
2004 Gut October 2023 Vol 72 No 10

PostScript

Overcoming regional 
limitations: transfer learning for 
cross-regional microbial-based 
diagnosis of diseases

With great interest, we have read the 
article by Clooney et al, which high-
lighted the regional effects on the 
heterogeneity of the gut microbiota 
among populations with inflamma-
tory bowel disease (IBD).1 As a result, 
regional effects would largely limit the 
microbial-based diagnosis of diseases 
across regions. Although current 
machine learning methods based on 
microbial features have been applied 
to diagnosis of diseases such as IBD2 
and type 2 diabetes,3 these methods are 
unable to mitigate the regional effects 
and meet the demand of microbial-
based cross-regional diagnosis of 
diseases.

Here, we proposed a machine learning 
framework (online supplemental 
figure S1, accessible at: https://github.​
com/HUST-NingKang-Lab/EXPERT-​
Disease-GGMP), which integrated the 
neural network and transfer learning, 
to effectively reduce regional effects 
for microbial-based cross-regional diag-
nosis. Importantly, transfer learning can 
‘borrow’ the mature knowledge about 
diseases from a source city to assist the 
disease diagnosis for a target city, espe-
cially when there is little knowledge 
about microbiota patterns in the target 
city.4

To assess the framework, we obtained 
genus-level taxonomy profiles from the 
Guangdong Gut Microbiome Project.5 
These samples were collected from 14 
cities and seven representative diseases 
were selected for assessment (figure 1A 
and online supplemental table S1). 
We randomly divided samples of each 
city into the training subset and the 
testing subset (80%:20% by default), 
then performed assessments for three 
models: (1) Independent disease neural 
network (DNN) model: ab initio 
training and testing the DNN model on 
the training subset and the testing subset 
of each city, respectively. (2) Regional 
DNN model: ab initio training the 
DNN model using the training subset 
of one city A (source city) and testing it 
on the testing subset of another city B 
(target city). (3) Transfer DNN model: 
ab initio training the DNN model using 
training subset of one city A, followed 
by applying transfer learning to a 
certain proportion (from 20% to 80%) 
of samples from city B, and then testing 
the transfer DNN model on the testing 
subset of city B (figure  1B and online 
supplemental figure S1).

We found that the regional DNN model 
across cities presented a low average accu-
racy of 0.506 compared with the inde-
pendent DNN model with an average 
accuracy of 0.743 (pWilcox=2.22×10−16;
figure  1C and online supplemental 
figure S2). It suggested that regional 
factors largely limited the cross-regional 
diagnosis, as also indicated in previous 
studies.5 However, the transfer DNN 
model profoundly increased prediction 
accuracy across cities with an average 
accuracy of 0.829 (pWilcox=2.22×10−16,
compared with the independent DNN 
model; figure 1C and online supplemental 
figure S2). Intriguingly, once the propor-
tion of samples used in the target city 
exceeded 50% for transfer learning, the 
transfer DNN model could even present 
higher prediction accuracy than that of 
the independent DNN model (figure 1D). 
Furthermore, the transfer DNN models 
also had good performance when we 
have applied this approach on two inter-
continental cohorts (online supplemental 
figures S3 and S4).

Moreover, our machine learning 
framework is advantageous in identi-
fication of region-specific microbes, 
as well as microbes shared across 
all regions. We used the ‘leave-one-
feature-out’ method to discover certain 
microbes which were strongly affected 
by regions, such as Enterobacteriaceae 
and Clostridium, while others were less 

affected by regions, such as Parabac-
teroides and Faecalibacterium (online 
supplemental table S2). We specu-
lated that the region-specific microbes 
may contribute to the effectiveness of 
the transfer DNN model in the cross-
regional diagnosis of diseases.

Collectively, our study demon-
strates that transfer learning can realise 
microbial-based cross-regional diag-
nosis of diseases with high accuracy and 
robustness, by using knowledge about 
microbial features across regions. This 
study provides a new venue to exceed 
the regional limitation, and facilitate 
microbial-based cross-regional diag-
nosis of diseases in clinical trials by arti-
ficial intelligence techniques.

Data accession: metagenomic 
sequencing samples are available in 
the European Bioinformatics Institute 
(EBI) database of European Molec-
ular Biology Laboratory (EBI acces-
sion number PRJEB18535) at https://
www.eb i . ac .uk /ena /browser /v i ew/​
PRJEB18535.
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Figure 1  Data distribution, assessment workflow and framework evaluation. (A) data distribution. The number of samples of different diseases. The 
seven diseases marked in red were assessed, including metabolic syndrome, gastritis, kidney stones, T2D, rheumatoid arthritis, constipation and COPD. 
(B) The workflow of assessment. The genera abundance profiles of samples from each city were randomly divided into the training subset (80%) and 
the testing subset (20%). Three assessment workflows for each model were marked by three different colours. The testing subset of city B was used 
to test all the three models. (C) Framework evaluation: comparison of the AUROC of three models. Boxplots in the left panel show the AUROC of the 
three models for diagnosing seven diseases using samples in each of city, and the right panel shows these values collectively. *, p<0.05; **, p<0.01; 
***, p<0.005; Mann-Whitney-Wilcoxon test. (D) The relationship between sample size and the performance of three models. Boxplots show AUROC of 
three models for diagnosing three diseases (COPD, rheumatoid arthritis and T2D). The lines show the change in average AUROC of three models with 
sample size increasing. The dashed line shows the average AUROC of cross-regional diagnosis of T2D using random forest model.5 For all the boxplots, 
boxes represent the IQR between the first and third quartiles and the line inside represents the median. Whiskers denote the lowest and highest 
values within the 1.5×IQR from the first and third quartiles, respectively. AUROC, area under the receiver operating characteristic; COPD, chronic 
obstructive pulmonary disease; T2D, type 2 diabetes.
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