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60% of the identified variants in different JS cohorts [6]. 
JS-causative genes encode proteins participating in the 
formation and function of the basal body and transition 
zone (TZ) of primary cilium [7], which not only function 
as cell sensors in almost all types of cells but also con-
trol several developmental signaling pathways, including 
Sonic Hedgehog (Shh), Wnt, and planer cell polarity [2]. 
The aberrant primary cilia caused by pathogenic variants 
in these genes lead to abnormal embryonic development. 
Aside from the commonly observed autosomal recessive 
pattern of inheritance, an X-linked recessive manner is 
particularly associated with pathogenic variants in the 
OFD1 gene, and recently an autosomal dominant pattern 
is unveiled by causative variants in the SUFU gene [8, 9].

The classical features of JS include the “molar tooth 
sign (MTS)” on neuroimaging, hypotonia with subse-
quent ataxia, and developmental delay (DD) or intel-
lectual disability [10]. The canonical MTS characterized 
by cerebellar abnormalities portraying cerebellar vermis 
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hypoplasia, thickened, elongated, and horizontally ori-
ented superior cerebellar peduncles, and fourth ventricle 
enlargement [11]. Clinical evidence of MTS is necessary 
for the diagnosis of JS [12] and it could be mild in some 
patients found with thinner cerebellar peduncles and 
slight vermis dysplasia [5, 13]. In addition to the char-
acteristics mentioned, abnormal respiratory patterns, 
such as alternating tachypnea or apnea after delivery, and 
abnormal eye movements, including nystagmus, strabis-
mus, and oculomotor apraxia, are frequently observed 
in patients [14]. Furthermore, depending on the sever-
ity of the disease, a high proportion of individuals with 
JS had concomitant organ abnormalities, which included 
retinal involvement, renal disease, and hepatic fibrosis 
[15]. The varying organ abnormalities in JS patients could 
be explained by JS-causative gene deficiencies in corre-
sponding type of cells, including kidney epithelial cells, 
retinal photoreceptors, and nerve cells [16, 17].

Previously, a group of diseases with MTS and typical 
clinical features of JS combined with systemic involve-
ments were named “JS-related disorders”. Such diseases 
were divided, based on associated comorbidities, into 
clinical subtypes as follows: classic or pure JS, JS with 
retinal disease (JS-Ret), JS with renal disease (JS-Ren), 
JS with oculorenal disease (JS-OR), JS with hepatic dis-
ease (JS-H), JS with oral-facial-digital features (JS-OFD), 
JS with acro-callosal features (JS-AC), and JS with Jeune 
asphyxiating thoracic dystrophy (JS-JATD). “Joubert syn-
drome” is now used as a general term for this group of 
diseases [2].

In this study, we described five patients with or with-
out the typical clinical symptoms of JS, and using whole-
exome sequencing (WES), we pointed out four novel 
pathogenic mutations in the TCTN2, CPLANE1, and 
INPP5E genes that enriched the genotypic spectrum of 
JS.

Case presentation
Clinical manifestations
Patient 1 was a 3-month-old boy admitted to our depart-
ment due to hypotonia. The patient, who was the third 
child in the family, was delivered vaginally at term and 
weighed 3280 g at birth. His parents insisted on the deliv-
ery, despite of the fetal brain MRI performed at 28 weeks 
of gestation suggesting the cerebellar vermis was absent. 
The patient also had a hearing impairment and failed to 
control his head with a soft neck. Gesell scores for the 
patient indicated a moderate to severe DD: 40 in gross 
motor, 54 in fine motor, 40 in adaptability, 40 in language 
ability, and 34 in social ability. His cranial MRI records 
revealed a typical MTS, an enlarged fourth ventricle, and 
cerebellar vermis dysplasia. However, the images could 
not be recovered due to a data disaster. Other routine 
physical exams and biochemical tests were all normal. 

His parents and the 6-year-old sister were healthy. The 
12-year-old sister, showing claw-like hands with slender, 
curving fingers and intellectual disability, was unable to 
walk until she was five years old and fell frequently. We 
failed to follow up on this patient and his family members 
due to the COVID-19 outbreak in 2019.

Patient 2, female, the only child, was admitted to our 
department at 9 months due to delayed developmen-
tal milestones. She had hypotonia, sitting unsteadily 
and making incomprehensible sounds. Her mother was 
treated with levothyroxine because of hypothyroidism 
during pregnancy, though, the patient was born at term 
with a birth weight of 3000 g and with a normal thyroid 
function. However, she had poor visual fixation and eso-
tropia after birth. At the age of 10 months, her Gesell 
assessment revealed a moderate to severe DD: 35 in gross 
motor, 35 in fine motor, 35 in adaptability, 40 in language 
ability, and 40 in social ability. Cranial MRI showed a typ-
ical MTS and “batwing” appearance of fourth ventricle 
(Fig.  1A-C). No abnormalities were detected in routine 
physical exams and biochemical tests. The phenotypes of 
her parents were normal and there was no relevant family 
history. The patient has been receiving regular rehabili-
tation therapies in our department and her Gesell scores 
at the age of two has improved to 37, 57, 55, 57, and 51, 
indicating mild to moderate DD. By the time she was 
three years old, she had a better visual fixation and chas-
ing ability, despite the limited abduction of her left eye. 
She was also able to understand straightforward instruc-
tions, talk in simple words, laugh, and develop fair hand 
functions. However, hypotonia remained and she could 
not stand or walk alone.

Patient 3, male, was admitted to our department due 
to abnormal ocular movements at 7 months. He suf-
fered from downward-limited eye movement, horizon-
tal nystagmus, binocular exotropia, and head tremors. 
The patient was the second child of the family and born 
at term with a birth weight of 3100 g. On the ninth day 
after birth, he developed pathological jaundice, which 
was improved after exchange transfusion and photo-
therapy. At 7 months, a Gesell assessment was performed 
due to delayed motor and linguistic milestones, includ-
ing neck weakness, wobbly sitting, and incomprehen-
sible pronunciation. The results suggested mild DD: 46 
in gross motor, 65 in fine motor, 46 in adaptability, 78 in 
language capacity, and 65 in social ability. His brainstem 
auditory evoked potential test indicated moderate hear-
ing impairment. Cranial MRI revealed MTS, which was 
characterized by the deepening of interpeduncular fossa 
and the thickening and lengthening of superior cerebellar 
peduncles (Fig. 1D-F). Regular physical examinations and 
biochemical tests were normal. The patient’s sister like-
wise suffered from hypotonia, strabismus, severe myopia, 
and nystagmus. Follow-up showed that even though the 
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patient turned 3 years old, he could only speak, crawl, 
and stand with assistance while the ocular abnormalities 
still remained.

Patient 4 was a 5-year-old boy admitted to our depart-
ment due to delayed motor and language milestones. 
He was unable to stand and walk alone and he had 
poor hand functions and unconscious vocalization. The 

patient was one of the two living births in a family that 
had 5 unexplained miscarriages and his older brother 
was healthy. He was delivered via cesarean section at 
full term, weighing 2800 g. At the age of 26 months, his 
Gesell scores showed a severe DD: 48 in gross motor, 33 
in fine motor, 31 in adaptability, 33 in language ability, 
and 38 in social ability. He had seizures at 28 months and 
the seizure symptoms disappeared after taking sodium 
valproate. Besides, broad forehead, slightly depressed 
nasal bridge, low-set ears, micrognathia, adduction 
deformity of thumb, and slender toes were noticed, along 
with hypertonia and limited function of the right limbs. 
Now his EEG result was normal, but blood tests showed 
a decreased level of red cells, hemoglobin, hyperurice-
mia, and increased level of alkaline phosphatase. Cranial 
MRI revealed thickened cortex, sparse gyri, shallow sulci 
especially in the bilateral frontotemporal lobes, thin but 
elongated cerebellar peduncles and slight vermis dyspla-
sia (Fig. 1G-I). The follow-up to the age of 7 showed that 
his DD and hypertonia were not improved.

Patient 5, male, the family’s first child, was admitted 
to our department due to delayed developmental mile-
stones. He was delivered vaginally at term and weighed 
4090 g at birth. Nystagmus and impaired eye movement 
were discovered during a physical examination. At 7 
months, he was unable to sit alone and make comprehen-
sible sounds. Gesell scores showed mild DD: 70 in gross 
motor, 80 in fine motor, 80 in adaptability, 70 in language 
ability, and 80 in social ability. Cranial MRI exhibited 
MTS with a deepened interpeduncular fossa, lengthened 
superior cerebellar peduncles, white matter abnormali-
ties, and enlarged ventricular system (Fig. 1J-L). Abdomi-
nal ultrasonography showed he had an enlarged liver that 
the lower margin of the liver extended 29  mm beyond 
the lower margin of the right costal arch. Other physi-
cal examinations and biochemical tests were normal. 
The patient’s uncle had a history of seizures. A follow-up 
examination revealed that the patient could play and sit 
independently at 11 months old; however, his motor and 
linguistic skills fell behind those of his peers, and he still 
had horizontal nystagmus.

The details of the clinical characteristics of all five 
patients were provided in Table 1.

Genetic tests
After obtaining prior written consent of the parents, 
venous blood samples from all patients and their par-
ents were collected and sent to the Chigene (Beijing) 
Translational Medical Research Center Co. Ltd. (Bei-
jing, China) for trio-based WES. Sanger sequencing 
and the American College of Medical Genetics and 
Genomics (ACMG) clinical practice guidelines [18] 
were applied for variants interpretation in this study. To 
be specific, Patient 1 carried a compound heterozygous 

Fig. 1  MRI results of four patients. (A-C) Patient 2.(A) Axial T2-weighted 
image shows cerebellar vermis hypoplasia, a deepened interpeduncular 
fossa and thickened, elongated superior cerebellar peduncles (arrow), 
presents a “molar tooth sign”; (B) Enlargement of the fourth ventricle, “bat-
wing”(arrow); (C) Parasagittal T1-weighted image showed thickened, elon-
gated, and horizontally oriented superior cerebellar peduncles (arrow); 
(D-F) Patient 3. (D) Axial T1-weighted image (7 months) shows a blurry 
deepened interpeduncular fossa and thickened, elongated superior cer-
ebellar peduncles (arrow); (E) Axial T1-weighted image (3 years) shows 
vermian hypoplasia, thickened, elongated superior cerebellar peduncles 
(arrow); (F) Axial T2-weighted image (3 years) shows a “bat-wing” of the 
fourth ventricle; (G-I) Patient 4. (G) Axial T1-weighted image shows slight 
vermian dysplasia and thin but elongated cerebellar peduncles (arrow); 
(H) Axial T2-weighted image shows thickened cortex, sparse gyri, and shal-
low sulci especially in the bilateral frontotemporal lobes (arrow); (I) Para-
sagittal T1-weighted image shows cerebellar hypoplasia, thin, elongated 
and horizontally oriented cerebellar peduncles (arrow); (J-L) Patient 4. (J-K) 
Axial T1 and T2-weighted image shows thin and elongated cerebellar pe-
duncles (arrow); (L) The subarachnoid space is widened bilaterally in the 
frontotemporal regions (arrow), the ventricular system is enlarged, and 
the volume of white matter is less than peers, suggesting white matter 
dysplasia
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variation in the TCTN2 gene consisting of 2 vari-
ants, c.916  C > T (p.Q306*) and c.1147G > T (p.E383*) 
(NM_024809.5) (Fig.  2A-C); Patient 2 had two vari-
ants in the CPLANE1 gene, one is c.1819_1820insT(p.
Y607Lfs*12) (NM_023073.4), the other is a haploid rep-
lication of exon 34–41 (NM_023073.4), detected by fluo-
rogenic quantitative PCR (Fig. 2D-F); Patient 3 carried a 
complex heterozygous variation in the INPP5E gene con-
sisting of 2 variants, c.669_670delGC (p.A223Afs*66) and 
c.1393G > A (p.V465I) (NM_019892.6) (Fig. 2G-I); Patient 
4 had a homozygous deletion in the NPHP1 gene (exon 
1–20) (NM_000272.5), while both his parents sheltered 
a heterozygous deletion in the NPHP1 gene (exon 1–20) 
respectively (Fig.  2J-K); Patient 5 carried a compound 
heterozygous variation in the CC2D2A gene composed 
of 2 variants, c.2728  C > T (p.R910*) and c.4238G > A 
(p.C1413Y) (NM_001080522.2) (Fig.  2L-N). Overall, 
four novel variants, TCTN2 Q306* and E383*, CPLANE1 
Y607Lfs*12, INPP5E A223Afs* were identified. (Table 2)

Discussion
The diagnosis of JS takes MTS as a necessary criterion, 
classically characterized by thickened and elongated 
superior cerebellar peduncles, with the major manifes-
tations including hypotonia and DD. As one of the cil-
iopathies, JS also has overlapping symptoms with Meckel 
syndrome, nephronophthisis or other diseases, especially 
the extra-neuro symptoms such as polydactyly, retinal 
dystrophy, polycystic kidney, and renal/liver fibrosis [7]. 
In this study, all five patients showed cerebellar hypopla-
sia with MTS and varying degrees of DD. After exclud-
ing other malformations of cerebellar development based 
on neuroimaging, JS was initially diagnosed. However, 
milder forms of MTS were discovered in patients 4 and 
5, along with dysplasia of the cortex or white matter. They 
also suffered from hypertonia, rather than hypotonia in 

typical JS, and Patient 4 in addition had seizures. It raises 
a possibility that white matter dysplasia or seizures trig-
gered hypertonia in these patients. At the same time, 
three patients manifested ocular abnormalities (Patient 
2, 3, 5), which are common symptoms of JS. Besides, we 
did not find any other organ defects. To further build the 
connections between phenotype and genotype, we iden-
tified five variations in the TCTN2, CPLANE1, INPP5E, 
NPHP1, and CC2D2A genes, confirming the JS diagnosis.

TCTN2 localizes to the outer compartments of TZ 
[19] and is crucial in the regulation of ciliogenesis and 
embryonic development, especially the development of 
the nervous system [20]. Shown by genetic tests, Patient 
1 had a compound heterozygous variation in the TCTN2 
gene comprising of previously unreported mutations 
c.916  C > T (p.Q306*) and c.1147G > T (p.E383*). Com-
pared to other JS-associated genes, TCTN2 gene muta-
tions are more likely to result in intellectual disability and 
less likely to result in renal, hepatic, or retinal involve-
ment [21]. Similarly, Patient 1 had a severe DD with no 
other organ defects.

A component of TZ, CPLANE1 is commonly asso-
ciated with JS cases, of which over 125 mutations were 
identified, accounting for about 8–14% of all JS patients 
[22, 23]. These mutations in CPLANE1 lead to dysfunc-
tion of TZ, abnormalities of ciliogenesis and Shh signal 
transduction, causing defects in cerebellar developmen-
tal [23]. From Patient 2, the haploid replication of exons 
34–41 in the CPLANE1 gene is the latest discovery. 
The other genomic alteration c.1819_1820insT in the 
CPLANE1 gene is novel, but the amino acid change 
p.Y607Lfs*12 (rs777686211) shares the same result with 
a previously reported case (c.1819delT, p.Y607Lfs*6) [22].

NPHP1 and CC2D2A similarly function as essen-
tial components of TZ, playing roles in ciliary develop-
ment. In terms of Patient 4, the homozygous deletion in 

Table 1  Clinical features of the five patients diagnosed with Joubert syndrome
Features Patient 1

(TCTN2-JS)
Patient 2
(CPLANE1-JS)

Patient 3
(INPP5E-JS)

Patient 4
(NPHP1-JS)

Patient 5
(CC2D2A-JS)

Age at diagnosis 3 months 9 months 7 months 5 years 7 months
Sex Male Female Male Male Male
MTS + + + mild mild
Dystonia Hypotonia Hypotonia Hypotonia Hypertonia Hypertonia
Developmental delay + + + + +
Ocular Manifestation Strabismus Strabismus/

nystagmus
Nystagmus

Renal involvement
Liver involvement
Seizure +
Craniofacial
dysmorphisms

+

Postaxial
polydactyly
Others Hearing impairment Hearing impairment
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the NPHP1 gene (exon 1–20) results in loss of function 
of the protein, which has been observed in several other 
JS patients [24, 25]. Notably, as the unusual MRI finding 
of Patient 4, NPHP1-associated JS cases have repeat-
edly been reported to exhibit milder “MTS” [5, 13, 25], 
suggesting that NPHP1 defects may have less impact on 
cerebellar development. Nonetheless, seizures have not 
been reported in NPHP1-associated JS, while such symp-
tom have been linked to other JS-related genes, such 
as the CC2D2A and AHI1. The relationship between JS 
genotype and seizure is ambiguous, but seizure manage-
ment is similar for JS and non-JS individuals [26]. As for 

Patient 5, c.4238G > A (p.C1413Y) in the CC2D2A gene 
was previously reported in JS [25] and nephronophthisis 
[27], and c.2728 C > T (p.R910*) was also found in a case 
of prenatally diagnosed JS [28].

Unlike the previously mentioned proteins, INPP5E 
localizes to various subcompartments of primary cilium 
in a TZ-dependent manner and regulates ciliogenesis 
through phosphoinositide 3-kinase signaling pathway 
[29]. The variant c.1393G > A (p.V465I) in the INPP5E 
gene was previously detected in a patient with inher-
ited retinal degenerations [30], and c.669_670delGC 
(p.A223Afs*66) is firstly found in JS.

Fig. 2  Pedigree diagrams and genetic variants of the patients. (A-C) patient 1. (A) The pedigree diagram of the family, the proband’s parents and the 
younger sister were phenotypically normal; the proband’s elder sister carried the same variation with the proband. (B) Sanger sequencing confirmed 
heterozygous c.916 C > T and (C) heterozygous c.1147G > T in the TCTN2 gene; (D-F) patient 2.(D) The pedigree diagram; (E) Sanger sequencing confirmed 
a heterozygous c.1819_1820insT variant in the CPLANE1 gene; (F) Fluorogenic quantitative PCR result for heterozygous CPLANE1 exon 34–41 duplication, 
the ALB gene was used as the reference gene; (G-I) patient 3.(G) The pedigree diagram of the family, the proband’s sister carried the same variation with 
the proband; (H) Sanger sequencing result shows a heterozygous c.669_670delGC variant in the INPP5E gene; (I) Sanger sequencing confirmed a het-
erozygous c.1393G > A variant in the family; (J,K) patient 4.(J) The pedigree diagram; (K) Schematic representation of capture efficiency for homozygous 
NPHP1 exons 1–20 deletion; (L-N) patient 5.(L) The pedigree diagram; (M) Sanger sequencing confirmed a heterozygous c.2728 C > T variant and (N) a 
heterozygous c.4238G > A variant in the CC2D2A gene
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Since there is no curative therapy for patients with JS, 
only regular follow-up and symptomatic treatment are 
practicable. Although a gene-targeted therapy for JS has 
entered the early stage of research, the extreme genetic 
heterogeneity of JS and the differences between human 
and animal models make the research exceedingly diffi-
cult [31]. Prenatal screening accordingly becomes crucial, 
especially for families having a JS-related history. Routine 
prenatal ultrasound and fetal brain MRI can be used for 
early screening for cerebellar malformations, but they 
may not work well due to the inability to detect a typical 
MTS, which needs genetic tests to confirm the prenatal 
diagnosis [8, 32, 33]. Careful follow-up and rehabilita-
tion training may enhance the patients’ daily activities for 
individuals who receive their diagnosis in the early stage 
of life. Regarding possible involvement in several organs, 
such as retinal atrophy and renal/liver disorders, it is nec-
essary to monitor the renal status and renal/liver function 
of the patients for a long period [31]. To date, no patient 
in this study has shown extra organic involvement. All 
patients received individual, scientific, and regular reha-
bilitation, including transcranial magnetic/ultrasound 
stimulation, physical therapy, occupational therapy, 
speech therapy and traditional Chinese medicine treat-
ment, such as acupuncture, moxibustion and massage. 
Follow-ups showed that Patient 2 has made considerable 
progress, while Patient 4 and 5 improved slowly due to a 
complex encephalodysplasia and a history of seizures.

Indeed, our research had certain limitations. First, we 
cannot regain the MRI images of Patient 1 and lost the 
follow-ups, which makes it an imperfect case. Second, 
patients from other cities cannot receive timely reha-
bilitation and developmental assessments because of 
the COVID-19 epidemic. Third, the siblings of Patient 1 
and 3 also had related symptoms but they did not receive 
proper diagnosis and treatment due to family reasons.

In conclusion, we diagnosed JS in five patients, and the 
WES data revealed four novel variants in the TCTN2, 
CPLANE1, and INPP5E genes. Our findings enrich the 
spectrum of pathogenic variants in JS and provide more 

practical experience in genetic diagnosis and counseling. 
Hoping that our reports could shed light on the clinical 
diagnosis of JS and trigger further studies on therapies.
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