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Abstract

Alcohol-associated liver disease due to harmful alcohol use and NAFLD associated with metabolic
syndrome are the 2 most common liver diseases worldwide. Control of respective risk factors

is the cornerstone in the long-term management of these diseases. Furthermore, there are no
effective therapies. Both diseases are characterized by metabolic derangements; thus, the focus

of this review was to broaden our understanding of metabolic targets investigated in NAFLD,

and how these can be applied to alcohol-associated liver disease. Conserved pathogenic pathways
such as dysregulated lipid metabolism, cell death pathways including apoptosis and activation of
innate immune cells, and stellate cells mediate both alcohol and NAFLDs, resulting in histological
abnormalities of steatosis, inflammation, fibrosis, and cirrhosis. However, pathways such as gut
microbiome changes, glucose metabolism and insulin resistance, inflammatory signaling, and
microRNA abnormalities are distinct in these 2 diseases. In this review article, we describe
conserved and distinct pathogenic pathways highlighting therapeutic targets that may be of
potential in both diseases and those that are unique to each disease.

INTRODUCTION

Hepatic steatosis, or fatty liver, is the most common liver disease worldwide. The 2 most
common etiologies of fatty liver are alcohol-associated liver disease (ALD) and NAFLD.[1.2]
In the general US population, ~7%-10% engage in harmful alcohol use and 30%—-40% are
overweight or obese, which is the most common component of metabolic syndrome and

the predominant risk factor for NAFLD.[34 With the current US population of about 330
million, it is estimated that there are about 10 million overweight or obese individuals with
harmful alcohol use.
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ALD and NAFLD are heterogeneous diseases, with the disease spectrum ranging from
steatosis to progressive steatohepatitis, with or without fibrosis, to end-stage liver disease of
cirrhosis and its complications. Alcoholic hepatitis (AH) is a unique clinical syndrome in
patients with ALD and is characterized by acute onset of severe liver inflammation, potential
for high short-term mortality of up to 80% in most severe forms, and acute-on-chronic liver
failure with antecedent failure of multiple organs.

The earliest histological and imaging abnormality in either ALD or NAFLD is steatosis. Due
to the conserved nature of lipid metabolic pathways, it is not surprising that the pathways
that lead to steatosis demonstrate the most overlap between ALD and NAFLD. Nutrient
overload mediates metabolic abnormalities and steatosis in NAFLD, whereas in ALD, these
abnormalities are mediated by the direct effect of alcohol on the liver tissue or through

real or functional deficiencies. In addition, harmful alcohol use mediates direct toxicity

to the liver through its metabolism in hepatocytes releasing reactive oxygen species.®! In
NAFLD, direct lipotoxicity of certain lipid species plays a greater role.[®] Liver injury

and inflammation are furthered by indirect effects of the gut-liver axis, gut microbiome,
intestinal permeability, and innate immune cells.[”] Furthermore, AH is a unique phenotype
in ALD and is not seen in patients with NAFLD, where the same pathways mediate the
disease pathogenesis, and neutrophils are the major cell type mediating hepatic and systemic
inflammation (Figure 1). In contrast, there are distinct changes in the gut microbiome, gut-
liver axis, and macrophage-mediated inflammation, which characterize progressive NAFLD
(Figure 2).[6:891 NAFLD is not a severe illness and is pathophysiologically distinct from
AH; therefore, throughout this review, as we extrapolate NAFLD therapies to ALD, the

term ALD will be used to refer to the less severe form of alcohol-induced liver disease and
exclude AH.

Over the last decade, several therapeutic targets have been identified and tested in phase

2 and 3 studies for both ALD and NAFLD. However, none of these have met endpoints

for Food and Drug Administration (FDA) approval for use in routine clinical practice.[10.11]
Of several ongoing or completed phase 2 and 3 clinical trials among patients with NASH,
several but not all the drugs may have benefit in ALD with the potential of being examined
among patients with ALD (Table 1). Throughout this article, we will briefly describe the
available preclinical data in an animal model of ALD for the specific target/s, strongly
justifying their assessment in clinical trials on patients with ALD. Although FDA-approved
surrogate endpoints exist for NAFLD trials, in ALD and AH clinical trials, there is a
significant unmet need to develop regulatory endpoints. Past trials in AH have relied

on clinical prognostic scores and mortality in severe AH.[34] However, there exists an
opportunity to define patient stratification and relevant endpoints in both patients with ALD
and those with AH.

PATHOPHYSIOLOGICAL MECHANISMS

Lipid metabolism

Hepatic steatosis—A common and initial pathology in ALD and NAFLD is defined
as > 5% of hepatocytes containing fat droplets.[>3%] Hepatic steatosis in NAFLD is
multifactorial, arising from increased free fatty acid flux from adipose tissue lipolysis
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due to systemic insulin resistance, diet-derived free fatty acids, and de novo lipogenesis
(Figure 3). In contrast, alcohol mediates hepatic steatosis and abnormalities in lipid
metabolism through several pathways: (a) increase in NADH-to-NAD ratio through its
metabolism, impairing mitochondrial beta-oxidation of fatty acids; (b) inducing master
regulators of de novo lipogenesis (SREBP-1c, ChREBP, and PPAR-7); (c) increased
adipose tissue lipolysis, leading to greater delivery and influx of free fatty acids into
hepatocytes; (d) increased expression of the fatty acid transporter, CD36; () inhibition

of AMPK, a regulator of metabolism in cells and inhibitor of lipogenesis; (f) suppression
of peroxisome proliferator—activated receptor a (PPARa) activity; (g) impaired assembly
and secretion of VLDL particles; and (h) intersection with lipid droplet proteins, variants
of which influence susceptibility and progression of ALD.[36:37] Furthermore, alcohol leads
to qualitative and quantitative changes in the content of complex lipids in hepatocytes. For
example, the activity of sphingomyelinases has been shown to be increased up to 3-fold

in humans in response to chronic alcohol use and declined within 1 week of abstinence
from alcohol.[38:391 A similar finding of increased sphingomyelinase activity was shown

in rodent models after exposure to alcohol,[0] and this effect was blunted in animals
pretreated with N-acetylcysteine, suggesting a role of oxidative stress as a mechanism of
activation of sphingomyelinase.[41] In another study, sphingomyelinase-knockout mice were
resistant to alcohol-mediated fatty liver and apoptosis.[42] Furthermore, alcohol increases
the accumulation of ceramides and sphingolipids by increasing the activity of serine
palmitoyltransferase, the rate-limiting step in sphingolipid biosynthesis and of ceramide
synthase.[4344] Of the 3 types of ceramide synthases (1, 5, and 6), subtype 6 is the most
relevant in the development of alcohol-associated fatty liver, with increased activity in zone
3 hepatocytes in both experimental as well as subjects with alcohol-associated steatosis.[44]

Fatty acids—Hepatocyte fat content is a balance between influx of free fatty acids (import
from peripheral tissues due to lipolysis and de novo lipogenesis from ingested sugars

and proteins) and their use through fatty acid oxidation. De novo lipogenesis contributes
significantly to hepatic steatosis in both conditions. De novo lipogenesis involves 3 key
enzymes, acetyl-CoA carboxylase (ACC), which converts acetyl-CoA to malonyl-CoA; fatty
acid synthase, which converts malonyl-CoA to long-chain fatty acids; and stearoyl-CoA
desaturase 1, which catalyzes the synthesis of monounsaturated fatty acids.[] Lipogenesis

is regulated by SREBP-1c activity with ACC being the rate-limiting enzyme, and fatty acid
oxidation is regulated by the nuclear receptors PPAR-a and PPAR-8, with the mitochondrial
carnitine palmitoyltransferase being the rate-limiting enzyme.[36]

Neutral and complex lipids—Fatty acids are stored as simple lipids (ester linkage bond
with alcohols like glycerol to form triglyceride) or complex lipids (ester linkage bond

with phospholipids or sphingolipids). Present in plasma and cell membranes, sphingolipids
comprise 10%—20% of membrane lipids and support specific membrane functions.[43] These
complex lipids can be synthesized de novoin all cells, starting with the conjugation of
amino acid serine and fatty acid palmitoyl CoA. Ceramides, a special class of sphingolipids
are generated in the cells from dihydroceramide through the activity of dihydroceramide
desaturase 1, from sphingomyelin through hydrolytic activity of sphingomyelinase, or as
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a result of acylation of sphingosine through ceramide synthase. The ceramide content is
regulated within the cell by its conversion to sphingosine through ceramidases.

Ceramides can directly result in endoplasmic reticulum stress and mitochondrial
dysfunction.[46] Phospholipids are also altered in ALD due to choline deficiency

and decreased activity of phosphatidylethanolamine methyltransferase, which results in
reduced conversion of phosphatidylethanolamine to phosphatidylcholine.l4”] Decreased
phosphatidylcholine to phosphatidylethanolamine ratio results in decreased export of

fatty acids, leading to aggravation of steatosis and steatohepatitis. Phosphatidylcholine
administration reduced fibrosis in a baboon model of ALD,[8] and betaine supplementation
improved the activity of phosphatidylethanolamine methyltransferase in a mouse model with
attenuation of steatosis.[4%]

Glucose metabolism and insulin resistance

Insulin resistance is a central pathway in NAFLD, but the data on its role in ALD are scanty
and emerging. Apart from inflammation, cell death, and oxidative stress, abnormalities

in lipid metabolism and hepatic lipids also mediate insulin resistance (Figure 3). For
example, ceramides can result in impaired insulin signaling and beta-oxidation of fatty
acids through inhibition of serine-threonine kinase, a critical enzyme for intracellular effects
of insulin.[59.51] This is achieved by ceramide-induced activation of protein kinase C,

which phosphorylates and inhibits translocation of Akt/PKB, and by activation of protein
phosphatase 2A, which is needed for dephosphorylation of Akt/PKB.[52]

Gut-liver axis and bile acid metabolism

Gut microbes include 1014 cells, including bacteria, fungi, viruses, archaea, and protozoa.
The bacterial microbiome in healthy humans is dominated by beneficial bacterial phyla
such as Bacteroides and Firmicutes, and a smaller proportion consists of Proteobacteria,
Actinobacteria, and Verrucomicrobia.[>3] The gut bacterial microbiome in patients with
liver disease is characterized by dysbiosis, with an increase in harmful and a decrease in
beneficial bacteria, and this abnormality worsens with an increase in disease severity and is
also associated with liver and patient-related outcomes.[>* Mechanistically, recent studies
have identified excess alcohol production by Klebsiella pneumoniae as a driver of hepatic
steatosis in NAFLD.[5%] Generation of shortchain fatty acids, which can serve as a substrate
for de novo lipogenesis; decrease in expression of tight junction proteins; and regulation

of food intake and energy expenditure by endocannabinoid signaling and gut hormones are
additional effects of microbial metabolites in NAFLD. Altered bile acid metabolism is also
associated with both ALD and NAFLD and has provided therapeutic opportunities.

Farnesoid X receptor (FXR) is a nuclear receptor that regulates cholesterol and bile acid
metabolism. FXR can also be activated by FGF family members, especially by FGF-19
(FGF-15 in mice) subfamily.[6] FGF-19, expressed in ileal enterocytes reaches the liver
through portal vein to activate the FGF4 membrane receptor, resulting in the inhibition of the
rate-limiting enzyme CYP7AL in the conversion of cholesterol to primary bile acids (cholic
acid and chenodeoxycholic acid), with an upregulation of bile acid exporters at the biliary
canaliculi and at the basolateral surface of enterocytes (Ost alpha-beta heterodimer).[5¢]
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FGF-21, another member of the FGF-19 subfamily, is synthesized in the liver and other
extrahepatic tissues and activates FGF3 membrane receptor, leading to physiological effects
of FXR activation.[>8]

Hepatic inflammation and cell injury

Lipotoxicity—Muitochondrial dysfunction, endoplasmic reticulum stress, lysosomal
membrane permeabilization, hepatocyte injury with apoptosis and other forms of cell death,
inflammation, and the recruitment and proinflammatory activation of macrophages, are
some of the recognized mechanisms of free fatty acid—induced lipotoxicity.[3%] Although,
lipotoxicity is well described and studied in NAFLD,[3! it also plays a role in ALD, as free
fatty acids are elevated in liver biopsy samples from patients with ALD.[57] For example,
preclinical data have shown a shift of intrahepatic fatty acids from saturated to unsaturated
fatty acids,[58] with a benefit of saturated fatty acid diet in ameliorating ALD pathology in a
mice model of ALD.[%9]

Immune cells—Macrophages, neutrophils, and T cells are most studied in the context of
NAFLD and ALD as key mediators of the inflammation associated with each disease. Death
of resident macrophages (KCs) along with chemokines and cytokines creates an empty niche
and a mechanism for the recruitment of monocyte-derived macrophages into the liver. These
monocyte-derived macrophages contribute to the infiltration proinflammatory macrophages
and restore the KC pool.[80] In AH, there is an increase in circulating neutrophils, which
infiltrate the hepatic parenchyma and contribute to inflammation. The role of neutrophils in
the pathogenesis of NAFLD remains less well studied, though it has been suggested that

neutrophil elastase may be a therapeutic target as it mediates insulin resistance in NAFLD.
[61]

Extracellular vesicles and microRNAs (miRs)—Surrounded by a lipid bilayer and
containing bioactive cargoes, extracellular vesicles are secreted by hepatocytes into the
extracellular space and taken up by surrounding cells, thus mediating cross-talk with
adjacent hepatocytes and other liver cells including HSCs.[62-64] Extracellular vesicles may
also contain short noncoding RNAs or miRs, which can regulate the expression of genes
related to immunity, inflammation, and regeneration. Measurable in serum, distinct EV
cargo and miRs have been recognized in ALD and NAFLD.[51.65.66] For example, miRs
34a and 122 are elevated in NAFLD with respective target effects of reducing fatty acid
oxidation and fibrogenesis.[38:671 Another miR, let7d, which physiologically regulates fatty
acid oxidation is deceased in NAFLD. In contrast, miR-155 is increased in ALD and mainly
targets TNF-a, resulting in the induction of LPS sensitization, toll-like receptor-4 activation,
and inflammation.[88.:69] ALD is also characterized by elevated levels of miR-217, resulting
in reduced fatty acid oxidation.[70]

Adipokines—Circulating soluble levels of hormones, especially adiponectin, are increased
in ALD, which is the opposite of the observed reduction noted in patients with NAFLD.
[35,71,72] Increase in adiponectin levels in ALD is associated with changes in other hormones
such as leptin, visfatin, resistin, and omentin, all affecting insulin signaling and steatosis.[72]
For example, alcohol induces an increase in leptin levels similar to NAFLD and obesity,
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which is also associated with an increase in leptin levels.[273] Leptin promotes HSC
activation with inflammation of hepatocytes through TNF-a release from KCs and by the
release of the chemokine CCL2 from HSCs.[3]

Apoptosis, pyroptosis, and ferroptosis—Cell death in ALD and NAFLD is linked to
immune cell activation, and apoptosis is best studied in this regard. For example, a result

of inflammatory signaling in ALD and NAFLD is activation of death receptors, leading to
apoptosis,[74 7] mediated by death receptors especially TRAIL receptor 2.[76.771 Cross-talk
between apoptotic bodies and immune cells leads to the formation of a proinflammatory
loop. Other pathways mediating apoptosis are the activation of caspases and apoptosis
signal-regulating kinase 1 enzyme, which results in the activation of INK pathway.[78.79]
Caspase 1 is also activated by inflammasomes in hepatocytes and inflammatory cells,
mediating sterile inflammation, especially the release of 1L-10.89.81] pyroptotic cell death
occurs following caspase 1-mediated cleavage of gasdermin, leading to the formation of
plasma membrane pores and cell death. Due to its dependence on the inflammasome, which
is known to be activated in NASH and ALD, pyroptotic cell death has been suggested

to mediate NASH and may also play a role in ALD.[82] Cell-specific activation of the
inflammasome, predominantly in KCs in ALD, and within the hepatocytes in NAFLD,

may influence efficacy of caspase inhibitors or other drugs targeting this pathway.[36.80]
Ferroptosis, iron-dependent cell death, has been implicated in NASH,[83] and may also
play a role in alcohol-induced cell death.[84] Thus, many forms of cell death can trigger
inflammation in NASH and correspondingly may play a role in ALD.

Hepatic fibrosis

The activation of HSCs is a key step in the development of fibrosis in any liver disease,
including ALD and NAFLD.[85] TGF-p is a master regulator of fibrogenesis and is an
important therapeutic target.[8%] Cross-talk between the extracellular matrix and hepatic cells
is a critical step in fibrogenesis. Integrins, which mediate this cross-talk, have attracted the
attention as important targets of drug discovery targeting fibrosis. Lysyl oxidase is a family
of 4 extracellular enzymes[1~4] that cross-link the collagen fibers and promote liver fibrosis.
Other factors, such as sonic hedgehog released from inflamed and ballooned hepatocytes,
upregulate the expression of TGF-B in HSCs.[85]

PHARMACOLOGICAL THERAPIES TAGETING METABOLISM

Therapies targeting lipid metabolism

Inhibitors of fatty acid synthesis—The various types of fat within hepatocytes are
labile and change in response to intervention. AMP kinase agonists reduce de novo
lipogenesis through inhibition of SREBP-1c, ChREBP, and ACC phosphorylation. Several
AMP kinase agonists are in clinical trials. Resveratol, an agonist of AMP kinase, has shown
protection from hepatic steatosis in an alcohol-fed mouse model.[88] Inhibiting ACC using
firsocostat (ND-630 or GS-0976) in an animal model showed benefit in reducing hepatic
steatosis.[87] In a phase 2b clinical trial, this drug reduced liver fat and levels of tissue
inhibitor of metalloprotease-1, without improvement in aminotransferases or liver stiffness
measurement.[88] Inhibition of ACC is also associated with enhanced beta-oxidation of fatty
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acids, which results in the elevation of serum triglycerides. Similarly, fatty acid synthase
can be targeted using its inhibitor TVB-2640.[141 SCD1 can be inhibited by fatty acid/bile
acid conjugate 3beta-arachidyl-amido, 7alpha-12alpha-dihydroxy, Sbeta-cholan-24-oic acid
(aramchol), leading to improved hepatic steatosis and insulin sensitivity.[8%] Based on the
encouraging data with the use of aramchol in phase 2 studies,[13.99] a phase 3/4 clinical trial
is ongoing in patients with NAFLD (NCT 04104321). Fatty acids are stored in the liver and
adipose tissue and esterified into triglycerides. The last and committed steps in triglyceride
synthesis are mediated by the enzymes acyl-CoA diacylglycerol acyltransferase-1 and 2.

Its inhibition in a high-fat diet animal model has been shown to reduce hepatic steatosis.
[92] To ameliorate the elevation of serum triglycerides, the inhibition of diacylglycerol
acyltransferase-2 is being studied in combination with an ACC inhibitor in an ongoing phase
2 clinical trial (NCT04399538) (Table 2).

PPAR a/6 agonists—In a mouse model, PPAR agonists have shown benefit in reducing
the development of steatosis in response to ethanol feeding.[92] PPAR agonists are also

in phase 2 and 3 trials in NASH, suggesting that they may be worth investigating in

human clinical trials of patients with ALD. Examples include saroglitazar (dual PPAR a/vy),
pemafibrate (K-877), seladelpar (MBX-8025), elafibranor (dual PPAR a/6), and lanifibranor
(IVA337, pan-PPAR). In this regard, it is interesting to note that increasing fatty acid
oxidation improves NASH, rather than pose oxidative stress, likely by shifting the excess or
balance of residual fatty acids. PPARs also regulate immune cell types, which may play a
role in the efficacy of these drugs in NASH and ALD.[%3]

Thyroid hormone receptor g agonists—Thyroid hormone receptor f is expressed

in hepatocytes and regulates lipid metabolism, among its pleiotropic effects. Examples of
thyroid hormone receptor p agonists are resmetirom (MGL-3196) and VK2809 (MB07811).
Resmetirom administration led to a significant reduction in liver fat in patients with NASH
in a phase 2a clinical trial, and there is an ongoing phase 3 clinical trial (Table 1). A phase 2
trial with VK2809 in patients with NASH is ongoing.

Inhibitors of ceramide synthesis—Pharmacological inhibition of synthesis of
ceramides improves steatosis and glucose tolerance.[4294] Of the 3 pathways involved

in ceramide biosynthesis, effect on ceramide synthase inhibition and not hydrolysis of
sphingomyelin was shown to be most relevant in improving insulin resistance, steatosis,
glucose tolerance, and dyslipidemia in an animal model of alcohol-associated steatosis.[44]
Inhibition or deletion of dihydroceramide desaturase has also been shown to improve hepatic
steatosis in an animal model of NAFLD.[%] Although not yet studied in ALD, this may be
an important therapeutic target if the experimental data are encouraging as in NAFLD.[%]

Therapies targeting glucose metabolism

Insulin sensitizers—PPAR-y agonism with pioglitazone reduced steatosis, inflammation,
and fibrosis in patients with NASH.[25.97] Incretin hormones from small bowel mucosa

like glucagon-like peptide 1 and gastric inhibitory polypeptide mediate insulin secretion
from islet cells of pancreas through binding to their G-protein—coupled receptors. Their
agonists like liraglutide, semaglutide, HM15211, and coradudite (MED10382) have been
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successfully tried in patients with NASH. Sodium-glucose co-transporter type 2 inhibitors
dapagliflozin, epagliflozin, canagliflozin, and licogliflozin reduce reabsorption of glucose
across the renal tubules (Table 1).

Although insulin resistance can occur in ALD mediated by the effect of alcohol on liver

and on adipose tissue,[%# insulin sensitizers currently do not seem to have a potential in
patients with ALD.[38] However, data are emerging on the reprogramming of hepatocyte
metabolism of glucose, especially in more severe forms of ALD with severe AH.[9€]
Reprogramming of hepatocytes leads to impaired use of glucose in generating energy, as
glucose is trapped in the cells as glucose-6 phosphate. Hexokinase domain containing 1 is
the most activated enzyme in patients with AH and also correlated with disease severity

and patient survival. Targeting this enzyme and pathways involved in the transcriptomic and
epigenetic reprogramming such as liver-enriched transcription factors especially hepatocyte
nuclear factor 4-alpha may be of potential in the treatment of patients with AH.[?°] Data

are also emerging on the benefit of glucagon-like peptide 1 and gastric inhibitory peptide
agonists in the management of alcohol use disorder with a reduction in craving and alcohol
consumption.[19%] The exact mechanism is unclear, but is thought to be centrally mediated
through dopamine signaling.[103] It should be noted that insulin sensitizers will need to be
used with caution, and after careful safety testing, in patients with ALD given the added risk
of lactic acidosis with metformin in actively drinking patients,[192] and the risk of HCC with
PPAR-vy agonists.[103]

Therapies targeting bile acid metabolism

FXR agonists—Obeticholic acid (OCA) is currently ongoing a large phase 3 clinical trial
in patients with NASH and significant fibrosis. However, this drug is limited due to its
adverse effect profile of an increase in cholesterol levels and potential for severe pruritus.
[27] Many second-generation FXR agonists are currently in development in an attempt

to overcome the adverse effects of OCA while retaining the histological benefit. These
compounds differ in their chemical structure, their propensity for liver accumulation, and
their preferential intestinal versus hepatic FXR agonism.[194] For example, EDP-305 in
phase 2 clinical trial resulted in improved alanine aminotransferase and reduced intrahepatic
fat, with a lower increase in LDL cholesterol.[28] The minimal increase in LDL cholesterol
with EDP-305 may obviate the need for the coadministration of statins as needed with

use of OCA or an FGF agonist aldafermin (also known as NGM-282).[193] Currently, a
clinical trial is also underway examining the benefit of FXR agonist OCA in patients with
moderate and severe alcohol-associated hepatitis (NCT02039219). Many other compounds
such as tropifexor (LIN452), cilofexor nidufexor (LMB763), non—bile acid FXR agonists
like EDP-297 and EDP-305, MET409, and EYP001a are under development for NASH
(Table 1) and may have potential for exploring their use in patients with ALD.

FGF analogs—Although FGF activity has been shown to be increased in NAFLD, FGF
receptors are resistant to its target effect.[56] In phase 2 randomized placebo-controlled
clinical trial, 24-week use of an engineered FGF-19 analog aldafermin resulted in reduced
intrahepatic fat and a trend on improvement in fibrosis. The drug was safe and none

of the patients had to discontinue the medication due to adverse effects.[106] However,
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in another phase 2b study in patients with NASH with stage 2 or 3 fibrosis, use of
aldafermin for 24 weeks did not result in meeting the primary endpoint of improvement

of fibrosis by one stage without worsening of NASH.[32] Although the drug was well
tolerated in both studies, increase in LDL cholesterol between 0.2 and 0.4 mmol/L occurred
early at 4 weeks, as among patients treated with OCA. Increase in LDL cholesterol of

the same milder magnitude has been observed with cilofexor with a reduced efficacy in
lowering hepatic fat and alanine aminotransferase levels.[29.107] Although the role of nuclear
receptors such as FGF-19 is not yet determined in patients with ALD, preclinical data in
mice have shown that alcohol induces expression of FGF-15/19 or FGF-21 with favorable
lipid metabolism and bile acid profiles, resulting in amelioration of alcohol-associated
steatohepatitis changes and protection from the development of ALD.[108.109] Other drugs
targeting the FGF pathway are being assessed in patients with NASH, such as FGF-21
analogs pegbelfermin (BMS-986036) and efruxifermin (AKR001) and FGF receptor—
activating humanized monoclonal antibodies MK-3655 (NGM313) and BFKB8488A (Table
1) and may have the potential for use in patients with ALD. In a mouse model, FGF-21
activity was shown to be activated by alcohol, but this protected from the development of
ALD.[110]

Therapies targeting inflammatory and cell death pathways

Of therapies that were assessed targeting this paradigm, several molecules (cenecriviroc,
selonsertib, and belapectin) have made it to phase 3 studies in patients with NAFLD

and are worthy of investigation in patients with ALD (Table 1). Of these, selonsertib
(inhibitor of apoptosis-stimulating kinase 1) examined in a phase 2b study in patients with
ALD did not show an efficacy signal and will probably not move further in a phase 3
study. Cenicriviroc, an inhibitor of chemokine ligands type 2 and 5, prevented and treated
inflammation and fibrosis in a mouse model of ALD,111 justifying assessment of this
molecule in human studies of patients with ALD. Vitamin E as an antioxidant showed a
reduction of hepatic steatosis and inflammation in patients with NASH (PIVENS trial),
and is a potential therapeutic target in patients with ALD.[2%] Similarly, caspase inhibitor
emricasan has been used successfully in patients with NASH.[1121 However, a clinical trial
in patients with severe AH had to be halted due to issues with pharmacokinetics and

drug availability in sick patients with liver failure (NCT01912404). The protein ROCK-1
and sphingolipid, sphingosine-1-phosphate, mediate the release of extracellular vesicles
mediating inflammation and can potentially be targeted,[36] to treat patients with ALD.

As the focus of this review is on potential targets gleaned from the NASH world, specific
drugs targeting inflammation and hepatic regeneration in ALD such as corticosteroids,
granulocyte colony-stimulating factor, 1L-22, and DUR-928 will not be discussed here.[?]

Therapies targeting fibrosis

Antagonism of TGF-p can be achieved using monoclonal antibodies (lerdilimumab) or
inhibiting its target receptor TGF-B1 receptor. Simtuzumab, a monoclonal antibody that
blocks a critical step in laying down of collagen mediated by lysyl oxidase, was ineffective
in patients with NASH with bridging fibrosis or compensated cirrhosis.[113] Antibodies

to integrins have shown antifibrotic effect in animal models of NASH, and a current
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clinical trial is ongoing in patients with NASH with advanced fibrosis.[*14] Sonic hedgehog
signaling inhibitors such as cyclopamine and vismodegib have been examined in preclinical
studies in NASH animal models,[115] and could be of potential in ALD.

Drugs targeting alcohol use and food intake

As the main risk factors for ALD and NAFLD are excess and harmful alcohol use and food
intake, respectively, there may be a rationale for therapies targeting pathways controlling
alcohol use and food intake. Animal models and functional imaging studies have shown that
central pathways in the frontal cortex and midbrain involving neurotransmitters (dopamine,
serotonin, GABA, and opioids) mediate addictive behavior to drugs including alcohol,
food, or any other activity.[116] Although peripheral pathways and gut-derived hormones
(ghrelin, leptin, insulin, and neuropeptide YY) through their interaction with the central
pathways are mainly involved to control food intake, data are emerging on the role of
glucagon-like peptide 1 in mediating alcohol use behavior in humans.[117:118] Although
several pharmacotherapies exist and are in development for alcohol use disorder,[119] the
development of therapies targeting food addiction is limited due to their potential risk of
adverse effects, especially mood disorders.[116]
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