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Abstract

Successful goal-directed actions require constant fine-tuning of the motor system. This fine-tuning 

is thought to rely on an implicit adaptation process that is driven by sensory prediction errors 

(e.g., where you see your hand after reaching vs. where you expected it to be). Individuals with 

low vision experience challenges with visuomotor control, but whether low vision disrupts motor 

adaptation is unknown. To explore this question, we assessed individuals with low vision and 

matched controls with normal vision on a visuomotor task designed to isolate implicit adaptation. 

We found that low vision was associated with attenuated implicit adaptation only for small visual 

errors, but not for large visual errors. This result highlights important constraints underlying 

how low-fidelity visual information is processed by the sensorimotor system to enable successful 

implicit adaptation.

INTRODUCTION

Our ability to enact successful goal-directed actions derives from multiple learning processes 

(McDougle et al., 2016; Bond & Taylor, 2015; Haith, Huberdeau, & Krakauer, 2015; 

McDougle, Bond, & Taylor, 2015; Taylor, Krakauer, & Ivry, 2014; Taylor & Ivry, 2011; 

Keisler & Shadmehr, 2010). Among these processes, implicit motor adaptation is key for 

ensuring that the sensorimotor system remains well-calibrated in response to changes in 

the body (e.g., muscle fatigue) and in the environment (e.g., a heavy jacket). This adaptive 

process is driven by a mismatch between the predicted sensory feedback generated by the 

cerebellum and the actual sensory feedback arriving from the periphery—that is, sensory 

prediction error (Kim, Avraham, & Ivry, 2021; Shadmehr, Smith, & Krakauer, 2010).
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Uncertainty in the sensory feedback has been shown to reduce the system’s sensitivity to the 

feedback signal (i.e., learning rate) and, as such, reduces the extent of implicit adaptation 

(Ferrea, Franke, Morel, & Gail, 2022; Shyr & Joshi, 2021; Samad, Chung, & Shams, 2015; 

van Beers, 2012; Wei & Körding, 2010; Burge, Ernst, & Banks, 2008; van Beers, Wolpert, 

& Haggard, 2002). This phenomenon can be accounted for by an optimal integration model. 

According to this model, the learning rate reflects a Bayes optimal weighting between the 

sensory feedback and feedforward prediction (Kawato, Ohmae, Hoang, & Sanger, 2021; 

Shadmehr et al., 2010; Wei & Körding, 2010; Burge et al., 2008; Körding & Wolpert, 2004; 

Ito, 1986; Albus, 1971; Marr, 1969). When sensory noise is high, the model stipulates that 

this integration process lowers the weight given to the feedback signal, reduces the strength 

of the resultant error, and, as such, attenuates implicit adaptation for all error sizes.

Recent work has discovered an unappreciated constraint on this error integration process 

(Tsay, Avraham, et al., 2021). Uncertain visual feedback was found to only attenuate 

adaptation when visual sensory prediction errors were small, but not when they were large. 

However, sensory feedback noise was manipulated in a relatively coarse, unnatural extrinsic 

environmental manipulation (i.e., a dispersed cloud of visual feedback). In the current study, 

we sought to examine how implicit motor adaptation is affected by sensory uncertainty 

arising from intrinsic noise within the neural circuitry conveying sensory feedback. 

Understanding how sensory uncertainty affects implicit adaptation under a broad range 

of circumstances serves to constrain our computational and neural models of sensorimotor 

learning.

We used a Web-based visuomotor rotation task to assess implicit adaptation in individuals 

with diverse forms of visual impairments—that is, low vision because of reduced visual 

acuity, reduced contrast sensitivity, or restricted visual field. Although prior work has shown 

that low vision is associated with impaired motor control (Cheong, Ling, & Shehab, 2022; 

Lenoble, Corveleyn, Tran, Rouland, & Boucart, 2019; Endo et al., 2016; Verghese, Tyson, 

Ghahghaei, & Fletcher, 2016; Pardhan, Gonzalez-Alvarez, & Subramanian, 2012; Timmis 

& Pardhan, 2012; Kotecha, O’Leary, Melmoth, Grant, & Crabb, 2009; Jacko et al., 2000), 

the effect of low vision on motor learning has not been investigated. We hypothesized 

that low vision—a heterogeneous set of visual impairments—would also attenuate implicit 

adaptation for small, but not large, visual errors similar to the effect of extrinsic visual noise. 

Our results support this hypothesis, providing converging evidence for how low-fidelity 

visual information is processed by the sensorimotor circuitry to enable successful implicit 

adaptation.

METHODS

Ethics Statement

All participants gave written informed consent in accordance with policies approved by the 

institutional review board (protocol number: 2016-02-8439). Participation in the study was 

in exchange for monetary compensation.
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Participants

Individuals with impaired visual function that interferes with the activities of daily life (i.e., 

low vision) were recruited through Meredith Morgan Eye Center and via word of mouth. 

Potential participants were screened using an on-line survey and were excluded if they did 

not have a clinical diagnosis related to low vision (e.g., macular degeneration, glaucoma, 

Stargardt’s disease), or if their self-reported visual acuity (i.e., “Recall your visual acuity 

results from your clinician-administered eye exam within the last year”) in their best-seeing 

eye was better than 20/30 (i.e., 0.2 logMAR). Participants also reported if their low vision 

was related to peripheral and/or central vision, if it was present since birth or acquired later 

in life (denoted hereafter as early versus late onset), and if they had difficulty seeing road 

signs; specifically, participants were prompted with a Likert scale from 1 (road signs are 
very blurry) to 7 (road signs are very clear). This functional measure correlates negatively 

with visual acuity (R = −.5, p = .04).

In addition, participants responded to five survey questions about whether their low vision 

condition affected their day-to-day function. The questions were stated as follows: (1) Do 

you use any mobility or navigational aids? (2) Do you have difficulty detecting an edge 

of a step? (3) Do you have difficulty pouring water into a cup? (4) Do you have difficulty 

walking up and down stairs? (5) Do you have difficulty detecting obstacles? Using these 

self-report responses, we calculated a “visual impairment index” by tallying the number of 

“yes” responses and dividing this number by five (i.e., the number of questions). A higher 

number denotes greater visual impairment (max = 1; min = 0; Table 1).

To our knowledge, this is the first study to examine sensorimotor learning in individuals with 

low vision. Thus, the sample size was determined based on similar neuropsy-chological 

studies examining sensorimotor learning in different patient groups (e.g., cerebellar 

degeneration, Parkinson’s disease; Tsay, Najafi, Schuck, Wang, & Ivry, 2022; Tsay, Schuck, 

& Ivry, 2022; Tseng, Diedrichsen, Krakauer, Shadmehr, & Bastian, 2007). Each participant 

completed two sessions that were spaced at least 24 hr apart to minimize any savings or 

interference (Avraham, Morehead, Kim, & Ivry, 2021; Lerner et al., 2020; Krakauer, Ghez, 

& Ghilardi, 2005). This amounted to a total of 40 on-line test sessions, with each session 

lasting approximately 45 min. Note that none of the participants with low vision reported 

using special devices to augment their vision during the experiment.

We also recruited 20 matched control participants via Prolific, a Web site for online 

participant recruitment, to match the low vision group based on age, sex, handedness, and 

years of education. All control participants completed two sessions, which amounted to 40 

on-line test sessions, each lasting approximately 45 min. Participants on Prolific have been 

vetted through a screening procedure to ensure data quality. Two sessions from the control 

data were incomplete because of technical difficulties and thus not included in the analyses.

By design, the low vision and control groups did not differ significantly in age, t(36) = 

−0.6, p = .58, μ =−3.3, [−15.4, 8.8], D = 0.2; control mean = 46.4, SD = 16.4 years; low 

vision mean = 49.7, SD = 21.1 years; handedness, χ2(1) = 0, p = .93; both groups = 17 

right-handers and three ambidextrous individuals; sex, χ2(1) = 6.1, p = .05; control = 14 

female and six male participants, low vision = 11 female and eight male participants, one 
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declined to specify; or years of education, t(38) = −0.1, p = .89, μ = −0.1, [−1.5,1.3], D = 0; 

control = 17.0 ± 2.2, low vision = 17.1 ± 2.3 (Table 1). As expected, the low vision group 

reported significantly more visual impairments compared with the control group based on 

their self-reported difficulty with reading road signs, t(25) = 16.0, p < .001,μ = 4.6, [4.0, 

5.1], D = 5.1; control = 6.7 ± 0.5, low vision = 2.2 ± 1.2.

The participants with low vision completed the task with the experimenter on the phone, 

and thus, available to provide instructions and monitor performance. The control participants 

completed the task on their own, accessing the Web site at their convenience.

Apparatus

Participants used their own computer to access a Web page hosted on Google Firebase. The 

task was created using the OnPoint platform (Tsay, Lee, Ivry, & Avraham, 2021), and the 

task progression was controlled by JavaScript code running locally in the participant’s Web 

browser. The size and position of stimuli were scaled based on each participant’s screen 

size/resolution (height = 920 ± 180 px, width = 1618 ± 433 px), which was automatically 

detected. As such, any differences in screen size and screen magnification were accounted 

for between individuals. For ease of exposition, the stimulus parameters reported below 

reflect the average screen resolution in our participant population. Importantly, before 

starting the experiment, the experimenter verified that participants were seated at a 

comfortable distance away from the screen (20–30 in.) and were able to comfortably see the 

various visual stimuli on the screen (e.g., the blue target and the white feedback cursor). In 

our prior validation work using this on-line interface and procedure, the exact movement and 

the exact device used did not impact measures of performance or learning on visuomotor 

adaptation tasks (Tsay, Lee, et al., 2021). We note that, unlike our laboratory-based setup in 

which we occlude vision of the reaching hand, this was not possible with our on-line testing 

protocol. That being said, we have found that measures of implicit and explicit adaptation 

are similar between in-person and on-line settings (Tsay, Lee, et al., 2021). Moreover, 

based on our informal observations, participants remain focused on the screen during the 

experiment (to see the target and how well they are doing), so vision of the hand would be 

limited to the periphery.

Reaching Task Stimuli and General Procedure

During the task, the participant performed small reaching movements by moving their 

computer cursor with their trackpad or mouse. The participant’s mouse or trackpad 

sensitivity (gain) was not modified, but rather left at the setting the participant was familiar 

with. On each trial, participants made a center-out planar movement from the center of the 

workspace to a visual target. A white annulus (1% of screen height: 0.24 cm in diameter) 

indicated the start location at the center of the screen, and a red circle (1% of screen height: 

0.24 cm in diameter) indicated the target location. The radial distance of the target from 

the start location was 8 cm (40% of screen height). The target could appear at one of three 

directions from the center. Measuring angles counterclockwise and defining right-ward as 

0°, these directions were: 30° (upper right quadrant), 150° (upper left quadrant), and 270° 

(straight down). Within each experiment, triads of trials (i.e., a cycle) consisted of one 

trial to each of the three targets. The order in which the three targets were presented was 
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randomized within each cycle. Note that participants with color vision deficits could still do 

the task because position information also indicated the difference between the start location 

and target location.

At the beginning of each trial, participants moved their cursor to the start location at the 

center of their screen. Cursor position feedback, indicated by a white dot (0.6% of screen 

height: 0.1 cm in diameter), was provided when the cursor was within 2 cm of the start 

location (10% of screen height). After maintaining the cursor in the start location for 500 

msec, the target appeared at one of three locations (see above). Participants were instructed 

to move rapidly to the target, attempting to “slice” through the target. If the movement was 

not completed within 400 msec, the message “too slow” was displayed in red 20 pt. Times 

New Roman font at the center of the screen for 400 msec.

Feedback during this movement phase could take one of the following forms: veridical 

feedback, no-feedback, or rotated noncontingent (“clamped”) feedback. During veridical 

feedback trials, the movement direction of the cursor was veridical with respect to the 

movement direction of the hand. That is, the cursor moved with their hand as would 

be expected for a normal computer cursor. During no-feedback trials, the cursor was 

extinguished as soon as the hand left the start annulus and remained off for the entire reach. 

During rotated clamped feedback trials, the cursor moved along a fixed trajectory relative 

to the position of the target—a manipulation shown to isolate implicit motor adaptation 

(Tsay, Parvin, & Ivry, 2020; R. Morehead, Taylor, Parvin, & Ivry, 2017). The clamp was 

temporally contingent on the participant’s movement, matching the radial distance of the 

hand from the center circle, but noncontingent on the movement in terms of its angular offset 

relative to the visual target. The fixed angular offset (with respect to the target) was either 3° 

or 30° (see below). The participant was instructed to “ignore the visual feedback and reach 

directly to the target.”

For all feedback trials, the radial position of the cursor corresponded to that of the hand up 

to 8 cm (the radial distance of the target), at which point the cursor position was frozen for 

50 msec, before disappearing. After completing a trial, participants moved the cursor back to 

the starting location. The visual cursor remained invisible until the participant moved within 

2 cm of the start location, at which point the cursor appeared without any rotation.

The Impact of Low Vision on Implicit Motor Adaptation for Small and Large Errors

Participants with low vision and control participants (n = 20 per group) were tested in two 

sessions, with clamped feedback used to induce implicit adaptation. Numerous studies have 

observed that the degree of implicit adaptation saturates for visual errors greater than 5° 

(Hayashi, Kato, & Nozaki, 2020; Kim, Morehead, Parvin, Moazzezi, & Ivry, 2018); thus, 

we examined implicit adaptation in response to 3° errors (an error before the saturation 

zone) and 30° errors (an error within the saturation zone; Figure 1A). The session order and 

direction (clockwise or counterclockwise) of the clamped rotation were counter-balanced 

across individuals. Each session consisted of 75 cycles (225 trials total), distributed across 

three blocks: baseline veridical feedback block (15 cycles), rotated clamped feedback (50 

cycles), and a no-feedback aftereffect block (10 cycles).
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Before the baseline block, the instruction “Move directly to the target as fast and accurately 

as you can” appeared on the screen. Before the clamped feedback block, the instructions 

were modified to read: “The white cursor will no longer be under your control. Please ignore 

the white cursor and continue to aim directly towards the target.” To clarify the invariant 

nature of the clamped feedback, three demonstration trials were provided. On all three trials, 

the target appeared directly above the start location on the screen (90° position), and the 

participant was told to reach to the left (Demo 1), to the right (Demo 2), and downward 

(Demo 3). On all three of these demonstration trials, the cursor moved in a straight line, 90° 

offset from the target. In this way, the participant could see that the spatial trajectory of the 

cursor was unrelated to their own reach direction. Before the no-feedback aftereffect block, 

the participants were reminded to “Move directly to the target as fast and accurately as you 

can.”

Attention and Instruction Checks

It is difficult in on-line studies to verify that participants fully attend to the task. To address 

this issue, we sporadically instructed participants to make specific keypresses: “Press the 

letter ‘b’ to proceed.” If participants did not press the correct key, the experiment was 

terminated. These attention checks were randomly introduced within the first 50 trials of the 

experiment. We also wanted to verify that the participants understood the clamped rotation 

manipulation. To this end, we included one instruction check after the three demonstration 

trials: “Identify the correct statement. Press ‘a’: I will aim away from the target and ignore 

the white dot. Press ‘b’: I will aim directly towards the target location and ignore the white 

dot.” The experiment was terminated if participants did not press the correct key (i.e., press 

“b”). Note that no participants in either group were excluded based on these attention and 

instruction checks.

Data Analysis

The primary dependent variable of reach performance was hand angle, defined as the angle 

of the participant’s movement location relative to the target when movement amplitude 

reached an 8-cm radial distance from the start position. Specifically, we measured the angle 

between a line connecting the start position to the target and a line connecting the start 

position to the position the participant moved to. Given that there is little generalization 

of learning between target locations spaced more than 120° apart (Morehead et al., 2017; 

Krakauer et al., 2005), the data are graphed by cycles. For visualization purposes, the hand 

angles were flipped for blocks in which the clamp was counterclockwise with respect to the 

target.

Outlier responses were defined as trials in which the hand angle deviated by more than 3 

SDs from a moving five-trial window or if the hand angle was greater than 90° from the 

target (median percent of trials removed per participant ± interquartile range (IQR): control 

= 0.1 ± 1.0%, low vision = 0.1 ± 1.0%).

The hand angle data were baseline corrected on an individual basis to account for 

idiosyncratic angular biases in reaching to the three target locations (Morehead & Ivry, 

2015; Vindras, Desmurget, Prablanc, & Viviani, 1998). These biases were estimated based 
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on heading angles during the last five veridical-feedback baseline cycles (Trials 31–45), 

with these bias measures then subtracted from the data for each cycle. We defined two 

summary measures of learning: late adaptation and aftereffect (Figure 1B). Late adaptation 

was defined as the mean hand angle over the last 10 movement cycles of the rotation block 

(Trials 166–195). The aftereffect was operationalized as the mean angle over all movement 

cycles of the no-feedback aftereffect block (Trials 196–225).

These data were submitted to a linear mixed effects model, with hand angle measures as the 

dependent variable. We included experiment phase (late adaptation, aftereffect), group (low 

vision or control), and error size (3°, 30°) as fixed effects and participant ID as a random 

effect. A priori, we hypothesized that the low vision group would differ from the controls in 

their response to the small errors.

We employed F tests with the Satterthwaite method to evaluate whether the coefficients 

obtained from the linear mixed effects model were statistically significant (R functions: 

lmer, lmerTest, anova). Pairwise post hoc t tests (two-tailed) were used to compare hand 

angle measures between the low vision and control groups (R function: emmeans). p Values 

were adjusted for multiple comparisons using the Tukey method. The degrees of freedom 

were also adjusted when the variances between groups were not equal. Ninety-five percent 

confidence intervals for group comparisons (t tests) obtained from the linear mixed effects 

model are reported in squared brackets. Standard effect size measures are also provided 

(D for between-participants comparisons; Dz for within-participant comparisons; ηp
2 for 

between-subjects ANOVA; Lakens, 2013).

RESULTS

Consistent with numerous prior studies, participants in both groups showed a gradual 

change in hand angle in the opposite direction of the clamped feedback, trending toward an 

asymptotic level (Figure 1C–D; Tsay, Haith, Ivry, & Kim, 2022; Kim, Parvin, & Ivry, 2019; 

Morehead et al., 2017). Late adaptation was significant in all four conditions, indicating 

robust implicit adaptation generated by the clamped feedback, regardless of error size or 

participant vision level (3° controls: t(17) = 7.8, p < .001, μ = 13.4°, [9.9°, 17.1°], D = 1.8; 

30° controls: t(17) = 13.9, p < .001, μ = 21.6°, [18.4°, 24.9°], D = 3.1; 3° low vision: t(19)= 

5.6, p < .001, μ = 7.5°, [4.7°, 10.2°], D = 1.3); 30° low vision: t(19) = 10.0, p < .001, μ 

= 23.8°, [18.8°, 28.8°], D = 2.2). The main effect of Phase was not significant, F(1, 110) 

= 1.0, p = .32, ηp
2 = .0, indicating that implicit adaptation exhibited minimal decay back to 

baseline when visual feedback was removed. Comparing the left and right panels of Figure 

1C and 1D, the learning functions were higher when the error was 30° compared with when 

the error was 3°, F(1, 112) = 21.6, p < .001, ηp
2 = .6, corrobo-rating previous reports showing 

that implicit adaptation increases with the size of the error (Kim et al., 2018; Marko, Haith, 

Harran, & Shadmehr, 2012).

We next turned to our main question, asking how low vision impacts implicit adaptation 

in response sensory prediction errors. There was a significant interaction between Group 

and Error Size, F(1, 111) = 10.5, p = .002, ηp
2 = .2: Whereas the learning function between 

the two groups were indistinguishable in response to a 30° error (Figures 1D and 2B), the 
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learning function in the low vision group was attenuated compared with controls in response 

to a 3° error (Figures 1C and 2A). This assessment was confirmed by post hoc t tests, 

revealing that low vision was associated with attenuated implicit adaptation in response to 

the small error, t(60) = −3.0, p = .02, μ = −5.8, [−9.6, −1.9], D = 0.9, but not the large error, 

t(57) = 1.1, p = .67, μ = 2.2, [−1.6, 5.9], D = 0.2. Together, these results underscored an 

unappreciated implicit adaptation impairment associated with low vision, but only when the 

size of the visual error was small.

Session Order Effect

Although the session order (3° or 30°) was fully counter-balanced across participants, one 

potential concern in a within-participant design of learning is that there may be an effect 

of transfer or interference between sessions (Avraham et al., 2021; Lerner et al., 2020; 

Krakauer et al., 2005). For instance, experiencing a 30° clamped feedback in the first session 

may interfere with learning in the second session, resulting in attenuated learning. We did 

not observe a significant Session Order effect on the extent of motor aftereffects, although 

the effect was marginal, F(1, 36) = 3.7, p = .06, ηp
2 = .1. The key interaction between Group 

and Error Size remained significant even when Session Order was entered into the model as 

a covariate, F(1, 36) = 10.5, p = .003, ηp
2 = .2, driven by a selective attenuating effect of low 

vision on small errors, t(71) = 2.9, p = .03, μ = −5.8, [−11.1, −0.5], D = 1.1, but not large 

errors, t(11) = 2.1, p = .66, μ = 2.3, [−2.9, 7.5], D = 0.5.

Kinematic Effects

There were no group differences in movement time (MT), that is, the time between the 

start of the movement (i.e., 1 cm from the center) and end of the movement (i.e., 8 cm 

from the center; MT: t(34) = 0.6, p = .58, μ = 17.5, [−46.9, 81.9], D = 0.2; median MT 

± IQR, low vision = 140.0 ± 106.5 msec; control = 106.4 ± 163.9 msec). In contrast, RT, 

the interval between target presentation to the start of movement, was, on average, slower 

in the low vision group compared with control group (RT: t(32) = 3.3, p = .002, μ = 116.8, 

[47.6, 185.9], D = 1.1; median RT ± IQR, low vision = 425.0 ± 206.5 msec; control = 

317.0 ± 133.6 msec). On an individual level, RTs did not significantly correlate with the 

degree of visual acuity (R = −.1, p = .75), ability to see road signs (R = −.3, p = .14), 

or visual impairment indices (R = .3, p = .18) in the low vision group. These findings are 

consistent with the notion that the group of individuals with low vision was impaired in 

their ability to visually detect targets relative to the controls, but that the ways in which low 

vision can impact target acquisition in a visuomotor task like ours are multifaceted and not 

necessarily predictable from low-dimensional measures of visual function. The group-level 

RT difference prompted us to include RT as a covariate in our analyses. We found that 

implicit adaptation was not significantly modulated by RT (main effect of RT: F(1, 95) = 1.2, 

p = .27, ηp
2 = .0; 3° aftereffect correlated with baseline RT: R = .01, p = .96; 30° aftereffect 

correlated with baseline RT: R = .00, p = .99). The interaction between Group and Error Size 

remained significant, F(1, 112) = 11.4, p = .001, ηp
2 = .2, with the low vision group exhibiting 

attenuated implicit adaptation in response to small errors, t(60) = −2.4, p = .04, μ = −5.0, 

[0.9, 9.1], D = 0.9, but not large errors, t(60) = −1.4, p = .47, μ = −3.1, [−7.2, 1.1], D = 0.2.
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Subgroup Analysis

We also explored whether various subgroups of the participants with low vision exhibited 

differences in implicit adaptation. As shown in Figure 3, there were no appreciable 

differences between participants with and without central vision loss (Figure 3A and B; 

F(1, 18) = 0.3, p = .62, ηp
2 = .0), with and without peripheral vision loss (Figure 3C and D; 

F(1, 18)= 1.0, p = .32, ηp
2 = .1), or early versus late onset of low vision (Figure 3E and F; F(1, 

17) = 0.7, p = .51, ηp
2 = .1). Furthermore, there were also no appreciable association between 

participants’ self-reports of visual acuity (Figure 4A and D), ability to perceive road signs 

(Figure 4B and E), visual impairment scores (Figures 4C and F), and clinical diagnoses 

(Figure 5) with the extent of implicit adaptation. In summary, we did not identify additional 

features among individuals in the low vision group that impacted implicit adaptation.

DISCUSSION

Low vision can cause difficulty in discriminating the position of visual objects (Timmis 

& Pardhan, 2012; Massof & Fletcher, 2001). This impairment impacts motor performance, 

resulting in slower and less accurate goal-directed movements (Cheong et al., 2022; Lenoble 

et al., 2019; Endo et al., 2016; Verghese et al., 2016; Pardhan et al., 2012; Timmis & 

Pardhan, 2012; Kotecha et al., 2009; Jacko et al., 2000). Here, we asked how low vision 

impacts motor learning using a visuomotor adaptation task that isolates implicit adaptation. 

The results revealed that low vision was associated with attenuated implicit adaptation when 

the sensory prediction error was small, but not when the error was large. The error size by 

intrinsic visual uncertainty interaction converges with a recent in-laboratory study, in which 

sensory uncertainty was artificially increased using different cursor patterns (Tsay, Avraham, 

et al., 2021). Together, these results point to a strong convergence between the effect of 

extrinsic uncertainty in the visual stimulus (e.g., a foggy day) and intrinsic uncertainty 

induced by low vision (e.g., damage to or pathology of the visual system).

Potential Neural Learning Mechanisms that May Give Rise to the Error Size by Visual 
Uncertainty Interaction

An optimal integration hypothesis posits that intrinsic uncertainty induced by low vision 

would be associated with decreased sensitivity to errors and attenuate implicit adaptation 

for all error sizes. Therefore, an optimal integration hypothesis cannot account for our 

results. That being said, this error by uncertainty interaction can be explained by a modified 

Bayesian perspective, which posits that the nervous system performs causal inference 

(Hong, Badde, & Landy, 2021; Shams & Beierholm, 2010; Wei & Körding, 2009): Small 

errors, attributed to a misca-librated movement (e.g., not reaching far enough to retrieve a 

glass of water because of muscle fatigue), are “relevant” and thus require implicit adaptation 

to nullify these sensorimotor errors; the weight given to these small errors will fall off 

with increasing uncertainty. On the other hand, large errors are more likely attributed to 

“irrelevant” external sources from the environment (e.g., a missed basketball shot because 

of a sudden gust of wind) and will therefore get discounted by the sensorimotor system. 

Paradoxically, the weight given to these large errors will increase with uncertainty, because 

uncertainty can obscure the attribution of large errors to an external source. As such, the 

causal inference model predicts a crossover point, where implicit adaptation will be higher 
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for small certain errors (compared with small uncertain errors) but be lower for large certain 

errors (compared with large uncertain errors; Wei & Körding, 2009).

A recent theory of implicit adaptation proposes an alternative possibility: The kinesthetic 

re-alignment hypothesis centers on the notion that implicit adaptation is driven to reduce 

a kinesthetic error, the mismatch between the perceived and desired position of the hand, 

rather than a visual error (Tsay, Kim, Haith, & Ivry, 2022). Note that in the original 

exposition of this model (Tsay, Kim, et al., 2022), we used the phrase “proprioceptive 

re-alignment.” However, moving forward, we will adopt the term “kinesthetic re-alignment” 

given that this better captures the idea that the perceived position of the hand is an 

integrated signal composed of multisensory inputs from vision and peripheral proprioceptive 

afferents, as well as predictive information from efferent signals (Proske & Gandevia, 2012). 

According to the kinesthetic re-alignment hypothesis, visual uncertainty indirectly affects 

implicit adaptation by influencing the magnitude of the kinesthetic shift, that is, the degree 

to which visual feedback recalibrates (biases) the perceived position of the hand (Cressman 

& Henriques, 2011). When the visual error is small, visual uncertainty attenuates the size 

of kinesthetic shifts and, therefore, attenuates the degree of implicit adaptation. When the 

visual error is larger than ~10°, kinesthetic shifts saturate and are therefore invariant to 

uncertainty (Tsay, Kim, Parvin, Stover, & Ivry, 2021; ’t Hart, Ruttle, & Henriques, 2020; 

Tsay et al., 2020). As such, visual uncertainty has no impact on implicit adaptation when 

the visual error is large. The mechanism driving kinesthetic shifts (i.e., the extent to which 

vision biases/attracts the perceived hand position) remains an active area for research. Some 

suggest that these shifts are because of mechanisms like causal inference (Hong et al., 2021; 

Wei & Körding, 2009), whereas others hypothesize that these mechanisms may follow a 

simple, fixed ratio rule (Zaidel, Turner, & Angelaki, 2011). Our data motivate future studies 

to directly evaluate the impact of visual uncertainty on kinesthetic shifts and probe the 

neural correlates that support this learning process.

Importantly, visual uncertainty was characterized rather coarsely in the current study via 

recalling the results of a recent clinician-administered eye exam and via self-reporting how 

low vision impacted ability to carry out activities of daily living. We acknowledge that 

without more fine-grained psychophysical tests of visual acuity, contrast sensitivity, and 

visual field loss, it is challenging to evaluate quantitative differences in visual uncertainty 

between the two study groups, or to examine potential effects of individual differences. 

Thus, it is possible that the effects observed between our two groups derive from other 

differences between them that do not reflect different levels of visual function. For example, 

the two groups may have viewed their screens at slightly different distances or with differing 

levels of brightness. To mitigate this concern, we have tried our best to standardize our 

setup. That is, we verified that participants all viewed the screen at a similar, comfortable 

distance and were all able to see the visual stimuli without using any compensatory viewing 

strategies. In addition, we note that possible setup differences would likely result in main 

effects between groups (e.g., participants with low vision paying less attention to the visual 

feedback, and therefore attenuating adaptation for all visual error sizes; Parvin, Dang, 

Stover, Ivry, & Morehead, 2022), rather than result in an interaction between error size and 

visual uncertainty. Detecting this interaction in a diverse sample of people with low vision 
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who have performed the task in a naturalistic environment in fact highlights the robustness 

in our results.

The Impact of Low Vision on Sensorimotor Control and Learning

Previous work has shown that individuals with low vision move slower and make more 

errors when performing goal-directed movements (Verghese et al., 2016; Pardhan et 

al., 2012; Timmis & Pardhan, 2012; Pardhan, Gonzalez-Alvarez, & Subramanian, 2011; 

Kotecha et al., 2009). Although these deficits are observed in people with both central 

and peripheral vision loss, reductions in central vision appear to be the key limiting factor 

(Pardhan et al., 2011, 2012). Central vision loss, which can result in lower acuity and 

contrast sensitivity, likely worsens the ability to precisely locate the intended visual target 

as well as respond to the sensory predictions conveying motor performance, an impairment 

that would be especially pronounced when the target and error are small (Legge, Parish, 

Luebker, & Wurm, 1990; Tomkinson, 1974). Interestingly, in our Web-based studies, we did 

not observe strong associations between subjective measures of visual ability and implicit 

adaptation (see Figures 3–4). That being said, we readily acknowledge that our Web-based 

approach (adopted to continue research during the global pandemic) offers preliminary 

evidence for the impact of low vision on sensorimotor learning. We opted to recruit a 

diverse cohort of low vision participants, one that is largely representative of the diversity 

inherent to low vision. By administering a more detailed psychophysical battery, future 

follow-up studies would be able to home in on how different visual impairments (e.g., 

contrast sensitivity, color sensitivity) may jointly impact the extent of implicit adaptation.

From a practical perspective, our results provide the first characterization of how low vision 

affects not only motor performance, but also motor learning. Specifically, when the sensory 

inputs to the sensorimotor system cannot be clearly disambiguated because of low vision 

(i.e., small and uncertain visual errors), the extent of implicit adaptation is attenuated. 

However, when visual errors are clearly disambiguated despite having low fidelity (i.e., large 

and uncertain errors), the extent of implicit adaptation is not impacted by low vision. This 

dissociation underscores how the underlying learning mechanism per se is not compromised 

by low vision and may be exploited to enhance motor outcomes during clinical rehabilitation 

(Tsay & Winstein, 2020). For example, clinicians and practitioners could use nonvisual 

feedback (e.g., auditory or tactile) to enhance the saliency and possibly reduce localization 

uncertainty of small visual error signals (Endo et al., 2016; Patel, Park, Bonato, Chan, & 

Rodgers, 2012). Moreover, rehabilitative specialists could provide explicit instructions to 

highlight the presence of small errors, such that individuals may learn to rely more on 

explicit re-aiming strategies to compensate for these errors (Merabet, Connors, Halko, & 

Sánchez, 2012). Future work could examine which of these techniques is most effective to 

enhance motor learning when errors are small.
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Figure 1. 
Intrinsic visual feedback uncertainty attenuates implicit adaptation in response to small, 

but not large errors. (A) Schematic of the clamped feedback task. The sensory prediction 

error—the difference between the predicted visual feedback location (i.e., the target, red 

circle) and visual feedback location (i.e., the cursor, white circle)—can either be small 

(3°) or large (30°). The cursor feedback follows a constant trajectory rotated relative to 

the target, independent of the angular position of the participant’s hand. The rotation size 

remains invariant throughout the rotation block. The participant was instructed to move 

directly to the target and ignore the visual feedback. A robust aftereffect is observed when 

the visual cursor is removed during the no feedback block, implying that the clamp-induced 

adaptation is implicit. Note that participants reached toward three targets: 30° (upper right 

quadrant), 150° (upper left quadrant), and 270° (straight-down). Only one target is shown in 

the schematic for ease of illustration. (B) We defined two summary measures of learning: 

late adaptation (handlate) and aftereffect (handafter). Late adaptation reflects the average hand 

angle relative to the target at the end of the clamped feedback block. Aftereffect reflects 

the average hand angle during the subsequent no-feedback block. (C–D) Mean time courses 

of hand angle for 3° (C) and 30° (D) visual clamped feedback, for both the low vision 

(dark magenta) and matched control (green) groups. Hand angle is presented relative to the 

baseline hand angle (i.e., last five cycles of the veridical feedback block). Shaded region 

denotes SEM. Gray horizontal bars labeled Late and After indicate late and aftereffect 

phases of the experiment.
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Figure 2. 
Visual uncertainty attenuates implicit adaptation in response to small, but not large errors. 

Mean hand angles ± SEM during the late phase of the clamped-feedback block, and during 

the no-feedback aftereffect block, for 3° (A) and 30° (B) clamped rotation sessions. Thin 

lines denote individual participants.

Tsay et al. Page 17

J Cogn Neurosci. Author manuscript; available in PMC 2023 September 21.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 3. 
Low vision subgroup analyses. Mean hand angles ± SEM during late adaptation and 

aftereffect phases. Each column divides the low vision (LV) group based on a different 

performance or clinical variable: central vision loss (A, B), peripheral vision loss (C, D), or 

disease onset (E, F). The control group is shown in gray dashed lines.
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Figure 4. 
The association between visual acuity and visual function and motor aftereffects. Correlation 

between visual acuity of the less impaired eye and motor aftereffects (A, D). Correlation 

between how clearly participants report seeing road signs (1 = very clear; 7 = very blurry) 

and motor aftereffects (B, E). Correlation between participant’s visual impairment index and 

motor aftereffects (C, F). The solid line indicates the regression line, and the shaded region 

indicates SEM. The Spearman correlation is noted by R.
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Figure 5. 
The effect of clinical diagnosis on motor aftereffects. Mean aftereffects sorted by clinical 

diagnoses involving low vision. Shading of the dot indicates how well participants report 

seeing road signs (light shading = road signs are very blurry; dark shading = road signs 

are very clear). The 95% confidence interval for the control group is indicated by the green 

shaded region.
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