
outcome.

Instrumental variables selection process

Candidate genetic instrumental variables (IVs) robustly 
associated with the exposure of interest (p < 5 × 10−8) were 
obtained from GWAS of T2DM [28]. Linkage disequilib-
rium clumping with a clumping window of 10 MB was 
applied to eliminate SNPs with larger p values at a thresh-
old of linkage disequilibrium R2 > 0.001, using the Asian 
population reference to ensure independence among IVs. 
SNPs that were significantly associated with the outcome 
(p < 5 × 10−8) were discarded. For missed SNPs in the out-
come GWAS dataset, proxies were identified at the cutoff 
of R2 > 0.8. If no suitable proxy was available, SNPs were 
discarded. The F-statistic was used to verify the strength 
of IVs, using the following formula: R2 × (N − 2)/(1 − R2). 
Here, R2 indicates the proportion of variance in educational 
attainment explained by a given SNP and N indicates sam-
ple size. More specifically, R2 was calculated with the fol-
lowing formula: R2 = [2 × Beta2 × (1 − EAF) × EAF]/[2 × B
eta2 × (1 − EAF) × EAF + 2 × SE2 × N × (1 − EAF) × EAF]. 
Here, Beta indicates the genetic effect of SNP on educational 
attainment, EAF is effect allele frequency, SE is standard 

https://gwas.mrcieu.ac.uk/
https://gwas.mrcieu.ac.uk/
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error, and N is sample size; only strong IVs (F-statistic > 10) 
for each of the exposures of interest were retained [29, 30]. 
Fourth, we excluded ambiguous and palindromic SNPs 
(minor allele frequency > 0.42) for which the effect cannot 
be corrected in the harmonizing process. The MR-pleiotropy 
residual sum and outlier (MR-PRESSO) test was conducted 
to discard SNPs with potential pleiotropy.

Mendelian randomization

To perform robust and reliable causal inference of the effect 
of T2DM on BMD, in the main analysis, we performed 
multiplicative random-effect inverse variance-weighted 
(MRE-IVW) analysis [31]. Sensitivity analyses were 
performed using weighted median [32] and MR-Egger 
methods [33]. MR-Egger regression is not restricted to a 
zero intercept, which can determine a genotype–outcome 
dose–response relationship in which pleiotropic effects are 
taken into account [34]. However, the MR-Egger method 
is more sensitive than other methods for detecting unob-
served associations of genetic variants with confounders 
of the exposure–outcome association, and a larger sample 
size is required for the same underlying exposure variants 
[33]. The weighted median method can provide consistent 
effect estimates when at least 50% of the information in the 
analysis comes from valid instruments. The Cochran Q test 
for the IVW method was used to detect heterogeneity [35]. 
No heterogeneity was detected if the p value of Cochran’s 
Q was > 0.05. The intercept term derived from MR-Egger 
regression was used to examine horizontal pleiotropy. The 
leave-one-out test was then performed to assess whether the 
IVW estimate was biased by the influence of single SNPs.

We looked up each SNP in Phenoscanner (http://​www.​
pheno​scann​er.​medsc​hl.​cam.​ac.​uk/) to assess whether the 
estimate was violated by potential risk factors, including 
age, BMI, sex, history of fragility fracture, unhealthy life-
style (smoking, alcohol, high-sodium diet), endocrine factors 
(estrogen, glucocorticoids, vitamin D, parathyroid hormone, 
calcitonin), concomitant chronic diseases (liver and kidney 
diseases, cerebrovascular diseases, rheumatoid diseases), 
drugs (chemotherapy drugs, steroids), and malnutrition. 
All the statistical analyses were performed using R software 
(version 4.0.2, TwoSampleMR package 0.5.5).

Gene ontology (GO) enrichment analysis

To further explore the biological role underlying T2DM on 
the osteoporosis development, we performed a gene ontol-
ogy (GO) and KEGG enrichment analysis using the nearest 
genes for each lead SNP. Comprehensive gene list annotation 
and analysis resource were performed in Metascape (http://​
metas​cape.​org/​gp/​index.​html), a customer-friendly web-
based portal [36]. Enrichment dot bubble was plotted by 

https://​www.​bioin​forma​tics.​com.​cn, a free online platform 
for data analysis and visualization.

Results

Eighty-two SNPs robustly associated with T2DM were 
remained after clumping method. And as shown in Supple-
mentary table S1, 18 SNPs were found to correlate with 
potential risk factors and removed. In the harmonizing pro-
cess, palindromic SNP (rs2057565) was removed. Thus, 
after rigorous SNP filtering steps in quality control, 63 IVs 
remained for further analysis (see Supplementary table S2). 
All the SNPs used in our analyses together explained 1.66% 
of the variance in type 2 diabetes mellitus. No weak IVs 
(F-statistic ≤ 10) for our exposure of interest were detected. 
No potentially pleiotropic variants were identified in the 
MR-PRESSO outlier test. As seen in Table 1, in the main 
analysis, IVW estimates indicated that T2DM significantly 
decreased the risk of osteoporosis (odds ratio [OR] = 0.92, 
95% confidence interval [CI]: 0.86–0.99, p = 0.016). Results 
of MR-Egger and weighted median were consistent with 
IVW, though insignificant. The p value derived from MR-
Egger intercept was 0.729 (Egger_intercept = 0.0025), 
suggesting absence of horizontal pleiotropy. The value of 
Cochran’s Q was 65.106, indicating an absence of hetero-
geneity (p = 0.369).

Three missed SNPs without available proxies 
(rs149692182, rs4793326, and rs5874792) in the Heel BMD 
GWAS dataset were discarded, leaving 60 IVs remained 
for further analysis between T2DM and BMD (see Sup-
plementary table S2). As shown in Table 1, based on IVW 
method, T2DM was identified to be causally associated with 
higher BMD (OR: 1.25, 95% CI: 1.06–1.46, p = 6.49 × 10−3). 
The causal association remained significant based on 
weighted median method (OR: 1.43, 95% CI: 1.11–1.83, 
p = 5.50 × 10−3). Results of MR-Egger were consistent with 
IVW, though insignificant (OR: 1.20, 95% CI: 0.76–1.88, 
p = 0.440). The p value derived from MR-Egger intercept 
was 0.846 (Egger_intercept = 0.0034), suggesting absence of 
horizontal pleiotropy. The value of Cochran’s Q was 56.633, 
indicating an absence of heterogeneity (p = 0.563).

Figure 1 shows the scatter plot of the above three meth-
ods for the association of T2DM with risk of osteoporosis 
(Fig. 1A) and BMD (Fig. 1B). And in the leave-one-out 
test, no SNPs were found to violate the causality estimates 
(Supplemental Fig. S1). GO and KEGG pathway enrich-
ment analysis found significant enrichment of top 20 crucial 
regulation pathways (Fig. 2). Among them, several pathways 
may be involved in osteoporosis pathogenesis, like repres-
sion of WNT target genes, diacylglycerol metabolic process, 
and regulation of Notch signaling pathway.

http://www.phenoscanner.medschl.cam.ac.uk/
http://www.phenoscanner.medschl.cam.ac.uk/
http://metascape.org/gp/index.html
http://metascape.org/gp/index.html
https://www.bioinformatics.com.cn
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Discussion

To the best of our knowledge, this is the first MR study 
among East Asian individuals using multiple genetic vari-
ants for T2DM and analyzing their effect on osteoporosis/
BMD. This study provides robust genetic evidence in sup-
port of the hypothesis that T2DM is not associated with 
reduction in BMD in terms of genetic polymorphism. No 
evidence of directional pleiotropy or heterogeneity was 
observed in our study.

Type 2 diabetes mellitus (T2DM) is well-known to be 
associated with normal or elevated bone density but, con-
currently, low bone turnover and increased risk for frac-
ture [37–39]. Through observational studies, there is still 
no unified conclusion regarding the effect of T2DM on 
BMD in Asian populations. Some observational studies 
have indeed found that patients with T2DM have higher 
BMD compared to non-diabetics [9, 40], while others 
have found no association [41] or the opposite [12, 13, 
42, 43]. The conflicting results may be due to differences 
in study design, use of medications, and confounding fac-
tors, such as BMI. Therefore, in our study, we adopted an 
MR method to avoid bias so as to explain the contradiction 
in previous observational studies and confirm that T2DM 
is not associated with reduction in BMD. Results from 
the National Osteoporosis Risk Assessment have shown 
that Asian populations are associated with a significantly 
increased likelihood of osteoporosis compared with white 
populations [17]. In an MR study, Ahmad et al. reported 
that genetically influenced increases in T2DM risk and 
fasting plasma glucose have weak positive effects on BMD 
[23]. Another MR study among non-diabetic individuals 
of European descent by Mitchell et al. demonstrated that 
a genetically predicted 1-mmol/L increment in fasting 
glucose was associated with a 4% higher total hip BMD, 
albeit without reaching statistical significance (p = 0.06) 
[44]. A two-sample MR study using GWAS summary sta-
tistics obtained from the Meta-analyses of the Glucose and 
Insulin-related traits Consortium and Genetic Factors for 
Osteoporosis Consortium showed that lumbar spine BMD 
increased by 0.49 g/cm2 (95% CI: 0.01–0.97) in response 
to a per-unit increase in fasting insulin, revealing a higher 
BMD in patients with T2DM than in those without diabe-
tes [45]. Consistent with studies conducted among indi-
viduals of European descent, the observed association 
with an elevated BMD was confirmed in our study among 
individuals of Asian descent.

Despite a normal to high BMD compared with non-
diabetic individuals, patients with T2DM more often have 
an increased fracture risk [37–39]. Fragility fractures in 
patients with T2DM may be explained by the presence of 
impaired structural properties, including abnormalities in 
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dynamic, material, and microarchitectural bone proper-
ties, which ultimately lead to bone fragility [46–48]. In a 
study among Japanese men, those with T2DM had a haz-
ard ratio of 2.76 for fragility fractures compared with nor-
moglycemic men [49]. Both longer diabetes duration and 
poor glycemic control are associated with a higher fracture 
risk [50]. Losada-Grande et al. investigated the associa-
tion between insulin use and fracture risk and found that 
insulin use appeared to be associated with a 38% excess 
fracture risk among patients with T2DM in the early stages 
of disease [38]. Studies have shown that higher glycated 
hemoglobin (HbA1C)-poor blood glucose control is 
positively correlated with higher BMD in patients with 
diabetes [8]. Long-term high blood glucose levels lead 
to retinopathy and peripheral neuropathy, which further 
affect the patient’s balance and result in an increased risk 
of falling [51].

Given the cross-talk between osteoblasts and osteo-
clasts with abnormal microstructural repair in these T2DM 
patients, it is expected that reduction in bone resorption fol-
lows with resultant low bone turnover — the dynamic pro-
cess of resorption followed by replacement by new bone [52, 
53]. A balance between osteoclast-dependent bone resorp-
tion and osteoblast-dependent bone formation is essential 
for the maintenance of bone material quality. High glucose 
levels may interfere with osteoclast and matrix differentia-
tion and inhibit osteoclast-mediated bone matrix degrada-
tion, resulting in elevated BMD [54]. Another possible 
explanation is that patients with T2DM have an increased 
number of osteoblast precursor cells and elevated levels of 
Dickkopf-related protein-1 (DKK-1), a regulator that inhib-
its osteoblast maturation; this phenomenon can increase the 
number of immature osteoblasts in patients with T2DM in 
comparison with controls [55]. β-Cell failure and low levels 
of insulin-like growth factor-1 negatively affect osteoblast 

function [56]. The possibility of a preventive or therapeu-
tic role for thiazides and statins in osteoporosis has been 
emphasized in some studies because users of these anti-dia-
betic drugs have significantly greater bone mineral content 
than non-users [57, 58]. The reductase inhibitor 3-hydroxy-
3-methylglutaryl coenzyme, the main component of statins, 
can stimulate bone formation by increasing the expression 
of the bone morphogenetic protein-2 gene in bone cells. 
Thiazides can significantly elevate the levels of circulating 
calcium, thus promoting bone formation. Furthermore, high 
circulating insulin levels in patients with insulin resistance 
could explain the high BMD in patients with T2DM because 
insulin is known to exert anabolic effects on bone [59, 60]. 
It is speculated that low turnover of bone in diabetes may 
lead to defective microfracture repairs and, hence, to their 
accumulation, contributing to decreased bone quality.

GO and KEGG pathway enrichment analysis also 
found significant enrichment of several crucial regulation 
pathways, which observed to be involved in osteoporosis. 
Among them, diacylglycerol (DAG) metabolic process and 
regulation of Notch signaling pathway might be remarkable. 
Recent lipidomics studies have shown significant dysregu-
lation of lipids in aging-related bone mineral density loss 
and the occurrence of osteoporosis, including alterations in 
DAG [61, 62]. In response to stimulations, activated phos-
pholipase C (PLC) hydrolyzes PIP2 to DAG. DAG activates 
protein kinase C (PKC)[63], leading to GSK-3β inactivation 
and NFATc1 induction, which has a key role in the RANKL-
induced osteoclast differentiation [64]. Furthermore, Notch 
signaling is implicated in governing cell fate determination, 
proliferation, differentiation, and apoptosis of skeletal cells, 
including osteocytes, chondrocytes, osteoblasts, and osteo-
clasts [65]. The deletion of Notch receptors in mouse bone 
marrow macrophages increased osteoclastogenesis as well 
as osteoclast precursor proliferation, exerting its effect both 

Fig. 1   Scatter plot of Mendelian randomization analyses for the association of T2DM with risk of osteoporosis (A) and heel bone mineral den-
sity (B). MR, Mendelian randomization; SNP, single-nucleotide polymorphism; T2DM, type 2 diabetes mellitus
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in osteoclast precursors and indirectly via osteoblast line-
age cells directly, which raise caution that Notch signaling 
inhibition may be one of the osteoporosis pathogenesis [66].

T2DM is often combined with obesity, which can also 
have detrimental effects on bone. Bioactive lipids play 
important structural and functional roles and directly relate 
to bone homeostasis. The increased bone marrow fat (BMF) 
is generating growing interest as a possible explanation to 
the bone loss in diabetes patients. Patsch and his colleagues 
[67] found that altered bone marrow fat composition (spe-
cifically the proportion of saturated versus unsaturated 
lipid) is linked with fragility fractures and diabetes. Stem 
cell differentiation to adipocytes involves the transcription 

factor known as peroxisome proliferator-activated receptor 
(PPARγ2) and is viewed as competing with osteoblastogen-
esis [68]. Adipose tissue can release a number of adipokines 
(e.g., leptin, adiponectin, and resistin), which can regulate 
bone formation by affecting osteoblasts or osteoclasts [69].

Our study has the following limitations.
Diagnoses of these diseases were based on the phy-

sicians’ diagnoses at cooperating hospitals. First of all, 
diagnosis of osteoporosis in the Japanese cohort was based 
on the physicians’ diagnoses at cooperating hospitals with-
out mention of BMD measurement or history of fracture, 
implying that the findings might have lacked precision and 
could be somewhat unreliable. Somehow, measurement 

Fig. 2   Gene ontology enrich-
ment analysis of nearest genes 
for single-nucleotide polymor-
phisms used on significant MR 
analysis results (A) enriched 
ontology clusters, where every 
cluster is represented in a single 
color and shown as a circle; (B) 
GO enrichment dot bubble plot 
where count means enriched 
number of genes
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error in using the outcome of “osteoporosis” as a measure 
for low BMD may limit the strength of these conclusions 
and prevent a causal interpretation. However, we also con-
ducted additional analysis using heel bone mineral density 
GWAS, which will provide more solid evidence for the 
causal relationship between type 2 diabetes mellitus and 
bone mineral density in an East Asian population. This 
approach will help to overcome the limitations of the ini-
tial diagnosis and strengthen the validity of the findings. 
Second, the SNPs in this study were derived from a Japa-
nese GWAS database, which does not completely repre-
sent all genetic characteristics of the Asian population. 
Third, summary-level data from the BBJ GWAS studies 
might be potentially overlapping, which has the potential 
to bias causal effect estimates in MR studies. Fourth, the 
number of SNPs as IVs was relatively small, which can 
only explain a limited causal relationship. Fifth, the use 
of publicly available data means that it was not possible to 
conduct subgroup analyses by age, sex, and disease dura-
tion. Despite these weaknesses, to the best of our knowl-
edge, this is the first MR study with the largest GWAS 
dataset to focus on the effect of T2DM traits on the risk 
of osteoporosis in Asian individuals. Our study findings 
provide evidence for causal inference in the absence of 
a randomized, controlled trial. We also applied a variety 
of methods based on different assumptions in our study, 
making the causal findings more reliable.

Conclusion

Our MR study among East Asian populations provides 
further evidence that T2DM is not genetically associated 
with reduction in BMD. In clinical practice, it is impor-
tant to regulate blood glucose levels to achieve a balance 
between increasing bone intensity and reducing diabetes-
related complications.

Supplementary Information  The online version contains supplemen-
tary material available at https://​doi.​org/​10.​1007/​s00198-​023-​06807-6.
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